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Abstract. Surveillance is a critical measure to break anonymity. While
surveillance with unlimited resources is often assumed as a means, against
which, to design stronger anonymity algorithms, this paper addresses the
general impact of limited resource on surveillance efficiency. The general
impact of limited resource on identifying a hidden group is experimen-
tally studied; the task of identification is only done by following com-
munications between suspects, i.e., the information of whos talking to
whom. The surveillance uses simple but intuitive algorithms to return
more intelligence with limited resource. The surveillance subject used in
this work is the publicly available Enron email data set, an actual trace
of human interaction. The initial expectation was that, even with lim-
ited resource, intuitive surveillance algorithms would return the higher
intelligence than a random approach by exploiting the general properties
of power law-style communication map. To the contrary, the impact of
limited resource was found large to the extent that intuitive algorithms
do not return significantly higher intelligence than a random approach.
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1 Introduction

One of the popular models of observer in the anonymity research is the one with
unlimited resource and computing power such that the observer can monitor
every single communication occurrence between any entities and exploit any
possible derived information from the observation. Anonymity algorithms that
can confuse such a powerful observer are regarded highly effective.

To understand the mighty power of the observer from a different perspective,
one can ask this simple question, ”what happens with limited resource?” This
is the motivation of this paper. However, a glimpse of the anonymity research
reveals the vast space of exploration to answer the question in a comprehensive
manner. Different anonymity systems will cause different impact on resource-
limited surveillance. This paper takes one small step to obtain insights into the
impact of limited resource on surveillance.
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The model for this work involves a simple anonymity group and simple
surveillance algorithms; the anonymity group is the target for the surveillance
to find. The target group does not employ sophisticated anonymity algorithms
but encryption. The surveillance uses only the information of communication
relationship (whos talking to whom) to find the entire target group.

The limited resource can be implemented in many different ways. In this
paper, it is represented as the ”budget”, which is loosely defined as the unit of
resource to monitor one subject (potential or identified hidden group member).
So the number of subjects under surveillance is linearly proportional to the
budget.

One consequence with the budget is that the surveillance has to make a deci-
sion at some points whether to continue to monitor the subjects currently under
surveillance or replace the subject with another potentially more promising one.
By ”promising” it is meant that the new subject would likely be to reveal more
members of the hidden group. Note that surveillance with unlimited resource
would not need to change the monitoring subject. That kind of surveillance
would just keep adding more subjects. This is the point where the attribute
”dynamic” is introduced to better characterize the nature of surveillance with
limited budget; the critical decision is made dynamically at points in time.

This dynamism creates the two parameters; period and selection algorithms.
The period is some time amount, at the end of which, the surveillance makes a
strategic decision to select more promising subjects for next surveillance period.
The selection algorithms assign a priority to each candidate subject. Top priority
subjects, as many as the budget allows, will be selected for next surveillance
period.

The selection algorithms in this experiment are high-degree-first (HDF),
high-traffic-first (HTF), and random (RAND). The ”degree” means the num-
ber of edges from the node in the communication map. There is one-to-one
relationship between the node in the communication map and one subject in
the real world. The HDF assigns priority based on the degree; higher degree
receives higher priority. Likewise, in HTF, higher traffic (higher communication
occurrences) nodes receive higher priorities. Lastly, the RAND assigns priority
in a random fashion. It is chosen as the baseline against which the performances
of HDF and HTF are compared.

This paper uses the publicly available email data set of once American energy
company Enron, as a trace of actual human communication. The process of
identifying the target group is performed by following the communication of a
selected target. The experiments show the general impact of limited resource on
the intelligence obtained by the surveillance. The intelligence is measured by the
number of Enron employees as the hidden group and the number of third parties
who have communicated with any employee of Enron.

With the well known power-law phenomenon in social graph, where a few
nodes are connected to a large portion of the entire nodes while a large portion
of the nodes is connected only to a few other nodes, it may be natural to expect
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a maximum intelligence return from the surveillance by following the largest
degree or largest traffic volume subjects.

Surprisingly, the simulated surveillance shows the opposite. Both HDF and
HTF do not return noticeably higher intelligence than RAND. In other words,
the impact of limited resource can be larger than expected.

The paper is organized as follows. A brief survey on related work and back-
ground information are given in Section II. The surveillance model, simulation
overview and simulation data are described in Section III. Section IV details
the impact of limited resource by showing the returning intelligence from HDF,
HTF, and RAND with various periods and budgets. The concluding remarks
and future work are provided in Section V.

2 Related Work

In a broad sense, this paper belongs to the other side of the general idea of
anonymity research (for example, [2] [3] [9] [13] [16]). While the general goal of
anonymity research is to hide the communication relationships and the partici-
pants identities, the goal of surveillance is to reveal such information.

There is one research work addressing the efficiency of surveillance at an
abstract level [7]. The focus of the work of [7] is different from that of this
paper, however. The former investigates the impact that the revelation of one
single member of the target group brings to the discovery of the entire target
group. Surprisingly, one single member revelation is found to divulge about 50
other members of the same target group. So, carefully planned surveillance would
need to monitor only one fiftieth of the estimated target group population.

This paper, in comparison, treats each target subject individually. It does
not take the clustering coefficient (relationships existing among members of the
same group) into account. From the perspective of [7], this work can be said to
investigate an extreme case, where each and every group has only one member.
From some distance, this work seems to be related to the existing surveillance
systems such as Carnivore [17] and NarusInsight [12]. The details of the systems
are not known to the authors, however.

