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Abstract The proportion of packed malware has been grow-
ing rapidly and now comprises more than 80 % of all existing
malware. In this paper, we propose a method for classifying
the packing algorithms of given unknown packed executa-
bles, regardless of whether they are malware or benign
programs. First, we scale the entropy values of a given
executable and convert the entropy values of a particu-
lar location of memory into symbolic representations. Our
proposed method uses symbolic aggregate approximation
(SAX), which is known to be effective for large data con-
versions. Second, we classify the distribution of symbols
using supervised learning classification methods, i.e., naive
Bayes and support vector machines for detecting packing
algorithms. The results of our experiments involving a col-
lection of 324 packed benign programs and 326 packed
malware programs with 19 packing algorithms demonstrate
that our method can identify packing algorithms of given
executables with a high accuracy of 95.35 %, a recall of
95.83 %, and a precision of 94.13 %. We propose four simi-
larity measurements for detecting packing algorithms based
on SAX representations of the entropy values and an incre-
mental aggregate analysis. Among these four metrics, the
fidelity similarity measurement demonstrates the best match-
ing result, i.e., a rate of accuracy ranging from 95.0 to 99.9 %,
which is from 2 to 13 higher than that of the other three
metrics. Our study confirms that packing algorithms can be
identified through an entropy analysis based on a measure of
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the uncertainty of the running processes and without prior
knowledge of the executables.
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1 Introduction

1.1 Background on packed malware

Malicious software, also known as malware (e.g., viruses,
worms, and Trojan horses), not only violates the security
and privacy of computer users, but also incurs a consider-
able amount of financial loss. Malware has developed from
a tool used primarily in data theft, botnets (both of which are
still very common), and fake antivirus scams, to one used in
ransomware attacks, as revealed by Symantec’s 2014 “Inter-
net Security Threat Report” [1]. According to Choi et al. [2],
attackers continually make their malware harder to detect and
analyze. Although anti-malware and other malware analysis
and removal tools can mitigate this situation to some extent,
the evolution of malware, such as in the booming growth
of obfuscation techniques including polymorphic and meta-
morphic malware, is making the fight against its use more
difficult.

One popular and widely used obfuscation technique is
packing. Through the use of different packing algorithms,
attackers possess a great number of malware options, includ-
ing hiding its original behavior used. This makes it harder for
security software engineers to detect and analyze malware
using common anti-malware software. A packer is basically
a program that produces a number of data blocks forming a
compressed or encrypted version of the original executable,
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as described by Yan et al. [3]. Some packers use more sophis-
ticated techniques to evade detection. More than 80 % of
malware is now packed, as demonstrated by Yan et al. [3]
and Lyda et al. [4]. Popular packers include Aspack, FSG,
MPRESS, UPXN, NsPack, and Themida, many of which
are readily available on the Internet. Because packers are
making executables harder to analyze, the identification and
classification of packing techniques are becoming critical to
uncover the malicious intentions of the packed malicious pro-
gram. Identification and classification not only help in the
detection and analysis of malware, but also allow the func-
tions and characteristics of benign packed programs to be
analyzed. In addition, identifying packers enables security
software engineers to efficiently analyze a packed executable
file and retrieve the original payload for further malware
analysis. Generally, packers can be categorized into mainly
three types.

1. Benign packer (used for benign programs only)
2. General packer (used for benign and malicious programs)
3. Custom packer (made by malware authors and used for

malware only)

If a program is packed with a custom packer, it indicates the
program. The malware can be detected at an earlier stage
without further analysis of the contained payload by using
our classification method.

1.2 Motivation

Malware attempts to evade anti-malware software using var-
ious obfuscation techniques. Packing is one technique that
is widely used to bypass anti-malware software. Malware,
mostly in the form of packed executables, is a growing
problem in modern computer systems and thus represents
a major challenge. According to Lyda et al. [4] and Syman-
tec Research Laboratories [5], more than 80 % of malware
uses packing algorithms to circumvent anti-malware soft-
ware.

Owing to the prevalence of packing tools on the Inter-
net, packing can be easily utilized by attackers who do not
possess in-depth programming knowledge. In addition, the
increasing number of variants and unknown packers present
a great threat to defenders. Few studies on detecting packing
algorithms have been conducted during the last two decades.
If a malware executable is packed, its infectious proper-
ties become nearly impossible to detect through signature
matching. Another important issue demanding considera-
tion is the fact that malware writers often use sophisticated
code obfuscation techniques to evade signatures. In fact, sim-
ply repacking existing malware in most cases is sufficient to
evade signature-based techniques. According to Zuber et al.

[6,7], Cesare et al. [8], and Liu et al. [9], 50 % of new malware
is a repacked version of existing known malware.

Many different packers are used within a single mal-
ware family to avoid detection systems. Although packing
algorithms are widely used for packing malware, they can
also be used to protect legitimate software from reverse
engineering. At runtime, a packed executable contains a
section of uncertain data. From the entropy measurements
of a running process, we can determine whether a given
executable is packed. Many packing algorithms are being
developed every year; however, no complete databases exist
to detect all packing algorithms. Detecting packing algo-
rithms is necessary for recognizing hidden malware and
preventing such malware from evading anti-malware soft-
ware. Anti-malware software must cope with old and new
packers daily.

An automatic system that detects packing algorithms
is indispensable to ensure effective security. However, the
immense variety of existing packing algorithms can cause
a packer detection process to become time-consuming.
Moreover, current automatic systems mainly concentrate on
detecting malware and not on the methods used in producing
it. Today, packing algorithms are used extensively in mal-
ware development to help malware become undetectable.
We devised a new technique for the identification and clas-
sification of packing algorithms by creating simple patterns
of packers. In addition, we studied the use of entropy-based
detection, which is dynamic in nature and more reliable than
signature-based techniques.

We propose a method for identifying packing algo-
rithms of given packed executables that are either known
or unknown, and classify them by employing four similar-
ity measurements and popular classification techniques such
as naive Bayes (NB) and a support vector machine (SVM).
In an experiment, we detected the use of a different packers
and distinguished unknown packers from 19 existing pack-
ers. The results of this experiment revealed the high accuracy
of the proposed method in detecting packing algorithms.

1.3 Main contributions

The main contributions of our work are threefold and are.

1. We developed a holistic method that identifies pack-
ing algorithms immediately before the payload of a
packed malware begins to be executed. Because malware
programmers use a variety of encryption and compres-
sions techniques, identifying infections within files prior
to unpacking is nearly impossible. Therefore, we can
draw entropy patterns first by unpacking each packed
executable. Then, to detect and classify the packing algo-
rithms of each packed executable, we extract unique
symbolic patterns through the use of entropy variables.
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These patterns enable us to either classify each packing
algorithm based on existing classifications, or assign it a
new one.

2. Without the use of ready-made unpacking tools, we
unpack known and unknown packed executables using an
entropy analysis by finding an original entry point (OEP).
If an OEP is found, we can detect any packing algorithm
in a packed executable even if obfuscation techniques
have been applied. Therefore, our proposed method is
robust in unpacking any kind of packed executable and
identifying packing algorithms even when they have been
altered.

3. To the best our knowledge, our proposed method is
the first in identifying packing algorithms of unknown
packed executables. Therefore, in this paper, we present
a detection method that can be employed in identifying
any kind of packing algorithm. The proposed method is
dynamic and does not depend on the known signatures
of the packing algorithms. We assert that our proposed
method can extract the entropy patterns of packed exe-
cutables, thereby increasing the efficiency of detection.

The remainder of this paper is organized as follows. In Sect. 2,
we describe previous studies related to packer classification
and pattern-recognition techniques. Section 3 briefly dis-
cusses how packing is operated and examines the challenges
that software security engineers face when coping with
packers. Section 4 describes the structure of our proposed
method, the classification of symbolic aggregate approxima-
tion, and classifier and similarity measurements. Section 5
examines the effectiveness of classifying packing algorithms
and describes the results of experiments conducted using
the proposed method with packed executables and differ-
ent classification techniques. Finally, Sect. 6 provides some
concluding remarks regarding this research.

