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Abstract

The problem of �nding an optimal product sequence for sequential multiplication of a

chain of matrices �the matrix chain ordering problem� MCOP� is well�known and has been

studied for a long time� In this paper� we consider the problem of �nding an optimal prod�

uct schedule for evaluating a chain of matrix products on a parallel computer �the matrix

chain scheduling problem� MCSP�� The di�erence between the MCSP and the MCOP is

that the MCOP pertains to a product sequence for single processor systems and the MCSP

pertains to a sequence of concurrent matrix products for parallel systems� The approach

of parallelizing each matrix product after �nding an optimal product sequence for single

processor systems does not always guarantee the minimum evaluation time on parallel sys�

tems since each parallelized matrix product may use processors ine	ciently� We introduce

a new processor scheduling algorithm for the MCSP which reduces the evaluation time of

a chain of matrix products on a parallel computer� even at the expense of a slight increase

in the total number of operations� Given a chain of n matrices and a matrix product uti�

lizing at most P�k processors in a P �processor system� the proposed algorithm approaches

k�n � ����n � k log�k� � k� times the performance of parallel evaluation using the optimal

sequence found for the MCOP� Also� experiments performed on a Fujitsu AP
��� multicom�

puter show that the proposed algorithm signi�cantly decreases the time required to evaluate

a chain of matrix products in parallel systems�

Keywords � Processor allocation� task scheduling� matrix chain product� parallel matrix

multiplication� matrix chain scheduling problem�
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� Introduction

Matrix multiplication is a computation intensive part of many commonly used scien�

ti	c computing applications� Many algorithms in numerical and non�numerical problems

are solved e
ciently using matrix�matrix multiplications ���� Also� in case of parallel al�

gorithms� some problems that are normally not solved by sequential algorithms turn out

to be e
ciently solved using matrix�matrix multiplications or variations of matrix�matrix

multiplication ��� Such an application uses matrix multiplication as a basic computational

kernel so that a chain of matrices is frequently required and the matrices are multiplied

consecutively �� �� �� ���

In the evaluation of a chain of matrix products with nmatrices�M �M��M��� � ��Mn�

where Mi is an mi �mi���mi � �� matrix� the product sequence greatly a�ects the total

number of operations required to evaluate M� even though the 	nal result is the same for

all product sequences due to the associative law of matrix multiplication� In the worst case�

an arbitrary product sequence of matrices is ��T �
opt� where Topt is the minimum number of

operations required to evaluate a chain of matrix products ���� The matrix chain ordering

problem �MCOP� focuses on 	nding a product sequence for a set of matrices such that the

total number of operations is minimized�

An exhaustive search to 	nd an optimal solution for the MCOP is not a good strat�

egy since the number of possible product sequences of a chain of matrix products with n

matrices is ���n�n����� which is known as the Catalan number ���� Therefore� determining

the optimal sequence by this method is very time consuming� There has been much work

reported for solving the MCOP� The MCOP was 	rst studied by Godbole ��� and solved us�

ing dynamic programming in O�n�� time� Chin ��� suggested an approximation algorithm�

which runs in O�n� time and 	nds a near�optimal sequence� An optimal sequential algo�

rithm� which runs in O�n log�n�� time� was given by Hu and Shing ���� ���� This algorithm

solves the MCOP by solving the equivalent problem of 	nding the optimal triangulation of a

convex polygon� Ramanan ��� presented a simpler algorithm for the MCOP� and obtained

the tight lower bound of ��n log�n�� for a related problem�

Let us refer to the time required to 	nd an optimal product sequence for a chain of

matrices as the ordering time and the time required to execute the product sequence as the

evaluation time� Many parallel algorithms aimed at reducing the ordering time have been

studied using the dynamic programming method ���� ��� ��� ��� and the convex polygon

triangulation method ���� ��� ���� Bradford et al� ���� proposed a parallel algorithm based

on dynamic programming� which runs in O�log��n�� time with n� log�n� processors on the
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CRCW PRAM model� Czumaj ���� proposed an O�log��n�� time algorithm based on the

triangulation of a convex polygon� which runs with n�� log��n� processors on the CREW

PRAM� Also� in ���� he proposed a faster approximation algorithm that 	nds a near�optimal

solution in O�log�n�� time on the CREW PRAM� and in O�log log�n�� time on the CRCW

PRAM� Ramanan ���� gives an optimal algorithm that runs in O�log��n�� time using n

processors on a CREW PRAM�

Now let us consider the evaluation time of a chain of matrix products� In a single proces�

sor system� the evaluation of a chain of matrix products using the optimal product sequence

for the MCOP guarantees the minimum evaluation time since the sequence guarantees the

minimum number of operations� However� in parallel systems� parallel computation of each

matrix product using the product sequence found for the minimum number of operations

does not guarantee the minimum evaluation time� This is because the evaluation time in

parallel systems is a�ected by various factors such as dependencies among tasks� communi�

cation delays� and processor e
ciency� To this date� there has been no research reported in

the open literature on ways to reduce the matrix chain evaluation time in a parallel system�

In this paper� we formally present the problem of 	nding the matrix product schedule

for parallel systems �MCSP� and analyze the complexity of the MCSP� We propose an

algorithm which 	nds a matrix product schedule that� while possibly increasing the total

number of required operations� decreases the evaluation time of a chain of matrix products

by 	nding sets of matrix products that can be executed concurrently�

This paper is organized as follows� Section  presents a formal description of the pro�

cessor scheduling problem for a chain of matrix products and shows that the given problem

is NP�hard� In Section �� we present a processor allocation method for multiplying a num�

ber of independent matrix products concurrently� In Section �� we propose a matrix chain

scheduling algorithm that dramatically reduces the evaluation time of a chain of matrix

products by using processors e
ciently in parallel systems� In Section �� we analyze the

evaluation performance of sequences found with the proposed method and sequences found

for the MCOP� We also compare the proposed method with various other evaluation meth�

ods through experiments on a Fujitsu AP���� parallel system� In Section �� many practical

issues and further extensions of the MCSP are discussed� Finally� in Section �� we summa�

rize and conclude the paper�





� Matrix Chain Scheduling Problem

��� Notation

� P � the number of processors in a parallel system�

� M� a matrix chain product of n matrices� i�e�� M �M� �M� � � � � �Mn�

� Mi� an mi �mi�� matrix �mi � �� � � i � n��

� L� a product sequence tree for a matrix chain M�

� Li�j� the sequence subtree of L for �Mi � � � � �Mj��

� C� the minimum number of computations for evaluating M�

� �C� the amount of increased computation incurred by modifying the current sequence

tree�

� pi�j� the number of processors assigned for evaluating �Mi � � � � �Mj��

� Ti�j�pi�j�� the execution time for evaluating �Mi � � � � �Mj� on pi�j processors�

� �mi�mj �mk�� a single matrix product for multiplying anmi�mj matrix by anmj�mk

matrix�

� ��mi�mj �mk� p�� the execution time of a single matrix product �mi�mj�mk� using p

processors�

� D�x�� the set of divisors of x� i�e�� D�x� � fdjd divides xg�

� LD�x� y�� the largest divisor in D�x� that is not larger than y�

� SD�x� y�� if x � y� then SD�x� y� is the smallest divisor in D�x� that is larger than

y� Otherwise� SD�x� y� � x�

� m� the largest dimension among all of the matrices� i�e�� m � max��i�n���mi��

��� Problem Description

We consider the problem of 	nding the schedule with minimum evaluation time for M

on a P processor parallel system� The number of operations needed to multiply a matrix

A of size mi �mj� by a matrix B of size mj �mk� is mimjmk�
� Many parallel algorithms

for matrix multiplication have been developed for various parallel architectures ��� ���

�Even though Strassen�s algorithm ���� ��	 and its variants perform fewer than n
� operations for n �

n matrix multiplication� these faster algorithms are regarded as inappropriate methods for matrix chain

products due to more erroneous results caused by round
o� errors and larger storage requirements than the

usual inner
product type algorithm ���	� Therefore� we assume that a simple algorithm is used so that n�

operations are required for n� n matrix multiplication� This is also the assumption made in other research

work on the MCOP�
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and the execution time of matrix multiplication depends on the algorithm used and the

architecture on which the algorithm runs� However� for a broader discussion� we assume

that a simple parallel algorithm ��� is used and the execution time of matrix multiplication

is proportional to the number of operations on a processor� Therefore� for multiplying A by

B using p processors� the execution time� ��mi�mj �mk� p�� can be approximated as follows�

��mi�mj �mk� p� �

� mimjmk

p if � � p �
mimjmk

log�mj �
�

mimjmk

p log� p
mimk

� if
mimjmk

log�mj�
� p � mimjmk�

When pij processors are allocated for evaluating �Mi � � � � �Mj�� the evaluation time

consists of two parts� the partial matrix chain evaluation time and the single matrix product

execution time� The two partial matrix chains are �Mi � � �Mk� and �Mk�� � � �Mj� for any

k �i � k � j�� The evaluation time of the two matrix product chains is dependent on the

evaluation method� One method is to evaluate sequentially �Mi � � �Mk� and �Mk�� � � �Mj�

using all available processors in pij� The other method is to evaluate both �Mi � � �Mk� and

�Mk�� � � �Mj� concurrently by partitioning pij into pi�k and pk���j such that pi�k � pk���j �

pij � The minimum evaluation time Ti�j�pi�j� of �Mi � � �Mj� on pi�j processors is found from

the following recurrence relation�

Ti�j�pi�j� � min
i�k�j

��Ti�k�pi�j� � Tk���j�pi�j� � ��mi�mk���mj��� pi�j��

min
pi�k�pk���j�pi�j

�
max

�
Ti�k�pi�k�� Tk���j�pk���j�

��
� ��mi�mk���mj��� pi�j�

�� �

The problem of 	nding the schedule that results in the minimum evaluation time� T��n�P ��

is equivalent to 	nding the best schedule� ki�j � for �Mi � � �Mj� with the processor allocation

pij to Li�j� Therefore� the MCSP is de	ned as follows�

MCSP� Given M and P � �nd the product sequence for evaluating M and the processor

schedule for the sequence such that the evaluation time is minimized�

��� MCSP Complexity

The complexity of the MCSP depends on the number of processors available for the

MCSP� Consider the case in which there are su
cient processors for multiplying any number

of matrices concurrently� For a matrix product �mi�mk���mj�� we can allocate the number

of processors that guarantees the minimum execution time for the product� i�e� log�mk����

Then� using dynamic programming� the problem can be solved in polynomial time according
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to the following recurrence relation�

Ti�j �

�
mini�k�j

��max�Ti�k� Tk���j� � log�mk���
�� if � � i � j � n�

� if i � j� � � i � n�

Therefore� in the case of an in	nite number of processors� the problem of 	nding the schedule

for evaluating M with the minimum time has a polynomial time algorithm� However� in

general� the number of available processors is 	xed and not su
cient to be able to allocate

the maximum number of processors for each product�

Now� let us consider the case when there are P processors in a system� We show that

the MCSP is NP�complete using a reduction from the processor partitioning problem which

is known to be NP�complete ����

Theorem �� The MCSP is NP�complete�

Proof� The decision version of the MCSP is obviously in NP� There is a nondeterministic

algorithm that generates a processor schedule with a product sequence of M� Given the

schedule� it can be decided in polynomial time whether the schedule length is less than a

certain value by 	nding the longest path in a tree graph�

The processor partitioning problem ���� denoted by PPP� is to 	nd the schedule with

the minimum completion time of n tasks on a partitionable P processor system �n � P ��

In the PPP� a task j is characterized as �j and tj�pj� where �j denotes the maximum

number of allocable processors for task j and tj�pj� denotes the execution time of task j

on pi processors �� � pi � �j�� The PPP of deciding whether there exists a schedule whose

completion time is less than D is NP�complete ����

An instance of the PPP can be transformed to an instance of the MCSP� For the PPP�

tj�pj� can be a linear function of pj� i�e�� tj�pj� � tj����pj � Let M�j�� be a �� tj��� matrix

and M�j be a tj��� � � matrix for � � j � n� Now de	ne � for the MCSP as follows�

���� tj���� �� pj� � tj�pj� for � � pj � �j �

Thus the PPP with n tasks is transformed to an MCSP with n matrices in polynomial

time�

Next let us show that if there is a feasible solution for the MCSP� there exists a solution

for the PPP� In the transformed MCSP� an optimal sequence for the MCSP has the products

�M� �M��� �M� �M��� � � �� �M�n�� �M�n� because these n products satisfy the optimal

sequence property in Theorem � of ���� and because any other sequence not only reduces the

degree of concurrency but also increases the computation� Therefore� an optimal schedule
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for the transformed MCSP is found in a product sequence tree having these independent n

products as leaves� Since execution of n�� non�leaf products with single operations requires

at least dlog�n� ��e time� 	nding a schedule of the transformed MCSP whose completion

time is less than D � dlog�n � ��e solves the PPP whose schedule length is less than D�

Therefore� the PPP is transformed to a special case of the MCSP so that the MCSP is

NP�complete� �

Since the problem of 	nding an optimal schedule for the MCSP is an NP�hard opti�

mization problem� we propose a heuristic algorithm in Section �� The algorithm enhances

the evaluation performance of an n�matrix product chain on a parallel system by parti�

tioning the parallel system and executing several matrix products simultaneously� this also

enhances the overall e
ciency of the system� A processor allocation method for executing

multiple matrix products with minimum completion time is discussed in the next section�

� Processor Allocation for Matrix Products

In this section� we discuss how many processors should be allocated for a single matrix

product and determine the optimal processor allocation for executing two matrix prod�

ucts simultaneously� The optimal processor allocation for two matrix products is used for

scheduling matrix chain products to run multiple matrix products concurrently�

��� Processor Allocation for a Single Matrix Product

Many parallel matrix multiplication algorithms have been developed with various par�

allel architectures ��� ��� A multiplication of two n� n matrices requires at most n� pro�

cessors� In the best case� it takes O�log�n�� time with n� processors by using n processors

to get one element of the result matrix�� Each set of n processors executes a multiplication

in one step and sums n elements within O�log�n�� steps� However� in this case we expect

low utilization of processors� While summing n data for log�n� steps� some processors stay

idle� Moreover� these log�n� steps are communication steps� not computation steps� Then�

how many processors should be allocated for multiplying two matrices�

One distinctive feature of parallel matrix multiplication is the jerky behavior a�ecting

�On a CRCW PRAM� the matrix multiplication runs in constant time with the assumption that when

there are write con�icts� when several processors attempt to write numbers in the same location� the sum of

the numbers is written in that location ��	� Since the CRCW PRAM with an arbitrary number of processors

is not realistic in practice� we are not considering that case�
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the execution time� speedup and e
ciency of the computation� This is mainly due to the

load imbalance� which is referred to as the �integer e�ect in ���� It is known that many

parallel algorithms are based on allocating processors for computing a part� especially as a

sub�block� of the result matrix ���� For executing a product �mi�mj �mk� on p processors�

let us consider the case where the operations for computing mimk elements are distributed

among p processors� Then� the execution time ��mi�mj �mk� p�� the speedup S�p� and the

e
ciency E�p� are estimated as follows�

��mi�mj �mk� p� �

�
mimk

p

	
mj�

S�p� �
��mi�mj �mk� ��

��mi�mj �mk� p�
� mimk�

�
mimk

p

	
and

E�p� �
S�p�

p
� mimk�



p

�
mimk

p

	�
�

Ideally� the speedup is expected to be S�p� � p so that E�p� � �� However� in the worst

case� the integer e�ect causes a speedup S�p� close to p�� which is a factor of  away from

what we would normally hope for� This means that half of the processors do not have any

e�ect on the execution time� Thus� there is no need to allocate almost half of the processors

in this case� Therefore� for e
cient execution� the number of processors allocated to a single

matrix product should not be an arbitrary number� When multiplying an mi �mj matrix

by an mj�mk matrix� the possible number of allocable processors is the number of divisors

of mimk� For example� when multiplying a � � matrix by a �� � matrix� the number of

allocable processors is �� � �� and �� the divisors of � � � �� In this case� the load of each

processor is balanced such that each processor has the same amount of computation�

Let D�x� denote the set of divisors of x� i�e�� D�x� � fdjd divides xg� The number

of processors allocated to a given matrix product �mi�mj�mk� should be an element in

D�mimk�� Thus�

��mi�mj �mk� p� �
mimjmk

p
for p � D�mimk��

Even though there may exist an algorithm using mimjmk processors� we assume that at

most mimk processors are allocated to �mi�mj �mk� for e
ciency�

��� Processor Allocation for the Concurrent Computation of Multiple

Matrix Products

In this subsection� we discuss a processor allocation method for independently comput�

ing multiple matrix products� When executing multiple parallel tasks concurrently� one

�



good heuristic for allocating processors to each task is �proportional allocation ��� ���

The proportional allocation algorithm allocates a number of processors proportional to the

computation amount of each task� This algorithm tries to minimize the completion time

of all tasks by balancing the execution times of the tasks� However� it assumes that the

execution time of a task decreases if more processors are allocated to it and that any number

of processors may be allocated� These assumptions� however� do not hold for the MCSP�

Proportional allocation can be applied to allocate processors for multiple matrix prod�

ucts� However� since we cannot allocate an arbitrary number of processors to a single

matrix product� proportional allocation is not a proper processor allocation scheme for the

computation of matrix products� For example� consider the case of computing two matrix

products �� �� �� and ��� �� �� on � processors� Both products involve the same amount of

work�  � � � � � � � � � �� By proportional allocation� �� processors are allocated for

each matrix product� Since the number of allocable processors for the two matrix products

should be numbers in D���� and D��� respectively� LD���� ��� � � and LD��� ��� � �

processors are allocated for each product respectively� Then the completion time of the two

matrix products is max�� �� ���� �� �� ���� � � units of time� However� if we allocate

� processors to the 	rst product and � processors to the second product� the completion

time is only max��� �� � � units of time� Since the completion time is bounded by the

longer execution time� we can reduce the completion time by allocating unused processors

to the matrix product that requires a longer execution time�

The following algorithm describes the processor allocation algorithm for two indepen�

dent matrix products� Given two matrix products X � �mx�mx���mx��� and Y �

�my�my���my���� we let ��X� p� and ��Y� p� be shorthand notation for ��mx�mx���mx��� p�

and ��my�my���my��� p�� respectively�

Discrete Processor Allocation for Two Matrix Products �DPA�

Input� Two matrix products X � �mx�mx���mx��� and Y � �my�my���my���
and a set of P processors�

Output� The number of processors allocated to the matrix products X and Y �
denoted as Px and Py� which satisfy � � Px� Py � P and Px � Py � P �

�� Pprop �
mxmx��mx��

mxmx��mx���mymy��my��
P

�� di � LD�mxmx��� Pprop�
�� di�� � SD�mxmx��� Pprop�
�� dj � LD�mymy��� P � Pprop�
�� dj�� � SD�mymy��� P � Pprop�
�� if ��X� di� � ��Y� dj� then

�



	� if max���X� di������Y�LD�P � di����� � ��X� di� then


� Px � di��� Py � LD�mymy��� P � di���
�� else

�� Px � di� Py � LD�mymy��� P � di�
��� endif

��� elseif max���X�LD�P � dj�������Y� dj���� � ��Y� dj� then

��� Px � LD�mxmx��� P � dj���� Py � dj��

��� else

��� Px � LD�mxmx��� P � dj�� Py � dj
��� endif

�	� endif

Even if we use a naive search algorithm for 	nding divisors� it will take O�max�mi�mj��

time for 	nding both LD�mimj� p� and SD�mimj� p�� We letm denote the largest dimension

among all of the matrices� i�e�� m � max��i�n���mi�� Then the time complexity of the

discrete processor allocation �DPA� algorithm is O�m�� Also� DPA guarantees the minimum

completion time for two matrix products� as shown formally by the following lemma and

theorem�

Lemma �� Given two matrix productsX � �mx�mx���mx��� and Y � �my�my���my���

on P processors� an optimal processor allocation has at least one of four assignments�

Px � di� Px � di��� Py � dj � or Py � dj���

Proof� If an allocation does not have any of the above four assignments� then Px � di

or Px � di��� and Py � dj or Py � dj��� In this allocation� Px and Py are of the following

four cases� the 	rst case is Px � di and Py � dj� the second is Px � di and Py � dj��� the

third is Px � di�� and Py � di� and the fourth is Px � di�� and Py � dj��� Without loss

of generality� let us assume ��X� di� � ��Y� dj��

Case i� Px � di and Py � dj

Since max���X�Px����Y� Py�� � ��X� di�� the allocation of Px and Py does not guarantee

the minimum completion time of X and Y � This means that the completion time by this

allocation is longer than that by the allocation of di and dj to X and Y �

Case ii� Px � di and Py � dj��

As in Case i�� since max���X�Px����Y� Py�� � ��X�Px� � ��X� di�� the allocation of Px

and Py does not result in the minimum completion time�

Case iii� Px � di�� and Py � di

In this case� the completion time with the allocation of Px and Py is max���X�Px����Y� Py��

� ��Y� Py�� Let us compare this allocation with P �
x � di��� P

�
y � LD�Y� P � P �

x�� In the
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allocation of P �
x and P �

y� the completion time is max���X�P �
x����Y� P

�
y�� � ��Y� P �

y�� Also�

since P �
x � Px� it is the case that P �

y � Py� In the case of P �
y � Py� the completion time

��Y� P �
y� with the allocation of P �

x and P �
y is shorter than the completion time ��Y� Py� with

the allocation of Px and Py so that the allocation of Px and Py does not guarantee the

minimum completion time of X and Y � In the case of P �
y � Py� the allocation of Px and Py

does not take less time than the allocation of P �
x and P �

y� and the optimal allocation with

the minimum completion time can be found with P �
x � di���

Case iv� Px � di�� and Py � dj��

In this case� we cannot allocate Px and Py since Px � Py � P �

For all the four cases� the allocation of Px and Py does not take less time than alloca�

tion with one of the original four assignments� Therefore� the optimal allocation with the

minimum completion time is found with one of the original four assignments� �

Theorem �� DPA guarantees the minimum completion time for two matrix products�

Proof� Since DPA 	nds the allocation with the minimum completion time among the

allocations having one of the four assignments in Lemma �� DPA guarantees the minimum

completion time for computing two matrix products simultaneously� �

In the next section� DPA is used for two�partitioning the processors allocated to a leaf

product for running another candidate product simultaneously� Thus� we can compute

multiple matrix products independently with an increased degree of concurrency�

� Matrix Chain Scheduling Algorithm

The proposed scheduling algorithm consists of three stages� First� the algorithm 	nds

the optimal product sequence for the MCOP� Next is the top�down processor assignment

stage� In this stage� processors are partitioned and proportionally assigned to each subtree

according to their computation amount in order to balance the evaluation time of both the

left and right partial matrix product chains� The third stage is the bottom�up execution

stage that executes products independently from the leaf and tries to modify the product

sequence to enhance concurrency so as to reduce the evaluation time of M� This is done

by 	nding the points that change the product sequence but do not excessively increase the

total number of operations�
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��� Optimal Product Sequence by the MCOP

The product sequence of M determines the number of operations to be executed in

single processor systems� In parallel systems� the number of operations is not the sole

factor determining the evaluation time� but it a�ects the evaluation time greatly nonetheless�

Hence� our scheduling algorithm begins with the optimal product sequence found for the

MCOP� There have been many works reported for 	nding the optimal product sequence

that guarantees the minimum number of operations for any chain of matrix products� The

optimal product sequence can be found in O�n log�n�� time using a sequential algorithm ����

���� In addition� many parallel algorithms that run in polylog time have been studied ����

��� ���� Thus� by using these parallel algorithms� it is possible to 	nd the optimal product

sequence within polylog time on P processor systems�

Let us assume that the sequence and the number of operations found for the MCOP

is stored in two tables named S�n� n� and W �n� n�� respectively� W �i� j� has the minimum

number of operations for evaluating Li�j� and S�i� j� has the matrix index for partitioning

the matrix chain �Mi � � � � �Mj�� Note that the algorithm for the MCOP may not have

computed Li�j� S�i� j� or W �i� j� for all i� j�

��� Top�Down Processor Assignment

In the top�down processor assignment stage� the number of processors assigned to two

partial matrix chains is set to be proportional to the computation amount of a subtree�

If pi�j processors have been assigned to Li�j� then pi�j �
W �i�S�i�j		

�W �i�S�i�j		�W �S�i�j	���j	� processors

are assigned to subtree Li�S�i�j	 and pi�j �
W �S�i�j	���j	

�W �i�S�i�j		�W �S�i�j	���j	� processors are assigned to

subtree LS�i�j	���j�

For example� given a chain of � matrices with dimensions f�� �� �� �� �� �� �� �� �g and a

�� processor system� processors are assigned as in Fig� ��

��� Bottom�Up Concurrent Execution

After assigning processors to each subtree� the matrix products are executed concur�

rently and independently� starting from the leaf products� However� there are cases in

which some processors stay idle� When there are idle processors in the execution of Li�j�

we try to modify the product sequence to use these idle processors by tracing the ancestors

of the leaf node of Li�j in order to 	nd a candidate for concurrent execution� This upward

��
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trace continues until a suitable candidate or a sibling which is not a leaf node is found� For

example� let us consider executing the sequence tree L��
 shown in Fig� � which represents

���M��M��M����M�M��M��M����M��M
�� In the execution of �M�M��� the possible can�

didates for concurrent execution are �M�M��� �M�M��� �M�M� and �M�M
�� There are

other types of candidate products� e�g�� �MM��� which are not considered in this paper

because such cases result in more modi	cations to the optimal sequence with no obvious

bene	t over other candidates�

The matrix product �MyMy��� is a candidate of the leaf product �MxMx��� if one of

the following two conditions is satis	ed�

Condition�� y � x� � and the node associated with My�� has the left child node asso�

ciated with My in the sequence tree�

Condition�� y � x�� and the node associated withMy has the right child node associated

with My�� in the sequence tree�

When we modify the product sequence to execute candidate products simultaneously in

the current execution phase� there is some loss due to an increase in the total number of

operations� Therefore� we have to check whether the modi	cation is bene	cial or not�

Consider a matrix chain with four matrices that needs three matrix products to get the

	nal result� Assume that the optimal product sequence of this matrix chain for the MCOP is