2 Related works

During the last decade, researchers have adopted a variety
of solutions to the control of malware. A manual analysis of
packers is an early solution to the exposure of malware and is
mainly used to reduce the false negatives of a signature-based
technique. However, it is infeasible in terms of efficiency.
Therefore, we conducted a study on previous related works in
the following categories: signatures, machine learning, pat-
tern recognition, and control-flow graphs, all of which can be
employed to detect packing algorithms and packed malware.

Signature-based detection [10,11] involves a search for
special patterns of known malware in an executable code.
The signature patterns can possess a simple binary sequence,
a binary sequence with mask bytes, or a specially designed
checksum [10,12]. Signature-based detection [13] is one of

the best ways to identify known malware, but it is ineffective
in detecting new malware type and their variants, particu-
larly when malware mutates, thereby making signature-based
detection difficult to achieve. Such metamorphisms were pre-
viously witnessed by Marinescu et al. [14]. Malware authors
have evaded signature-based detection using custom packers
to pack the original malware. Signature-based packer detec-
tion has a weakness regarding the measurement distance. For
instance, it cannot measure some packed executables because
certain packers use multilayer encryption and compression
on the packed section, as observed by Guo et al. [5] and Jacob
et al. [15].

An effective packer classification framework that applies
pattern-recognition techniques to automatically extract the
randomness profiles of different packers was proposed by Li
et al. [13]. As a substitute for signature-matching approaches,
the researchers presented a packer classification approach
by analyzing the performance of various statistical classi-
fiers. In addition, they tested various statistical classification
algorithms, including k-nearest neighbor (KNN), best-first
decision tree, sequential minimal optimization, and NB. All
four classifiers were found to be extremely effective, with
three of the four achieving an average true-positive rate of
approximately 99 %; however, NB was the least effective
with a true-positive rate of approximately 94 %. The k-nearest
neighbor classifier, where k = 1, achieved the best overall
performance, with a true-positive rate of 99.6 % and a false-
positive rate of 0.1 %. The system also reveals that the low
randomness profile of a packed file normally produced by the
PE header and an unpacking stub contains important packer
information, and is extremely useful in distinguishing among
families of packers. Li et al. [13] did not propose a tech-
nique for detecting unknown packers, and thus, their method
is not useful in detecting non-signature-based packers and
packed files. In contrast, our classification method extracts
the entropy pattern of packing algorithms without any prior
knowledge of the packed executables.

A significant amount of research has been conducted on
developing automatic malware classification systems using
data mining and machine-learning approaches [16–22]. All
classification approaches examined from the literature can
be categorized into two main types: those employing features
drawn from an unpacked static version of the executable, and
those employing dynamic features of the packed executable.
Several approaches for detecting unknown malware based on
its binary code have been discussed.

Kolter et al. [19] presented a vector of n-grams to represent
malicious and benign files, and a comprehensive evaluation
of classifiers instance-based (IBk), term frequency–inverse
document frequency (TFIDF), NB, SVM, decision-tree,
boosted NB, boosted SVM, and boosted decision-tree clas-
sifiers. The researchers showed that the results of their
n-gram study were better than those presented by Schultz
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et al. [20] and that the boosted decision tree classifier out-
performed the others. A static analysis consists of examining
program codes, without running them, to determine the prop-
erties related to the dynamic execution of these programs.
A behavior-based approach monitors the execution of a
program to detect malicious behavior. A common way to
represent a program behavior is the use of a system call
sequence, which is a representation widely used in anom-
aly detection systems. Other methods based on a dynamic
analysis for malicious code classification include those pro-
posed by Bayer et al. [23] and Christodorescu et al. [24].
However their methods are dedicated only to detect known
malware. Moreover, Kolbitsch et al. [25] proposed to clas-
sify an instance of a given malicious code to a predefined
class, whereas the method cannot be used in detection of
new packed or non-packed malicious codes in the real time.

A method for the automatic specification of malware
behavior was proposed by Christodorescu et al. [24], who
introduced a malware specification concept known as mali-
cious specification (Malspec). Malspec contrasts the execu-
tion behaviors of known malware and a given set of benign
programs. The researchers showed that a Malspec can be con-
verted into templates or signatures that are used by malware
detectors to detect variations of certain malware. Kolbitsch
et al. [25] revealed that a Malspec does not encode data flow
dependencies between system call parameters and that using
a Malspec for detection without verifying such dependen-
cies may lead to many false alarms. The authors proposed
an approach that builds a behavioral graph for analyzing
malicious programs. This graph employs nodes, which are
system calls, and edges, which represent the data dependency
between system calls. Researchers then extracted the pro-
gram slices responsible for such dependencies. For detection,
they matched the extracted program slices with the runtime
behavior of an unknown program. Both Malspec and behav-
ioral graph methods are suitable for detecting variations of
existing malware, but not for detecting new or packed mal-
ware.

Malware developers have generated a wide range of
approaches to minimize the susceptibility of their prod-
ucts to heuristic detection [26]. Suspicious OEP, section
characteristics, application programming interface-API call-
ing, multiple PE headers, code graphs [27], control-flow
graphs [18], pattern recognition, and other features can be
synthetically used to detect malware [16,17]).

A pattern-recognition technique [28–30] for the fast detec-
tion of packed executables was proposed by Roberto et
al. [16], who applied various pattern-recognition techniques
to classify executables into two categories, i.e., packed and
non-packed. These techniques employ publicly available
unpacking tools and signature-based anti-malware systems
to distinguish specific kinds of malware and benign executa-
bles. If an executable is classified as packed, it is sent to a

universal unpacker for hidden code extraction, and the hidden
code is then sent to an anti-malware software.

However, if the executable is classified as non-packed,
it is sent directly to an anti-malware scanner. This system
achieves a high accuracy of greater than 95 % by using clas-
sifiers such as NB, J48 decision tree, bagged-J48, k-nearest
neighbors, and a multilayer perceptron (MLP). The best
results were obtained when using the MLP classifier, which
showed an accuracy of 98.91 % for the test dataset. However,
this approach did not classify different packers into different
families. The weakness of this technique [16] is that unknown
packed files cannot be unpacked because the researchers used
universal unpacking tools as unpacking mechanisms. More-
over, the authors used a static analysis in their approach
and did not propose a technique for packer identification.
In contrast, our classification system extracts a specific type
of packing algorithm from any packed PE file.

A malware classification method that constructs the
control-flow graph-based signatures was designed by Sil-
vio et al. [18]. In their classification method, the similarity
between structured graphs can be quickly determined and
malware can be effectively classified using string-edit dis-
tances.

Similar to what was employed in our research, they also
detected the OEP of packed executables through the use of
an entropy analysis when unpacking packed malware. How-
ever, their classification method is based solely on a similarity
distance and predefined thresholds, which we consider to be
somewhat vague and therefore insufficient for effective clas-
sification. Moreover, although the aforementioned research
shows relatively favorable results in terms of identifying and
classifying malware and its variants, it does not classify pack-
ing algorithms, which is essential in the analysis of packed
malware.

A mechanism to determine OEP through the use of
an entropy analysis was proposed by Jeong et al. [31].
However, they did not detect or classify the packing algo-
rithms. As previously mentioned, several approaches for
detecting packed malware and packing algorithms exist.
However, these existing approaches have been proven to be
ineffective in detecting known and unknown packing algo-
rithms.

Martignoni et al. [32] proposed a new technique, Omni-
Unpack, which is generic and largely effective, but neither
safe nor portable. OmniUnpack monitors the program exe-
cution and tracks written, as well as written-then-executed
memory pages. When the program makes a potentially dam-
aging system call, OmniUnpack invokes a malware detector
on the written memory pages. If the detection result is neg-
ative, execution is resumed. A study by Renovo et al. [33]
used a virtual machine, and they showed that many packed
executables contain several layers. From an analytical per-
spective, the decompression module of a packed executable
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is only one part of the executable. No explicit signatures
exist that mark a boundary between the decompressing and
decompressed instructions. As a result, previous research has
only focused on recording immediate instructions. However,
our approach can locate the boundary, or the OEP, through
the use of an entropy analysis.

3 How packing works

In this section, we provide academic insight into a mecha-
nism that classifies unknown packing algorithms. We then
briefly describe the operations involved in both the pack-
ing and unpacking process of packed executables when an
entropy analysis is employed.

3.1 Packer’s stub

A packer is a program that converts an executable into a
compressed executable using an any available algorithm.

Packers are software programs that compress and encrypt
other executable files in a disk and restore the original exe-
cutable images when the packed files are loaded into memory.
Packers do exactly what their name suggests, “pack” (i.e.,
compress) a program in the same way that a compressor,
such as Pkzip, compresses files. Packers then use decryption
or loading stubs to “unpack” the program before resuming
normal execution at the program’s OEP.

Packing is thus a conversion operation of a packing algo-
rithm, as shown in Fig. 1. Currently, many types of malware
use packing algorithms. Therefore, the goal of this research is
the systematic detection of packing algorithms. The packed
files described in this paper are in portable executable (PE)
format (Guo et al. [5] and Pietrek et al. [34]). Packing
algorithms have been devised to allow authors of malicious
software to extend their expected lifetime.

Many authors of valid commercial software have used
packers to make it difficult and costly to reverse-engineer

Fig. 1 Packing process of a PE file

their programs. Packers have thus evolved into sophisticated
operations involving complex routines designed to encrypt
the executables they want to protect. A packer takes an orig-
inal program and compresses it. The compressed executable
can then be moved to the data section of the newly created file.

The executable portion of the program is essentially
a simple routine designed to decompress an original file
into memory and to resume the execution at the OEP of
the uncompressed program. Packing utilizes compression
techniques to change the size of an executable. Because com-
pression is applied, the executables are transformed after
being packed. Malware takes advantage of this transforma-
tion for the purpose of obfuscation.

In addition, packing is easily abused by writers of mali-
cious code, particulary because many packers such as UPXN,
Aspack, NsPack, nPack, Molebox, and MPRESS are freely
available on the Internet. In addition, malware writers can
create their own packers at a low cost. Packers generally cre-
ate an executable of a different size (either smaller or bigger)
than the original file and change the signature of the file as
well as any hash that can be used to conduct simple pat-
tern matching. As the packing algorithms evolve, creating
anti-malware software becomes more costly. For instance,
Fig. 2 illustrates how file calc.exe, which is packed with
UPX, operates during its execution. The packed executable
contains different section structures from the original pro-
gram, including a section called UPX0, which is used to write
unpacked code and data. It is initialized as 0. Although well-
known compression algorithms can be applied to pack an
executable, malware writers can also create a private packer
by developing and applying a new compression algorithm,
which makes it difficult for analyzers to determine how a
packed executable is compressed. Another element of UPX1
includes the unpacking routine. When it finishes unpacking,
the control flow jumps to one of the unpacked instructions.
Analyzing packing algorithms becomes increasingly diffi-
cult, because instead of employing only a single packing
technique, different compression algorithms can be used
multiple times.

Packers sometimes have anti-debugging functions in their
unpacking process, and their unpacking instructions can be
obfuscated. It is very difficult to manually unpack such exe-
cutables. If the packing algorithm were classified based on
the packer identification, the classification will be helpful
for analysts because they provide useful information about
anti-debugging and obfuscation methods.

3.2 Packed executables

To fully understand our approach, packed executables and the
method used to build and execute them must be described.
Describing the fundamental characteristics of a packer is
sufficient for an understanding of our mechanism, although
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Fig. 2 Sequence running an executable packed using a UPX packing algorithm

each packer can have its own algorithm. A packed file com-
prises two essential components: data blocks that form the
compressed and/or encrypted original executable file, and
an unpacking stub that can dynamically recover the original
executable file on the fly.

Packing indicates the compression of the execution file,
which is unpacked when the executable file is executed. A
packed executable is built with two main components during
a two-phase packing process. First, the original executable
is compressed and stored as data in a packed executable.
Second, a decompression module is added to the packed exe-
cutable and used to restore the original executable. After the
packing procedure is completed, a packed executable is both
transformed and packed, as demonstrated in Fig. 3.

3.3 Unpacking mechanism

When the packed file is run, the unpacking stub is first exe-
cuted to unpack the code section whose entropy of memory
is measured and then transfers the control to the original
sections that are restored in memory. When the unpack-
ing process has finished, the execution of the original file,
which remains mostly unchanged, starts from its OEP with
no penalties in the runtime performance. Unpacking employs
the reverse process of a packing algorithm. Figure 4 shows
that unpacking is a restoration process, because an original
executable is restored in memory when the unpacking is com-
pleted. Decompression is first conducted and the execution
flow then progresses or “jumps” to the first instruction of the
unpacked code. After restoring the original executable, the
execution flow jumps from the end point of the decompres-
sion module to the entry point of the original executable.

A jump (JMP) instruction is one of the commonly used
ways to change the execution flow. We let the process run

Fig. 3 Sequence of the packing process

Fig. 4 Sequence of the unpacking process

until one of the instructions, such as JMP, JCC, CALL,
or RET, is encountered. If this happens, the execution
is paused, and an entropy analysis of that instant of the
process is conducted. When the unpacking is completed,
these kinds of instructions should be used for changing the
execution flow from the end of the decompression mod-
ule to the beginning of the original unpacked code, i.e.,
the so-called OEP. Another issue regarding execution-flow-
changing instructions is the number of instructions in a
program.

The remainder of this section details the unpacking mech-
anism. First, the executable is executed and continues to
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Algorithm 1: Finding the OEP during unpacking
Input: The input is a packed executable. The output is an entropy

sequence. The packed executable, an instruction pointer, and
entropy of unpacked code are represented by P, IP and E,

respectively. We assume that an executable is categorized as
either packed or native.

Output: Locate OEP of P.

1: // Initialization runs the executable
2: Find an entry point and the first section of P.
3: Set a break point to the entry point.
4: Set R to the range of the first section.
5: // Start analysis
6: while the PROCESS is not terminated do
7: IP ← a current instruction pointer
8: // Measure entropy in only this condition
9: if IP is for a JMP instruction then
10: Measure entropy of R.
11: else
12: Continue this loop.
13: end if
14: // Check if unpacking is complete
15: if Emin ≤ Measured entropy ≤ Emax then
16: // Check if it jumps onto the unpacked code
17: if Jump into R from outside of R is true then
18: OEP ← The next instruction address
19: Break this loop.
20: else
21: Continue this loop.
22: end if
23: Continue this loop.
24: end if
25: end while

run until a JMP instruction is encountered. When a JMP
instruction is encountered, the execution is paused and an
entropy analysis for that instant of the process is conducted.
JMPs are the most important instructions in our approach
because the OEP is always followed by a JMP instruction.
When the unpacking is completed, a JMP instruction is used
to alter the execution flow from the end of the decompres-
sion module to the beginning of the unpacked original code,
or the OEP. In our study, whenever an instruction pointer
encounters a JMP instruction, this instruction is considered
an entropy analysis point. However, JMP instructions in APIs
are ignored because the address of the OEP is determined by
the packer. Therefore, even though the unpacking mechanism
can feasibly check the APIs, JMP instructions from APIs are
ignored.