���M�M��M��M��� as shown in Fig� �� When the sequence is modi	ed to ��M�M���M�M����

the total number of operations changes from C � m�m�m� � m�m�m� � m�m�m� to

C � � m�m�m� � m�m�m� �m�m�m�� Therefore� the amount of increased computation

�C is as follows�

�C � m�m�m� �m�m�m� �m�m�m� �m�m�m��

In general� when we have a product sequence such as in Fig� �� the amount of increased

computation for multiplying My �My�� concurrently with Mx �Mx�� is as follows�

�C � my��my���my �mz� �mzmy�my�� �my����

��
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In this equation� mz represents the row of the intermediate matrix �or matrix Mz itself�

that is going to be multiplied with the result of My �My��� In other words� there is a left

parenthesis to the left of matrix Mz that matches the right parenthesis on the right side of

matrix My��� In the case of y � z� i�e�� �My�My���� � � �MxMx��� � � �Mz���� the amount of

increased computation is

�C � my��my���my �mz��� �mz��my�my�� �my����

Finding mz �or mz���� which is very important for the analysis of �C� can be done by

traversing sequence tree L� If both My and My�� are right children� then Mz is searched

by traversing the left child recursively from the parent node of My� Similarly� if both are

left children� then Mz is searched by traversing the right child from the parent node of My�

In the case where pi�j processors are allocated to the matrix product �MxMx��� but

all pi�j processors cannot be utilized by the matrix product �i�e�� mxmx�� � pi�j�� then we

try to modify the product sequence L� At that time� we can decide to modify the current

sequence by the following lemma�

Lemma �� If a leaf product �MxMx��� has a candidate product �MyMy��� and the

DPA algorithm will allocate px and py processors to the two matrix products respec�

tively� then evaluation using the modi	ed sequence reduces the evaluation time when

�C � min���mx�mx���mx��� mxmx��� � �px � py �mxmx���� mymy��my����

Proof� There are two necessary conditions for modifying a product sequence to have

better performance� The 	rst condition is that the utilization of idle processors �i�e�� px �

py �mxmx��� should be greater than the computation increase resulting from modifying

the product sequence tree� The work of idle processors can be estimated as the product of

the number of utilized processors and the available time for these processors� Hence� the

following condition should be satis	ed�

�C � ��mx�mx���mx���mxmx���� �px � py �mxmx����

Also� the amount of computation given to idle processors� which is the time for multiplying

�MyMy���� should be more than �C� Therefore� the other condition to be satis	ed is

�C � mymy��my���

��



Thus� the lemma is satis	ed� �

If a candidate product �MyMy��� satis	es Lemma � then it would be better to change

product sequence Li�j to multiply the candidate product concurrently with �MxMx����

This means that the unallocated idle processors can do more work than the increased

computation required by the change in the product sequence�

When the candidate product is found� the subtree Li�j is modi	ed and the processors

pi�j are redistributed among the products in Li�j �including the candidate product�� Also�

processors are allocated proportionally to each product� This results in an enhancement of

the overall system performance due to an increase in processor e
ciency�

��� The Proposed Scheduling Algorithm

The proposed scheduling algorithm for evaluating a matrix chain product is formulated

as follows�

Two�Pass Matrix Chain Scheduling Algorithm

Stage�� MCOP

�� Find the optimal product sequence for the MCOP by using a parallel algorithm�

� Generate the sequence tree L�

Stage�� Top�Down Processor Assignment

�� Initialize i � �� j � n� pi�j � P �

� If i is not S�i� j�� then allocate pi�j �W �i� S�i� j����W �i� S�i� j�� �W �S�i� j� � �� j��

processors to Li�S�i�j	�

�� If j is not S�i� j���� then allocate pi�j�W �S�i� j���� j���W �i� S�i� j���W �S�i� j��

�� j�� to LS�i�j	���j�

�� If i is j � � or j� then 	nish this stage� otherwise� call this algorithm recursively�

once with i � i� j � S�i� j� and once with i � S�i� j� � �� j � j�

Stage�	 Bottom�Up Concurrent Execution

For all leaf products� execute the following steps until there are no more unscheduled

leaf products�

��



�� Let �MkMk��� be a leaf product and pk�k�� be the number of processors allocated

to the leaf product� If pk�k�� � mkmk��� then go to ��

� Find a candidate product by tracing ancestors of the leaf product using postorder

traversal� If there is no such candidate product� go to ��

�� Let the product �MlMl��� be a candidate product found by tracing ancestors

of the leaf product �MkMk���� Check whether the candidate product satis	es

Lemma � If not� go to �

�� Modify the sequence tree such that the candidate product �MlMl��� can be

executed concurrently with �MkMk���� Reallocate processors pk�k�� using the

DPA algorithm and go to � for each leaf product of the two split subtrees�

�� Schedule the leaf product on min�pi�j� mkmk��� processors� Set the parent of

the leaf product as a new leaf product�

The scheduling algorithm starts from the sequence for the MCOP and then tries to

modify the sequence to increase the degree of concurrency� The evaluation time of a matrix

chain product is a�ected by the amount of computation required and the degree of concur�

rency� The amount of computation required is minimized by using the MCOP sequence� and

the degree of concurrency is maximized with a complete binary tree� The optimal product

sequence with the minimum evaluation time has a form that is somewhere in between that

of the MCOP sequence and the complete binary tree� The proposed scheduling algorithm

moves from the MCOP sequence to a near�optimal sequence�

For purposes of e
ciency� the scheduling algorithm modi	es the current product se�

quence when the candidate product satis	es Lemma � Even though we can select the most

suitable candidate among a number of candidates satisfying Lemma  by traversing the

sequence tree� the scheduling algorithm uses the 	rst candidate that satis	es Lemma  in

order to minimize the scheduling time�

��� Algorithm Complexity

The time complexity of the proposed algorithm is analyzed as follows� Stage�� and Stage�

 can be done within O�n� time� In Stage��� to reduce the time for checking Lemma � we

pass the information of the skewed point �Mz for �C� to the next parent product when

we are tracing the ancestors from a leaf product� as shown in Fig� �� Then we do not need

to traverse the children of a candidate product to 	nd Mz since Mz is passed from the

previously traced child� This allows Step � of Stage�� to be completed in constant time�

The maximum number of products traced to check concurrent execution is �n � ��� The
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Figure �� Candidate searching and passing the information of the skewed point Mz�

total number of products that may be traced in Stage�� is �n � �� � �n � �� � � � � � � �

�n� ��n� ��� � O�n��� Also� in Step � of Stage��� the number of sequence modi	cations

is at most �n� ��� Since the DPA algorithm for two matrix products takes O�m�� the time

complexity for Step � of Stage�� is O��n � ��m�� Therefore� the time complexity of the

proposed algorithm is O�n� � nm��

��	 Scheduling Example

The following simple example illustrates the proposed scheduling algorithm� and com�

pares the expected evaluation time of the product sequence by the proposed algorithm with

that of the optimal product sequence for the MCOP�

In a system with �� processors� let us consider the case of evaluating a chain of matrix

products with � matrices� Given � matrices�M�� ���M�� ���M�� ����M�� ����M�� ����

Stage�� 	nds the product sequence with the minimum number of operations for the MCOP

as �M����M�M��M��M���� The MCOP sequence tree is represented as the left tree of Fig� ��

In Stage�� we assign �� processors to each matrix product� In Stage��� since the leaf product

�M�M�� cannot utilize the �� allocated processors� we try to modify the product sequence�

The product �M�M�� is found to be a candidate product� By checking Lemma � we get

px � ��� py � �� using the DPA algorithm� �C � � � ��� � � �  � ��� � �� � ���� and

��� �� �� ��� � �� Since �C � ��� � min��� ��� � ��� ���� � � �� �� � ��� the product

sequence is modi	ed to �M���M�M���M�M���� as shown in the right tree of Fig� ��

Let us compare the evaluation time of the optimal MCOP sequence with that of the

product sequence found by the proposed scheduling algorithm� When we evaluate the

��
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matrix chain by the optimal MCOP sequence� it takes �� �� ���min���� � �� � �� ��

���min����  � �� � � � � � ���min����  � �� � �� �  � ���min���� � � �� � � units of

time� The evaluation time of the product sequence by the proposed scheduling algorithm

is max�� �� ��min���� � ��� �� �� ��min���� �� ��� � � �� ��min���� � �� � ��

� ��min���� �� �� � �� �� � �� units of time� The product sequence by the proposed

scheduling algorithm requires �� operations� which is ��� operations more than the MCOP

sequence having the minimum number of operations ������ However� the proposed algorithm

requires less time than the MCOP sequence� This is due to the concurrent execution of

multiple matrix products which increases system e
ciency and reduces the total evaluation

time�

� Performance Comparison

��� Expected Performance

In this subsection� the performance of the evaluation sequence found by the proposed

algorithm is analyzed and compared with the optimal sequence for the MCOP� Evaluation

time� speedup� and e
ciency are used as the performance metrics� The upper bound and the

lower bound of evaluation using the sequences found by the proposed method are compared

with evaluation by the MCOP sequence in terms of these metrics�

If a schedule is given for M� the evaluation sequence of M can be represented as a tree

with n� � tasks� Let us denote task i as vi� the number of operations in vi as wi� and the

maximum number of processors allocated to vi as p
max
i � From the previous assumption� if

vi is �mi� �mi� �mi��� then wi � mi�mi�mi� � and p
max
i � mi�mi� �

��



The evaluation time of M in a single processor system is the same as the number

of operations� Therefore� the evaluation time� represented as TSEQ���� is bound by the

minimum number of operations of a MCOP sequence� If the number of operations of the

MCOP sequence is W � TSEQ��� is found as follows�

TSEQ��� �
n��X
i��

��mi� �mi� �mi� � �� �
n��X
i��

wi �W�

On a P �processor parallel system� the evaluation time of the MCOP sequence in which

each matrix product is parallelized one at a time� denoted by TMCOP �P �� is calculated as

follows�

TMCOP �P � �
n��X
i��

��mi� �mi� �mi� �min�P� pmaxi �� �
n��X
i��

wi
min�P� pmaxi �

�

In the case of pmaxi � P for all � � i � n� �� TMCOP �P � becomes

TMCOP �P � �
W

P
�

However� in general� there exist cases in which pmaxi � P for some i and TMCOP �P � is larger

than W�P �

The proposed two�pass scheduling method for the MCSP allocates processors to the

MCOP sequence tree by top�down proportional assignment and modi	es the MCOP se�

quence when it results in a reduction of the evaluation time� Therefore� the evaluation time

of the proposed method� represented as TMCSP �P �� is not more than the evaluation time

of the MCOP sequence with the top�down processor assignment� When pi�j processors are

allocated to an Li�j subtree in the MCOP sequence tree L� the evaluation time TMCSP �P �

is found as T��n�P � in the following recurrence relation�

Ti�j�Pi�j� � max
Li�k�L

�Ti�k�pi�k�� Tk���j�pk���j�� � ��mi�mk���mj��� pi�j��

Without loss of generality� let us assume that pmaxi�j � mimj��� In the case of pmaxi�j � pi�j

for all Li�j in L�

TMCSP �P � �
W

P
�

Let the root node task of subtree Li�j be vr such that vr � �mi�mk���mj��� and pmaxr �

pmaxi�j � mimj��� Usually� pmaxi�j � pi�j is a su
cient condition to make pmaxr � P remain

��



true� Thus� in the worst case� the upper bound of TMCSP �P � is TMCOP �P � so that the

following relation is satis	ed�

TMCSP �P � � TMCOP �P ��

Now let us compare the best case performance of the proposed method with the MCOP

sequence� Assume that each task vi for � � i � n � � can utilize a maximum of P�k

processors in a P �processor system� i�e�� pmaxi � P�k� Then the performance using the

MCOP sequence is as follows�

TMCOP �P � �
kW

P
�

SMCOP �P � �
P

k
�

EMCOP �P � �
�

k
�

The best case for the proposedMCSP schedule is when the sequence tree becomes a complete

binary tree after two�pass scheduling� The height of a complete binary tree with n nodes

is log�n�� It is well known that the completion time of a parallel task is bound by the

critical path in a given task graph� Let the tasks on the critical path of the MCSP sequence

be v�� v�� ��� vlog�n�� If we assume that the scheduled tree is a well�balanced binary tree�

then each half of the processors is allocated to its left and right child tasks� respectively�

Therefore� the tasks whose depths are not more than log�k� will run on P�k processors�

Other tasks with depth i �log�k� � i � log�n�� will run on �P�k�����i�log�k� processors�

Therefore� TMCSP �P � is transformed as follows�

TMCSP �P � �

log�k�X
i��

wi
P�k

�

log�n�X
i�log�k���

wi
�P�k� � ��i�log�k�

�

Let us denote the number of operations scheduled by the proposed method as WMCSP � and

assume that all tasks have the same amount of work� wi � WMCSP��n � ��� Then the

following equations are satis	ed�

TMCSP �P � �
k

P
�
log�k�WMCSPk

�n� ��
�

WMCSP

�n� ��P

�
log�n��log�k� � �

�

�
k log�k�WMCSP

�n� ��P
�
k�nk � ��WMCSP

�n� ��P

�
�n� k log�k�� k�WMCSP

�n� ��P
�

�



SMCSP �P � �
�n� ��P

�n� k log�k�� k�
�

EMCSP �P � �
�n� ��

�n� k log�k�� k�
�

The best case is when the number of increased operations� with respect to the MCOP

sequence� is equal to zero� e�g�� �C � �� so that WMCSP is equal to the minimum W �

Therefore� the upper bound of the performance compared with the MCOP sequence is as

follows�

TMCOP �P �

TMCSP �P �
�

kW�P

�n� k log�k�� k�W��n� ��P
�

k�n� ��

n� k log�k�� k
� �����

For example� if each task can only utilize �! of the processors in a system �k � �� and

the number of matrices in a chain is ��� �n � ����� then TMCOP �P ��TMCSP �P � � ����

The proposed method evaluates matrix chain products ��� times faster than the method

obtained by parallelizing the MCOP sequence�

From Eq� ������ when k � �� the performance of the proposed method is bound by

the evaluation of the MCOP sequence� As k or n increases� the upper bound of Eq� �����

increases� As n increases to in	nity� the proposed scheme can run almost k times faster

than the method using the MCOP sequence�

From the above discussion� when the number of matrices becomes larger and larger�

and"or when the size of the matrices becomes smaller and smaller so that only part of the

system is required to execute one product� the proposed method greatly outperforms the

simple MCOP�based method�

��� Experimental Results

In this subsection� we compare the performance of various evaluation methods through

experiments on a parallel system� The methods are as follows�

� Linear� evaluate by parallelizing each matrix product from the 	rst product �M�M��

to the last one sequentially�

� MCOP�Seq� evaluate by parallelizing each matrix product using the MCOP se�

quence sequentially�

� MCOP�Con� evaluate by parallelizing each matrix product using the MCOP se�

quence� but execute independent matrix products concurrently by allocating the max�

imum number of processors�

� MCSP�BT� evaluate by the MCOP�Con method� but when there are idle processors

during execution� try to modify the sequence using Lemma �

�
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� MCSP�TP� evaluate by the proposed scheduling algorithm�

We experimented on the Fujitsu AP���� parallel system� which is a distributed�memory

MIMD machine with �� cells� Each cell is a SPARC processor with ��MB of memory� The

AP���� system has three independent networks� the B�net for broadcasting� the T�net for

point�to�point communication� and the S�net for synchronization� The processors are inter�

connected by the T�net� a two dimensional torus network with �Mbytes"sec"port� The

host computer and the processors are connected by the B�net� a broadcasting network with

��Mbytes"sec� and by the S�net for synchronization�

The evaluation times of randomly generated matrix product chains are measured for

each scheduling method� Since the initial matrix loading times are highly dependent on

system characteristics such as the communication link speed and the interconnection net�

work� the loading times are excluded in the statistics of the evaluation time� In fact� the

proposed algorithm can spend less time than the sequential evaluation methods for dis�

tributing matrices to processors since several matrices can be loaded at the same time��

The results shown in this section are the averages of ��� experiments�

Fig� � and Fig� � show the evaluation time as a function of the number of matrices being

multiplied� In Fig� �� a chain of matrix products is generated randomly for matrices varying

in size from � to �� �m � ���� and executed on a system with �� processors �P � ����

The upper two lines represent the evaluation times of sequential evaluation using Linear

and MCOP�Seq� and the lower three lines represent the evaluation times of the schedule

�Since some parallel computers such as the Fujitsu AP���� support collective communication schemes

including scatter and gather� we can reduce the matrix loading time by using these schemes�
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sequences found by using MCOP�Con� MCSP�BT� and MCSP�TP� From the comparison of

the execution time of MCOP�Seq with that of Linear� it can be seen that simply reducing

the amount of computation does not greatly decrease the evaluation time� However� when

we allow concurrent execution� we can improve performance further� Therefore� we con	rm

that the evaluation time of a chain of matrix products is greatly a�ected by task scheduling�

In Fig� �� we experimented with larger matrices �m � ����� The upper line is the evaluation

by MCOP�Con� the middle line is by MCSP�BT� and the lower line is by MCSP�TP� As the

number of matrices in a matrix chain increases� the proposed MCSP�TP algorithm shows

a greater performance gain�

In Fig� � and Fig� ��� the evaluation time between di�erent numbers of processors in a

system is compared� In Fig� �� the matrix chain consists of ��� matrices �n � ���� whose

sizes vary from � to � �m � ��� The upper two lines represent Linear and MCOP�Seq�

which are the sequential evaluation methods� The lower three lines represent MCOP�Con�

MCSP�BT� and MCSP�TP� respectively� which are the concurrent evaluation methods� As

the number of processors increases� the evaluation time by Linear decreases and becomes

close to MCOP�Seq� This implies that the reduction of computation has a limited e�ect

on reducing the evaluation time� In Fig� ��� we measured the evaluation times of three

concurrent execution methods with n � ��� m � ��� The upper line represents the

evaluation by MCOP�Con� the middle line represents the evaluation by MCSP�BT and the

lower line represents the evaluation by MCSP�TP� As the number of processors increases�

the evaluation times of MCSP�BT and MCSP�TP decrease more than that of MCOP�Con�

This implies that sequence modi	cation to increase the degree of concurrency improves the

performance by utilizing processors e
ciently� Another aspect we can see from this result

�



is that the number of processors does not a�ect the performance signi	cantly� but that

the processor scheduling policy is much more important than computational reduction in

improving the performance of evaluating a chain of matrix products�
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varying the largest dimension of matrices

with n � ���� P � ���

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100
Maximum Matrix Size

E
va

lu
at

io
n 

T
im

e 
(m

s)

Linear
MCOP-Seq
MCOP-Con
MCSP-BT
MCSP-TP

Figure �� Evaluation time comparison by

varying the largest dimension of matrices

with n � ��� P � ���

The experimental results with varying distributions of matrix sizes �m� is shown in

Fig� �� and Fig� �� The evaluation times are measured with P � �� for a chain of

n � ��� or n � �� matrices� respectively� As shown in the 	gures� as the variance in the

matrix size gets larger� MCOP�Seq has better performance than Linear� This is caused by

the fact that the amount of computation is reduced greatly by the MCOP sequence� and that

there are small numbers of idle processors during their execution when evaluating a chain of

large matrices� However� we notice that the proposed MCSP�TP method still outperforms

all other methods� These experiments imply that the proposed MCSP�TP method is still

e�ective for larger matrices due to performance improvement through concurrent execution

�with more concurrency than the other methods�� even though there are rare exceptions�

In Table � and Table � we measured the amount of computation� system utilization�

and evaluation time for each evaluation method� Table � shows the results when n � ����

m � �� and P � ��� Even though the amount of computation using MCOP�Seq is almost

 times less than that of Linear� the evaluation time is reduced by only ��!� We observe

that the system utilization of MCOP�Seq �����!� is signi	cantly lower than that of Linear

������!�� Evaluation by MCSP�BT and MCSP�TP requires more computation than that

of MCOP�Con� but the evaluation time decreases due to the e
cient use of processors�

Table  shows the results with n � ���� m � ��� and P � ��� We observed behavior

similar to that in Table �� However� note that MCSP�BT utilizes even more processors

than MCSP�TP� and still has an evaluation time that is larger than that of MCSP�TP� This

�



Table �� Comparison with respect to computation amounts� system utilization� and evalu�

ation time when n � ���� m � �� and P � ���

Scheduling Computation System Evaluation
Algorithm Amount Utilization Time

Linear ������ ����� �����
MCOP�Seq ���� ���� ����
MCOP�Con ���� ����� �����
MCSP�BT ����� ���� �����
MCSP�TP ����� ���� ����

Table � Comparison with respect to computation amounts� system utilization� and evalu�

ation time when n � ���� m � ��� and P � ���

Scheduling Computation System Evaluation
Algorithm Amount Utilization Time

Linear ������� ����� ������
MCOP�Seq ���� ����� �����
MCOP�Con ���� ���� ���
MCSP�BT ������ ����� ����
MCSP�TP ������ ���� �����
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result implies that the proposed MCSP�TP algorithm uses processors more e
ciently and

e�ectively than MCSP�BT�

From the above experiments� we can conclude the following�

� When evaluating a chain of matrices on a parallel system� simply reducing the number

of required operations does not greatly decrease the evaluation time�

� Concurrent execution of independent multiple matrix products compensates for inef�

	cient processor usage with parallel processing� and increases the system e
ciency so

that performance improves greatly�

� When the number of processors becomes larger or when the number of matrices in a

matrix chain increases� evaluation by the proposed scheduling algorithm MCSP�TP

progressively outperforms other methods such as Linear� MCOP�Seq� MCOP�Con and

MCSP�BT�

� Even when the size of the matrices is quite large so that there are no idle processors

during their evaluation� MCSP�TP is still e�ective due to the concurrent execution of

independent matrix products with the top�down processor assignment�

� When evaluating a chain with small matrices on many processors� sequence modi	ca�

tion to increase system e
ciency greatly reduces the evaluation time�

� For matrix chain products� e
cient scheduling is better than increasing the number

of processors�

� Extension of the MCSP

Throughout the previous sections� a few assumptions have been made for simplicity� In

this section� we discuss how to adjust these assumptions for better performance on a speci	c

system� Also� we show a few problems that are manageable by the MCSP approach�

	�� Practical Considerations of the MCSP

Depending on the computing environment for evaluatingM� the parameters used in the

proposed method are easily adjustable� The parameters are the execution time function�

the maximum number of processors allocated to a product� and the minimum number of

processors allocated to a product� For ease of discussion� let us denote these parameters as

��vi� pi�� p
max
i � and pmini � respectively� for a given product vi�

�



� Matrix multiplication algorithm� Many parallel matrix multiplication algorithms

have been suggested for various architectures ��� ��� Depending on which algorithm

is used for the MCSP� the execution time function ��vi� pi� can be speci	ed in de�

tail� Thus� ��vi� pi� can be changed for taking the parallel processing overheads into

account� The parallel processing overheads include load imbalance� communication

cost� and synchronization�

� Parallel system architecture� The parallel system used for evaluating M also

a�ects the parameters� For example� on a shared memory multiprocessor system� the

communication cost is negligible� but on a message�passing distributed system� the

communication cost should be considered in ��vi� pi�� Consequently the parameter

pmaxi will be more restricted in a distributed system�

� Input matrix size� One limitation in using the proposed algorithm is that the

method is not very e�ective with a chain of large matrices� However� a more elaborate

description of ��vi� pi� from the above parallel algorithm�architecture parameters will

compensate for this limitation by using a reduced value of pmaxi � Also� even in the

case where any one product is large enough to utilize the whole system� the top�down

processor assignment leads to better performance than sequential evaluation�

Another parameter to be considered in the MCSP is the minimum number of proces�

sors �pmini � to be allocated to a product vi� Basically� we assumed that any product

can be executable on one processor� i�e�� pmini � �� However� depending on the size of

the matrices� the minimum number of processors to be allocated to a product vi can

be restricted to be pmini � �� This is mainly due to the memory capacity of a single

processor� We can consider the parameter pmini in the top�down processor assignment

stage�

� Matrix distribution cost� In the proposed method� the cost for the initial dis�

tribution of matrices among the processors was excluded even though this cost is

not negligible in a distributed�memory system�� Of course� the cost of the proposed

method is de	nitely less than sequential evaluation by the MCOP sequence� This

is mainly due to the fact that the proposed method runs on fewer processors than

sequential evaluation� The e�ect of this cost for scheduling the MCSP sequence is

considered for future work�

�The cost is negligible in a shared
memory multiprocessor system�
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	�� MCSP Applications

We can extend the MCSP to a few sparse matrix problems� The MCSP has character�

istics such that it can be represented as a tree precedence task graph with many equivalent

tree graphs� and the task graph determines the number of required operations and the de�

gree of concurrency� The proposed method for the MCSP can be applied to evaluate a chain

of square matrices with sparsity and to factorize a large sparse matrix in parallel systems�

� Sparse matrix chain products� Sparse matrix multiplications require a di�erent

number of operations with respect to the sparsity structure� For multiplying an n�n

matrix A with non�zero density d� by an n � n matrix B with non�zero density d��

the number of required operations is d�d�n
� ����� Also� for multiplying a tridiagonal

matrix with any type of matrix� the required operations vary depending on the type

of matrices ����� Such a sparse matrix multiplication has the same characteristics as

the MCSP� A di�erent evaluation sequence results in a di�erent number of required

operations� We can extend the MCSP to the evaluation of a chain of square matrices

with sparsity�

� Sparse matrix factorization� Elimination trees are used extensively in sparse

matrix factorization because they present the sequence of computation and paral�

lelism ���� Since there are many equivalent elimination trees with di�erent paralleliza�

tion structures ����� we can follow the MCSP approach for this sparse factorization

problem�

The above items have been studied extensively for a long time� and each problem can

be approached as a separate research subject�

� Summary and Conclusion

In this paper� we introduced the matrix chain scheduling problem �MCSP� and pro�

posed a heuristic scheduling algorithm for the MCSP� The proposed algorithm schedules

matrix products to processors with the objective of enhancing concurrency at the expense

of a slight increase in the required number of operations when compared to the optimal

product sequence found for the matrix chain ordering problem �MCOP�� We have shown

that performance is signi	cantly enhanced by the proposed algorithm using experiments on

the Fujitsu AP���� parallel system� As a result� we can con	rm that e
cient processor

scheduling is much more important than simply reducing the total number of operations

�



when evaluating a matrix chain product in parallel systems� Given a parallel system with a

large number of processors or a matrix product chain involving many matrices� evaluation

by the proposed method greatly outperforms the parallel evaluation method which uses the

optimal product sequence found for the MCOP� The main contribution of this work is the

formalization of the MCSP and the introduction of a processor allocation and task schedul�

ing algorithm that results in a signi	cant performance improvement when evaluating matrix

chain products in parallel systems� We are currently working on extending this algorithm

to evaluate a chain of square matrices in the form of sparse matrices or band matrices� and

to scheduling of parallel matrix factorization using elimination trees� Also� we plan to study

generalizing the MCSP to scalable task scheduling on parallel systems�
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