In addition, several JMP instructions may be required in
a program, because certain instructions are repeated for iter-
ations ( e.g., for() or while() in C language). An unpacking
module, for instance, consists of several iterations, which
increases the analysis time. These iterations are not helpful in
locating the OEP and merely delay the analysis. To solve this
problem, we cached a number of addresses of JMP instruc-
tions that are encountered during an analysis, and when a

repeat cached address is reached, the entropy analysis at that
point is skipped.

4 Entropy analysis for detecting packing
algorithms

We determine that a considerable overlap exists between
non-packed and packed executables. This indicates that all
sections of packed executable can be measured for the pur-
pose of analyzing the unpacking process. Based on these
observations, we only measure changes in all sections of
packed executables. Additionally, some data in the first sec-
tion should be eliminated prior to the analysis if it is found to
contain garbage values, which can affect the entropy analysis
and cause errors. Therefore, data to be measured are instruc-
tions in the first sections of packed executables after the
garbage values have been removed. Using a formula that will
be explained in the entropy analysis section, the entropy of
the filtered data can be measured. We use a natural logarithm,
and the unit of data is a byte. During the unpacking process,
instructions are unpacked in all sections. The value of the
measured entropy during the analysis indicates the data state
(e.g., packed, unpacked, or being unpacked) in all sections
at that instant.

Our experimental results show that the entropy values
change, while a packed executable is being unpacked. There-
fore, we can determine whether an unpacking has been
completed through the use of an entropy analysis. Because
we discovered that most benign executables contain instruc-
tions in the first section, when the unpacking process is
completed, the execution flow should change to the first
instruction of the original executable to continue its func-
tionalities. The measured entropy of an unpacked code is
detailed in the next section.

Our approach involves the unpacking of packed executa-
bles and identifying their OEPs. The algorithm used in this
approach is discribed as a pseudo-code in Algorithm 1.

The main purpose of detecting packing algorithms through
an entropy analysis is to achieve a high classification accu-
racy of the packing algorithms for an effective performance
in practical anti-malware software. First, we assess and clas-
sify packed executable files based on such characteristics as
their entropy and complexity, rather than on their signatures.
Because known and unknown packed executables are com-
pressed or encrypted, their high complexity simplifies the
process of assessing whether or not they are packed. We then
detect and classify packing algorithms through our proposed
method of entropy analysis. We create classes based on a sim-
ilarity of entropy patterns and define the packing algorithms
of each class. Ultimately, our method detects packing algo-
rithms efficiently and makes the analysis of packed malware
much easier to achieve.
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4.1 Steps of packing algorithm detection

The main characteristic of our proposed method is to mea-
sure the entropy values while unpacking packed executables.
Detecting packing algorithms directly through their entropy
pattern is problematic. Because of the extensive amount of
data and the number of errors incurred, the process is both
time-consuming and difficult to analyze.

Therefore, as shown in Fig. 5, we extracted simple patterns
from entropy patterns through a symbolic representation.
Figure 5 shows what happens during an unpacking process
in memory space in terms of entropy. The order of execution-
flow-changing instructions is the instant of each entropy
analysis.

We classified packing algorithms in four class based on
their graphically visualized patterns.

1. Increasing class
Packing algorithms of the increasing class initialize
memory space, where unpacked code will be written, as
zeros; it starts with zero entropy values. As packed code
is unpacked, written code causes the increase. Finally, it
stops changing when unpacking is complete.
Reasons of such increase in patterns are, first, unique-
ness of each packing algorithm and, second, a usage
of formula 1 in summation of entropy values. For
instance, packing algorithms such as FSG, nSpack, Alter-
nate_EXE, UPXN, and UPX-iT are from a same class,
the Increasing, even though they are different packing
algorithms, as illustrated in Fig. 5 (1).

2. Decreasing class
On the other side, packing algorithms of the decreasing
class does not initialize memory space before unpack-
ing packed executables. Therefore, entropy values start
decreasing from higher value down to the end point of
unpacking. Reasons of such decrease in patterns are, first,
uniqueness of packing algorithms and, second, a usage
of formula 1 in summation of entropy values.
The (h) pattern of the class seems to be constant; how-
ever, with closer look it is evident that the entropy value
is slightly deteriorating as shown in Fig. 5 (2). Although
entropy patterns of packing algorithms in the decreasing
class are similar, they are different products.

3. Combination class
The combination class is divided in two classes: the
increasing-to-constant and the decreasing-to-constant
patterns. Packing algorithms of the combination class do
not initialize memory before unpacking packed executa-
bles. Their entropy values start from higher value and
either increase or decrease till stabilizing at certain value
and continue to process at that level.
Combination class encloses packing algorithms patterns
of which show that their entropy value initially start

at higher level and, then, sharply fall down till stabi-
lizing at a certain value. Packing algorithms such as
Themida and VMportect are classified in the increasing-
to-constant pattern, Aspack, and Molebox are classified
in the decreasing-to-constant pattern as described in
Fig. 5 (3).

4. Constant class
Constant class encloses patterns of packing algorithms
for benign packed executables. Entropy patterns of
benign packed executables have constant values.

Per our observation, a packing algorithm in malware can be
one of the three classes: the increasing class, the decreasing
class, and combination class.

We then classified the simple patterns through NB and
SVM classification algorithms. In general, we classified
symbolic representations using supervised and unsupervised
learning classification techniques. Figure 6 shows the three
primary components of our method. The first part involves
measuring the entropy patterns, the second part is convert-
ing them into a symbolic representation, and the final part is
classifying the packing algorithm.

4.2 Measuring the entropy pattern and entropy analysis

Measuring the entropy pattern enables us to determine the
entropy value of the packed executables during the unpack-
ing process. Therefore, we first execute a given packed
executable and allow the unpacking process to complete,
as shown in Fig. 7. During the unpacking process, packed
instructions are unpacked by a decompression module, and
the measured entropy of the memory space continuously
changes automatically. The final stage of the unpacking
process can be detected by identifying when the entropy stops
changing. The executable is executed and continues to run
until a JMP instruction is encountered. An entropy analysis
is conducted by measuring the specific memory space.

A mathematical tool for measuring the entropy of infor-
mation is required to apply the concept of entropy measure-
ments, and Shannon’s formula was devised as follows:

H(x) = −
n∑

i=1

p(i) · logbp(i) (1)

where H(x) is the measured entropy value and p(i) is the
probability of the ith unit of information in the series of n
symbols of event x . The base number of the logarithm (b) can
be any real number greater than 1. However, a value of 2, 10,
or e is generally used, including by Yeung et al. [35], Costa
et al. [36–38], Nikulin et al. [39], Pincus et al. [40], [41],
Richman et al. [42], and Lake et al. [43]. Using an entropy
analysis, Lyda et al. [4] proposed that binary files with a
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Fig. 5 Training entropy patterns of thirteen packing algorithms selected from 13 packing algorithms
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Fig. 6 The packing algorithm detection method for a given packed
executable

Fig. 7 Structure of an entropy analyzer used to locate the OEP

high entropy score tend to correlate with the presence of
encryption or compression. Accordingly, binary files can be
classified into four types: plain text files, benign executables,
packed executables, and encrypted executables. Researchers
have suggested that boundaries among the four categories
exist and can be determined through the entropy. Based on
such research, the present paper proposes an additional useful
application of an entropy analysis. While a packed code is
being unpacked, the measured entropy is changed and can be
monitored by employing an entropy analysis.
An entropy analysis is an appropriate tool for unpacking
because it can detect the end point of the unpacking by
observing changes in entropy. A study by Lyda et al. [4]
describes a static analysis because of its focus on binary
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Fig. 8 Structure of the symbolic pattern-extraction method using SAX

files. In contrast, our approach is concerned with dynamic
processes.

4.3 Conversion into symbolic representation using SAX

A similarity search is a fundamental aspect of computer sci-
ence and can be applied to many areas such as multimedia
databases, bioinformatics, pattern recognition, text mining,
computer vision, data mining, and machine learning.

Time-series data mining involves many tasks such as clas-
sification, clustering, similarity searches, motif discovery,
and anomaly detection. A critical factor in the successful per-
formance of these tasks is the use of representation methods
that can represent a time series in an efficient and effective
manner, as described by Chakrabarti et al. [44]. Of all the
symbolic representation methods in the literature focusing
on time-series data mining, the symbolic aggregate approxi-
mation (SAX) method stands out as one of the most powerful
techniques, as revealed by Jessica et al. [45].

An orderless entropy pattern is then converted into a sim-
ple symbolic pattern. To extract a packing algorithm and
represent its pattern through a symbolic representation, we
use the entropy analysis shown in Fig. 8. A symbolic repre-
sentation allows for a dimensionality reduction and indexes
using a lower-bounding distance measure of the true distance.
A dimensionality reduction occurs when data of extremely
high dimensionality are converted into data of much lower
dimensionality such that each of the lower dimensions con-
veys more information than before. Thus, the dimensionality
reduction in a piecewise aggregate approximation (PAA) is
automatically carried over to a symbolic representation, as
shown by Chakrabarti et al. [44] and Yi et al. [46].

The lower-bound distance between two symbolic strings
can be proven by simply pointing to existing proofs for a PAA

123



Entropy analysis to classify unknown packing algorithms for malware detection 237

Algorithm 2: Conversion into symbolic representation

Input: E, E , Enorm , β and φ(β).
1: // Extract symbolic unique pattern, which will be used in the

detection of any packing algorithms.
Output: G and S.
2: E ← scale (E)
3: // Scale the entropy values for symbolic representation.
4: Enorm ← Normalize (E)
5: Loop i = 0; i < φ(β); i < i + 1
6: If βi−1 < βi then
7: φ(β) ← Divide (Enorm )
8: // Divide normalized entropy values using number of symbols.
9: G ← Convert (Enorm )
10: // Convert normalized entropy values into the sequence of

symbols.
11: S ← Extract New Symbolic Pattern (G)
12: // Extract new unique symbolic pattern from entropy values.
13: End If
14: End Loop

representation itself. Researchers can take advantage of the
generic time-series data mining model as well as a host of
other algorithms, definitions, and data structures that are only
defined for discrete data including hashing, Markov models,
and suffix trees. SAX is one of the most competitive methods
in the literature and utilizes a similarity measurement which
is easy to compute because it is based on precomputed dis-
tances obtained from lookup tables.

We present an improved similarity measurement for using
SAX. This measurement has the same advantages as the orig-
inal similarity measurement used in SAX. SAX is based on
the fact that a normalized time series has a high Gaussian
distribution. Therefore, according to Jessica et al. [45], by
determining the breakpoints that correspond to the size of
the alphabet, one can obtain equally sized areas in a Gaussian
curve. We used a Gaussian distribution for converting scaled
entropy values into a symbolic representation. SAX is applied
as follows.

– First, the time series are scaled and normalized.
– Second, the dimensionality of the time series is reduced

using PAA by Keogh et al. [47].
– Third, the PAA representation of the time series is dis-

cretized, which is achieved by determining the number
and location of the breakpoints.

The SAX method approximates time series X of length
n into vector X = (x1, x2 , …, xM ) of any arbitrary length
M (M < n, typically M << n), where each xi is calculated
through (2) below,

xi = 1

r

⎡

⎣
ri∑

j=r(i−1)+1

(x j )

⎤

⎦, (2)

where r is a ratio defined as

r = n

M
. (3)

Here, M is the length of the original time service (original
entropy values), and n is the length of the string (i.e., the
number of frames or symbols). Simply stated, to reduce the
time series from n dimensions to M dimensions, the data are
divided into M equally sized frames. SAX is the first sym-
bolic representation of a time series having an approximate
distance function that lower bounds the Euclidean distance.
In Algorithm 2, we presented a process for converting entropy
values into SAX.

An algorithm is required for converting the entropy values
into a symbolic representation. We unpack the given packed
executables, regardless of whether they are benign or mal-
ware programs.

Entropy values from unpacking a packed executable, the
scaling values of the original entropy pattern, the normal-
ized scaling entropy values, the breakpoints, the number of
symbols, the sequence of symbols, and the SAX pattern are
abbreviated as E, E , Enorm , β, φ(β), G, and S, respectively.
In SAX, the data are first transformed into a PAA repre-
sentation, and the transformed PAA representation is then
symbolized into a sequence of discrete strings, as indicated
by Jessica et al. [45]. The breakpoint locations are determined
using statistical lookup tables so that these breakpoints pro-
duce equally sized areas in the Gaussian curve. The interval
between two successive breakpoints is assigned to a symbol
of the alphabet, and each segment of the PAA that lies within
that interval is discretized by this symbol. As a final step, a
similarity measurement of SAX is taken.

Breakpoints (β) are a sorted list of numbers, where β =
β1, β2, . . ., βa−1 such that βi−1 < βi divides the area in
an N(0,1) Gaussian curve into equally sized areas. In addi-
tion, the size of the alphabet is an arbitrary integer a greater
than 2 (e.g., the letters = (a, b, c) when a = 3). According
to Jessica et al. [45], these breakpointsaredeterminedby
locating them in a statistical table. The range of β is

from βi = 0 to βi+1 = 1

a
, (4)

where the variables β0 and βa are defined as −∞ and ∞,

respectively.
Given that the normalized dataset (scaled entropy values)

has a high Gaussian distribution, we can simply determine the
breakpoints that will produce a, where the breakpoints are
equally sized areas on the Gaussian curve. The breakpoints
divide a Gaussian distribution into a number of equiprobable
regions, as illustrated in Fig. 9. If we transform the origi-
nal entropy values into PAA representations, Q and S using
formula (2), we can then obtain a lower-bounding approx-
imation using the Euclidean distance (D) [47] between the
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Fig. 9 The entropy pattern is discretized by first obtaining a PAA
approximation and then by using predetermined breakpoints (β) to map
the PAA coefficients into SAX symbols

original entropy values through the following formula for the
function(D):

D(Q, S) =
√

n

N
·
√√√√

M∑

i=1

(Qi − Si )2, (5)

where n, N , and M follow the definitions for formula (2).
The D function measures the “as the crow flies” distance.

4.4 Classifier

Our proposed method includes two types of classification.
The first type of classification includes commonly used sim-
ilarity classification methods such as Cosine, Dice, Jaccard,
and fidelity. Figure 10 illustrates our use of the similarity
classification process. Figure 10 shows the three primary
components of our similarity classification process. The first
part involves measuring the original entropy values, the sec-
ond part is scaling the entropy values, and the last part is
similarity measurements. The second type of classification
incorporates commonly used classification methods such as
the NB and SVM classifiers. Through our method, we gen-
erate patterns with a high accuracy in detecting known and
unknown packing algorithms. The classification of known
and unknown packing algorithms turned out to be a criti-
cal result in our research. A classifier can be designed using

Fig. 10 A similarity classification process using a scaling method for
detecting packing algorithms

Fig. 11 The structure of a classifier

various approaches for classification. According to Meijer
et al. [48], roughly speaking, three different methods can be
used. We conducted supervised and unsupervised learning
classification based on entropy patterns. The main part of
this experiment is to measure the effectiveness in detecting
unknown packers. We arranged available unknown pack-
ers by determining their nearest similar entropy patterns
and placing them in families of analogous patterns. When
a family of similar patterns did not exist, we created a new
database of families. Figure 11 illustrates our use of two
types of classification methods. For the first, we used simi-
larity measurements. For the second, we used NB and SVM,
which are both supervised learning classifiers, to classify the
known/unknown packing algorithms.

4.5 Similarity measurements

The similarity is fundamentally important in nearly every
scientific field. In addition, the concept of a similarity mea-
surement plays a crucial but less direct role in the modeling
of many other psychological tasks. This is especially true
in theories on the recognition, identification, and categoriza-
tion of objects. A common assumption is that the greater the
similarity between a pair of objects, the more likely one will
be confused with the other. We use the similarity measures
to characterize the similarity between the entropy values of
each packed executable for the detection of packing algo-
rithms. In this experiment, we used a simplified approach
and determined the similarity based exclusively on distance-
based similarity measurements.

We used the four metrics, Cosine, Dice, Jaccard, and
fidelity, for measuring the similarity between packed exe-
cutables. The fidelity coefficient similarity shows a much
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Fig. 12 Four similarity measurement results using the Aspack and FSG packing algorithms individually

Table 1 Similarity measurements of the Aspack and FSG packing algorithms

COSINE similarity Aspack calc Aspack freecell Aspack mshearts DICE similarity Aspack calc Aspack freecell Aspack mshearts

FSG calc 0.7482 0.7343 0.7433 FSG calc 0.4032 0.6220 0.7233

FSG freecell 0.7413 0.6728 0.7569 FSG freecell 0.4167 0.6281 0.3153

FSG mshearts 0.7115 0.7491 0.7205 FSG mshearts 0.5083 0.5600 0.5609

JACCARD similarity Aspack calc Aspack freecell Aspack mshearts FIDELITY similarity Aspack calc Aspack freecell Aspack mshearts

FSG calc 0.7740 0.6255 0.5666 FSG calc 0.7695 0.7684 0.7661

FSG freecell 0.2632 0.6368 0.1871 FSG freecell 0.7689 0.7680 0.7644

FSG mshearts 0.7200 0.7545 0.7572 FSG mshearts 0.7690 0.7676 0.7670

higher accuracy result than Cosine, Dice, and Jaccard simi-
larity measurements, as shown in Fig. 12.

Fidelity coefficient similarity: The fidelity is a measure-
ment of the closeness between two distributions. It is widely
used in classical and quantum information theories because
of its simplicity, its invariance during unitary transforma-
tions, and its relation to a trace measurement. In its original
form, the fidelity is defined based on two distributions,
but herein we extend its definition to include unnormal-
ized sequences of random values. For the given sequences
x = (x1, . . . , xn) and y = (y1, . . . , yn) of random positive
values (x j , y j > 0), fidelity F(x, y) is defined through the
following formula.

F(x, y) =

n∑

i=1

√
xi · yi

√√√√
n∑

i=1

xi

√√√√
n∑

i=1

yi

(6)

Note that the normalization of sequences is explicitly
included and that F(x, y) = 1 if and only if x = y. In
general, 0 � F � 1. All packers are measured based on
their similarity using Cosine, Dice, Jaccard, and fidelity. Fig-
ure 12 demonstrates the results of three benign executables

packed using the same packing algorithms with four similar-
ity measurements. Table 1 shows the Cosine, Dice, Jaccard,
and fidelity coefficient similarity measurements in the exper-
imental results of three different benign executables packed
using the Aspack and FSG packing algorithms. In our exper-
iment, we calculated the average similarity variables after
employing four similarity metrics of benign packed executa-
bles using different packing algorithms.

The average similarity variables of the Cosine, Jaccard,
Dice, and fidelity similarities are 0.73087, 0.58387, 0.52643,
and 0.76766, respectively. Thus, we calculated the average
similarity variables of the results shown in Fig. 12 for three
benign executables packed using the same packing algo-
rithms. For example, if the same executables are packed using
an Aspack packing algorithm, the average similarity vari-
ables of the Cosine, Jaccard, Dice, and fidelity similarities
are 0.94803, 0.82199, 0.83941, and 0.96946, respectively.
Among the four similarity metrics, the fidelity similarity
measurement yielded the highest results compared to the
other three metrics.

5 Evaluation of the effectiveness of Classification

In this section, we describe the experimental results of our
analysis. As previously stated, we proposed a method for
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detecting the use of packing algorithms. The dataset used in
this experiment contained 650 packed executables, 326 of
which were packed malware files [49],with the remaining
being 324 packed benign executables. The malware samples
were collected from the malicious Web sites, VX heavens
[49], andOffensive computing [50]. A data sample of the 326
packed malware executables include a collection of viruses,
Trojans, adware, spyware, and few options [50] and [51] as
shown in Table 2.

Table 2 demonstrates type of packing algorithms by each
family of malware. Surprisingly, a family of packed malware,
Packed.Win32.Mondera, demonstrated no sing of using any
packing algorithms; however, it might be a false presump-
tion. The family probably used different types of packing
algorithm other than demonstrated in Table 2.

Unknown family includes 25 types of different kind of
families of packed malware, name and type of some are not
recognized, but does not have a significant proportion. This
family is only 8 % of the dataset. The data samples of the 324
packed benign executables included a collection of Windows
system files and normal executables.

We used 19 popular packers in our experiments and con-
ducted 8100 measurements on packing algorithm detection.
In these experiments, the methods of similarity measure-
ments, symbolic representations, and popular forms of clas-
sification were used on each packed executable. The data
samples were divided into training and testing samples at a
ratio of 1:1. The training dataset consists of 162 data sam-
ples from 324 packed benign executables, with the remainder
being packed malware. Similarly, the testing dataset consists
of 163 samples from 326 packed malware, with the remainder
being packed benign executables.

When comparing the performances of different classifi-
cation techniques, assessing how correctly they predict the
actual classification of the packers is critical. To introduce the
metrics, let us first define the classification of the packers. A
packer is positive if it is predicted to be in class A and neg-
ative if it is not. Let A denote the accuracy of classification
based on the percentage of test set packers that are correctly
identified by the classifier.

A = (T P + T N )

n
= (T P + T N )

(P + N )
(7)

Accuracy A indicates the overall effectiveness. However,
this measure has a certain limitation. Suppose that a test set
contains many negative, and a few positive, packers and that
we use a classifier to label every class as negative, regard-
less of the input data. In this case, T N is very high and
T P is very low. Despite the primitive nature of the classi-
fier, it will achieve an extremely high classification accuracy
on this dataset. Driven by this, the true (Tr ) and false (Fr )
positive rates are introduced to measure the proportion of pos-

itive packers that are correctly identified and the proportion
of negative packers that are incorrectly identified, respec-
tively.

5.1 Results of experiments using SAX entropy analysis

We extracted packing algorithm patterns using the SAX
representation method. The experimental results of thirteen
popular packing algorithms selected from 19 possible pack-
ing algorithms are shown in Fig. 5. First, we present the
benign “calc. exe” files packed using the 19 packing algo-
rithms. Second, we assign four types of φ(β) values to the
packed “calc.exe” executables converted using SAX. In this
example, φ(β) = 10, φ(β) = 100, φ(β) = 1000, and
φ(β) = 10, 000 where n=100,000, φ(β) is the number of
symbols, and the entropy value is mapped to the character
symbols, “abcdefghijklmnopqrstuvwxyz.”

The values of M in formula (3) and φ(β) have a reverse
relationship. A lower value of M results in a higher beta value.
When the value of M is low, the accuracy of converting the
entropy values into symbolic representations is high, which
can be seen in formula (7).

φ(β) = Entropies

M
(8)

The number of symbols is expressed as φ(β), as presented
in Fig. 13. As can be seen, the accuracy is independent of
the number of symbols, φ(β), as is also indicated in Table 3.
We show the accuracy results after applying four values of
φ(β). For a packed executable using the MPRESS packer,
Fig. 13 shows the value of φ(β) when converting the entropy
patterns into a symbolic representation.

In other words, φ(β) represents the number of symbols
used to extract the packing algorithm patterns. For instance,
we packed the calc.exe file using the MPRESS packer. Next,
we extracted the entropy pattern by unpacking the file through
a measurement and analysis of its entropy value. We then
converted the entropy pattern into a character symbol pat-
tern through a symbolic representation. The entropy pattern
is expressed by using symbols. In Table 4, the patterns of
19 packing algorithms converted using SAX are shown. We
detected packing algorithms from packed executables using
the fidelity similarity method. The average accuracy using
the different packers is 95.35 %. Table 4 shows the detailed
accuracy of the sample dataset.

The detection results of the samples are presented as a
confusion matrix. As shown in Table 4, the accuracy of
the MPRESS and Mew packing algorithms are both 100 %,
whereas the minimum accuracy is 88.3 %, which relates to
the PELock packing algorithm. Table 4 shows an average
true-positive rate (Tr ) of 95.77 %, a false-positive rate (Fr )
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Fig. 13 Entropy patterns converted into symbolic representations using different values of φ(β) for the Aspack, UPXN, and MPRESS packers

Table 3 Results of MPRESS
packer converted using SAX

MPRESS φ(β) Tr (%) Fr (%) A (%) P (%) R (%)

10 100.0 3.3 98.0 95.2 100.0

100 100.0 0.0 100.0 100.0 100.0

1000 100.0 0.0 100.0 100.0 100.0

10000 100.0 0.0 100.0 100.0 100.0

of 4.78 %, a precision (P) of 94.13 %, and a recall (R) of
95.83 %.

5.2 Supervised learning classifications of the SAX
pattern

Table 5 presents two classifications of packing algorithms
based on symbolic-representation data. As the table shows,
the accuracy of the NB classification is 98.0 %, which is
higher than that of the SVM classification. We can thus
classify packing algorithms using an entropy analysis and
symbolic representation with a high rate of accuracy. Fig-
ure 14 shows three packing algorithms selected from the 19
packing algorithms, i.e., UPXN, Aspack, and MPRESS. The
graphs on the right show the conversion of each packing
algorithm into a symbolic representation.

The MPRESS packing algorithm reveals a totally differ-
ent pattern than UPXN and Aspack. However, we easily
extracted a new symbolic pattern from each packing algo-
rithm. The example graphs in Fig. 14 show that each packing
algorithm is converted into a symbolic pattern with φ(β) =
10, 000. The experimental results for these notorious pack-
ing algorithms suggest that our proposed method is useful

for identifying different packing algorithms. In addition, the
results show that the proposed method is also applicable to
packed malware.

5.3 Incremental aggregate analysis

When some scaled entropy patterns of packing algorithms
are similar to each other in one class, detecting packing
algorithms using the similarity measurement is very diffi-
cult. Therefore, we used an incremental aggregate analysis
for each scaled entropy pattern.

Figure 15 shows new sequences of each scaled entropy
value created through an incremental aggregate analysis. We
then compared the packing algorithm patterns using training
dataset with fidelity similarity measurement for the packer
detection. In the incremental aggregate analysis, the sequence
of the original entropy values is transformed into a new
sequence of Σ .

Σ ≡ (S0, Smax, Smin, σ1, . . . , σm), (9)

where S0 = s1 is the initial entropy value; Smax ≡
max{s1, . . . , sn} and Smin ≡ min{s1, . . . , sn} are the max-
imum and minimum values, respectively, and m ≡ n/K ,
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Table 4 Detailed accuracy of
each packer using the fidelity
similarity classification dataset

Num. PACKERS Tr (%) Fr (%) A (%) P (%) R (%)

1. Alternate_EXE 100.0 0.0 100.0 100.0 100.0

2. FSG 100.0 3.1 98.2 96.0 100.0

3. RLPack 90.5 8.1 90.2 86.4 90.5

4. NsPack 95.2 4.8 96.1 95.2 95.2

5. UPXN 90.5 5.4 92.2 90.5 90.5

6. UPX-iT 94.5 1.8 94.6 94.8 94.8

7. MPRESS 100.0 0.0 100.0 100.0 100.0

8. Morphine 100.0 0.0 100.0 100.0 100.0

9. nPack 100.0 10.0 94.1 91.7 100.0

10. Themida 96.3 5.9 96.0 92.3 96.3

11. VMProtect 96.2 2.9 95.0 92.3 96.2

12. Aspack 95.2 4.8 96.1 95.2 95.2

13. MoleBox 100.0 0.0 100.0 100.0 100.0

14. Petite 92.3 11.5 90.9 91.7 92.3

15. ASProtect 91.9 9.4 91.9 92.6 92.7

16. Mew 100.0 0.0 100.0 100.0 100.0

17. Yoda’s Crypter 92.3 4.7 93.5 88.9 92.3

18. PELock 88.5 9.7 88.3 88.5 88.5

19. tELock 96.2 8.8 93.3 89.3 96.2

Average 95.77 4.78 95.35 94.13 95.83

Table 5 Accuracy rates of each
classifier

Classification Tr (%) Fr (%) A (%) P (%) R (%)

Naive Bayes 98.0 1.5 90.4 91.8 98.0

Support vector machine 95.7 2.3 95.5 90.0 95.7

Average 96.8 1.9 92.9 90.9 96.8

with K being the coarse-graining parameter (K > 1). In
addition,

σ j ≡

⎧
⎪⎨

⎪⎩

1 (s( j+1)K − s j K > 0)

0 (s( j+1)K − s j K = 0)

−1 (s( j+1)K − s j K < 0)

( j = 1, . . . ,m) (10)

represents the incremental change in the coarse-grained
entropy values. While the transformation focuses on the
incremental changes in entropy, it excludes details of the
entropy values, as shown in Fig. 16.

In other words, since entropy patterns have discrete form
and may fluctuate up and down, we created a new fre-
quency with a newly developed formula (9) (10). Therefore,
the sequence Σ is insufficient for classifying all packing
algorithms. However, it can be used to classify packing algo-
rithms into several categories quickly and without excessive
computational costs. Within each category, different packing
algorithms can then be discriminated further by means of var-
ious similarity coefficient analysis methods, which may be
computationally expensive.

Table 6 shows the results of a new sequence of an incre-
mental aggregate analysis, as shown in formula (9), using the
FSG and MPRESS packing algorithms selected from the 19
packing algorithms. For example, we found that the thirteen
packing algorithms shown in Fig. 5 are classified through
an incremental aggregate analysis into three classes, which
we call the increasing, the decreasing, and a combination,
respectively. After detecting, the packing algorithm patterns
within the class by using the new sequence of incremental
aggregate analysis through the fidelity similarity measure-
ment.

– Increasing class; (A class) includes Alternate_EXE,
FSG, UPXN, NsPack, RLPack, and UPX-iT;

– Decreasing class; (B class) consists three packing algo-
rithms, morphine, MPRESS, and nPack;

– Combination class; (C class) consists four packing
algorithms, VMProtect, Themida, Aspack and MoleBox;

Therefore, FSG and MPRESS are listed in Table 6 as repre-
sentative packing algorithms of the corresponding classes.

123



244 M. Bat-Erdene et al.

 10

 100

 1000

3,000 6,000 9,000

Symbols 

Symbolic representation 
of Aspack packer

calc.exe φ(β)=10000 
freecell.exe φ(β)=10000 

mshearts.exe φ(β)=10000 
msiexec.exe φ(β)=10000 
notepad.exe φ(β)=10000 

telnet.exe φ(β)=10000 

φ(β)

 10000

φ(β)

 100

 1000

3,000 6,000 9,000

Symbols 

Symbolic representation
 of MPRESS packer

calc.exe φ(β)=10000 
freecell.exe φ(β)=10000 

mshearts.exe φ(β)=10000 
msiexec.exe φ(β)=10000 
notepad.exe φ(β)=10000 

telnet.exe φ(β)=10000 

 10000

 1

 10

 100

 1000

3,000 6,000 9,000

Symbols 

Symbolic representation 
of UPXN packer

calc.exe φ(β)=10000 
freecell.exe φ(β)=10000 

mshearts.exe φ(β)=10000 
msiexec.exe φ(β)=10000 
notepad.exe φ(β)=10000 

telnet.exe φ(β)=10000 

φ(β)

 10000

 0

 1

 2

 3

 4

 5

 6

100,000 200,000 300,000 400,000

Entropy 

JMP 

Packed using Aspack

calc.exe
freecell.exe

mshearts.exe
msiexec.exe
notepad.exe

telnet.exe

 0

 1

 2

 3

 4

 5

 6

100,000 200,000 300,000

Entropy 

JMP 

Packed using MPRESS

calc.exe
freecell.exe

mshearts.exe
msiexec.exe
notepad.exe

telnet.exe

 0

 1

 2

 3

 4

 5

50,000 150,000 250,000

Entropy 

JMP 

Packed using UPXN

calc.exe
freecell.exe

mshearts.exe
msiexec.exe
notepad.exe

telnet.exe

Fig. 14 Experimental results of entropy patterns of three popular packers converted into symbolic representations
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Fig. 15 Structure of incremental aggregate analysis

5.4 Results of packed malware detection

We analyzed the unpacking process of packed malware
using our proposed approach and classified the packed mal-
ware through a similarity classification. The packed malware
samples were collected from the malicious Web siteVXheav-
ens [49]. We conducted the experiments using 326 packed
malware executables classified into four classes, as shown in
Fig. 18. Thus, we can classify 89 % of the packed malware
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Fig. 16 Σ pattern sequence of the entropy values for classifying packing algorithms

Table 6 Experiment results of Σ function using FSG and MPRESS packing algorithms

FSG Smax Smin S0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

calc 4.2790 0.6931 0.6931 0 1 1 1 1 −1 1 1 1 −1

Freecell 4.3334 0.6937 0.6931 0 1 1 1 1 −1 1 −1 1 1

Mshearts 4.5637 0.6931 0.6931 0 1 1 1 1 −1 −1 1 1 1

Msiexec 4.3274 0.6931 0.6931 0 1 1 1 1 −1 −1 1 −1 1

Notepad 4.3611 0.6931 0.6931 0 1 1 1 1 1 −1 1 −1 1

telnet 4.5246 0.6931 0.6931 0 1 1 −1 1 1 −1 1 1 −1

MPRESS Smax Smin S0 σ11 σ12 σ13 σ14 σ15 σ16 σ17 σ18 σ19 σ20

Calc 5.3701 4.1650 5.3619 −1 −1 −1 0 0 0 0 0 0 0

Freecell 5.3205 4.2935 5.3095 1 −1 1 −1 1 −1 1 −1 1 −1

Mshearts 5.3872 4.4526 5.3815 0 0 0 0 0 0 0 0 0 0

Msiexec 5.3710 4.3181 5.3673 1 −1 1 −1 −1 −1 −1 −1 0 0

Notepad 5.3592 4.3113 5.3490 1 −1 1 −1 −1 −1 −1 −1 −1 0

Telnet 5.3863 4.3083 5.3766 −1 −1 0 0 0 0 0 0 0 0

into classes of known packing algorithms (classes A, B, and
C) and the remaining 11 % into the class of unknown pack-
ing algorithms. For the packed malware to be analyzed in
this experiment, Klone, NSanti, Tdss, and PolyCrypt were
chosen from VX heavens.

We used four variants of Klone, NSanti, Tdss, and Poly-
Crypt for the selected packed malware collections, i.e.,
Klone. bg, NSanti.ak, Tdss.c, and PolyCrypt.n, respectively.

Experimental results of the entropy patterns of packed
malware are illustrated in Fig. 17. The graphs for Klone.bg
and Tdss.c look similar. However, they have three and five
sections, respectively. Both use the first section to unpack the
instructions. However, the entropy value of the first sections
differs from each other. Tdss.c shows a totally different pat-
tern than the former variants and Klone.bg. It is quite obvious
that the first section is initialized and is used to unpack the
instructions.

NSanti.ak can be classified into Nspack packers of class
A, such as those shown in Figs. 5, and 17. Klone.bg and
Tdss.c can be classified into MPRESS and Molebox packers
of classes B and C, respectively. We conducted a few experi-
mental steps for the detection of packing algorithms used for
packed malware. For the first step, we unpacked the packed
malware through an entropy analysis. In the second step, we
used a scaling process for each pattern of unpacked malware.
For the last step, we classified each packed malware based
on a similarity classification of the packing algorithms used.
The packed malware pattern of Klone.bg looks very similar
to the packer pattern of MPRESS (99.98 %) among class B.
We therefore used an incremental aggregate analysis for the
detection of packing algorithm patterns from each class. The
packed malware pattern of Tdss.c has a similarity with the
packer pattern of Molebox (99.98 %) among class C. The
packed malware pattern of NSanti.ak looks very similar with
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Fig. 17 Real packed malware samples from VX Heavens

Table 7 Detection of packing algorithms from packed malware

Class D: patterns of packing algorithms Pattern of Tdss.c (%)

Aspack 84.95

Molebox 99.98

Class A: patterns of packing algorithms Pattern of NSanti.ak (%)

Alternate_EXE 83.57

FSG 86.54

NsPack 98.60

RLPack 83.93

UPXN 81.36

Class B: patterns of packing algorithms Pattern of Klone.bg (%)

MPRESS 99.98

nPack 80.93

Morphine 75.78

the packer patterns of NsPack (98.6 %) among class A, as
shown in Table 7.

The packed malware pattern of PolyCrypt.n differs from
the patterns of Tdss.c, NSanti.ak, and Klone.bg, and the train-
ing packer patterns (Fig. 5).

In our case, PolyCrypt.n packed malware is detected
through the use of an unknown packing algorithm. There-

Fig. 18 Classification of packed malware

fore, we classified PolyCrypt.n packed malware into the
unknown class, as shown in Fig. 18. We confirmed these
patterns based on the experimental results, as illustrated
in Table 7. These experimental results for these notorious
packed malware types imply that the proposed packing algo-
rithm detection methods are useful for analyzing packed
malware. The proposed approach is applicable to both known
and unknown packed malware, which is a meaningful result.
We performed manual verification and compared with our
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automatic detection results. Manual unpacking is being done
by using debugging, disassembling, and other tools. Results
indicated that both results of manual and automatic detec-
tions are well matched.

6 Conclusion

This paper examined the use of entropy values of unpack-
ing processes of packed executables for detecting unknown
packers. We presented a novel technique for the detection of
packing algorithms using SAX representations of the entropy
values, and the similarities in the sequence of SAX symbols
in each packer. For this method, the low randomness profile
of the packing algorithm is extracted and then passed to a
pattern classifier.

We also proposed a data conversion method to transform
numbers into symbols to greatly reduce the space complex-
ity while preserving the accuracy of detection. Our method
proves that the data size (entropy values) can be reduced by
one-half to 1/100,000 times. The method presents a packer
classification algorithm, which converts entropy patterns
(containing numeric values) in large datasets into symbols
using a symbolic representation.

In addition, we introduced an incremental aggregate
analysis for classify unknown packed benign and malware
executables, which then uses four similarity measurements
for the classification and detection of packing algorithms
based on entropy analysis.

Among the four metrics, the fidelity similarity measure-
ment demonstrates the best matching result, i.e., an accuracy
rate of 95.0–99.9 %, which is from 2 to 13 % higher than the
accuracy rates of the other three metrics. Our work demon-
strates that the randomness profile, when combined with
strong pattern-recognition algorithms, produces a highly
accurate packer classification system for real data.

The proposed system was tested on a large dataset that
includes 324 benign packed files and more than 326 packed
malware types. Our method classifies packing algorithms
using NB and SVM classifiers using symbolic-representation
patterns. In future research, we will extract symbolic patterns
from new packed malware, examine multiple packing algo-
rithms, and use additional classification methods for packer
classification and detection.
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