A number of research works have utilized the publicly available Enron email
data set. Shetty et al. [14] created a MySql database from raw Enron email
corpus, analyzed the statistics of the data set, and derived a social network
graph. Keila et al. [11] explored the structure of the data set and analyzed the
relationships among individuals by using the word use frequency. In addition
to the study of analyzing the Enron email data set itself, some work [1][4][15]
use the data set as a testbed for the applied research. In relation to this paper,
one of them investigates the communication map of the email data set in great
detail [8]. To the best of the authors knowledge, this paper is the first attempt
to utilize the data set to investigate surveillance efficiency issues with limited
resource.
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3 Surveillance Model

3.1 Simulation Overview

The goal of this paper is to obtain insights into the impact of limited resource
on the intelligence returned by surveillance. The intelligence in this experiment
is to identify firstly the target (hidden) group and secondly the group of third
parties who have communicated with any surveillance subject.

The target group is assumed unaware of the surveillance. It does not take
any measure against the surveillance. So, whatever seen by the surveillance is
the actual communication in this model.

The process of identifying the target group is performed by following the com-
munication map drawn from observation of communication between one known
subject and another subject. The content of the communication is assumed prop-
erly encrypted so that decipherment of the message is not practical. However,
the identity of communicating subject is assumed to be decode-able by some
means.

Since the surveillance finds more unidentified subjects anyway as time pro-
gresses, the communication map grows accordingly. However, the communication
map adds only newly identified subjects. Otherwise, it adds more edges or in-
crease traffic volumes. As the resource is limited, the communication map is
always a subset of what has happened in the real world.

At the end of each monitoring time window, within the limited budget, the
surveillance has to make a decision about which discovered subjects will be
under next round surveillance. The selected subjects will determine the quality
of next round surveillance because any new discovery will be done by identified
communications with any of those subjects. The three algorithms for the target
selection in this work are HDF, HTF, and RAND.

By identifying each subject this way the surveillance will eventually identify
and establish the entire target group if time and budget allow. The simulated
surveillance is done when the communication is exhausted, i.e., all the input
data is exhausted. Different intelligence will be returned at the end of one simu-
lation run with a different set of period, selection algorithms, and budget. This
surveillance process is simulated by the software designed for the purposes.

To obtain one point in the figures in what follows the simulation is performed
as follows.

1. A simulation data set is given, which is a trace of actual human interactions.

(a) Each communication occurrence of the data set is associated with the
time of occurrence and the sender and receiver.

(b) so, the entire data set is a collection of communications on the time line
from the beginning to the ending time points.

2. Set the surveillance period, subject selection algorithm, budget.
3. Read the first time slice of the simulation data set based on the period.
4. At the beginning of the first period,

(a) Select some subjects from the slice randomly as many as the budget.
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(b) Put those under surveillance.
(c) Run surveillance.

i. Observe the communication chronologically.
ii. Create the communication map accordingly.

5. At the end of the first period, run the subject selection algorithm.
(a) Select the top priority subjects as many as the budget.
(b) Put those under surveillance.

6. Read the next time slice of the simulation data set based on the period.
(a) Run the surveillance with the subjects selected at the end of the previous

round.
i. Observe the communications with the selected subjects chronologi-

cally.
ii. Update the communication map accordingly.

7. At the end of the current period, run the subject selection algorithm.
(a) Select the top priority subjects as many as the budget.
(b) Put those under surveillance.

8. Repeat the above two steps (6, 7) until the input data set is exhausted.
9. At the end of the run report the intelligence.

(a) The identified subjects of the hidden group.
(b) The identified third party subjects, who have communicated with one of

the identified subject of the hidden group.
(c) Other information as desired.

10. Repeat the entire procedure above 30 times with the same set of period,
selection algorithm, and budget.

11. Obtain the averaged intelligence of the 30 runs.

The averaged intelligence should not be affected by the seed subjects, which
are randomly selected from the first time slice of the simulation data set.

Fig. 1. Illustration of the surveillance model under limited budget. This example shows
budget 3, so that only three nodes (3 red nodes) can be put under surveillance.
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Illustration of Limited Resource Figure 1 shows an example of surveillance
under a limited budget. The graph represents a communication map among
subjects from a period. The budget is set to 3. There are 23 nodes in the com-
munication map. However, the surveillance can only identify 14 nodes; 3 red
(or dark in black-and-white) nodes and 11 grey nodes. The rest 9 nodes cannot
be observed by the surveillance due to the limited budget. In other words, the
surveillance returns the intelligence of the 11 discovered nodes.

3.2 Simulation Data

The input data to the simulation is the Enron email data set. So, in this work,
each unique email address is treated as an unique individual or a possible surveil-
lance subject. The target group is the set of unique email addresses which are
in the form of ”somename@enron.com”. Identifying the target group then be-
comes identifying all unique email addresses which end with ”@enron.com”. The
third parties are identified when their communication with any known subject
is identified by the surveillance

The first public release of the Enron email data set was done in May 2002 by
the Federal Energy Regulatory Commission [6]. Since the public release, several
groups have subsequently processed and used the data set for a range of different
research purposes. As a result, there are a few different versions available now.
In this paper, the ISI (Information Sciences Institute) MySql version [10] of the
data set is used. The ISI version was originally based on the CMU (Carnegie
Mellon University) version [5].

The CMU version contains 517,431 messages from 151 employees. By re-
moving meaningless messages from the CMU version, the ISI version now holds
252,759 messages from 151 employees, about half of the CMU version. This work
slightly improves the ISI version in terms of message validity for surveil- lance
purposes. As a result, the MySql file size changes from 740 Mbytes (ISI version)
to 667 Mbytes in this work. The data set used in this work has 252,692 email
messages, 75,529 unique email addresses from Jan. 4, 1998 through Dec. 21,
2002.

So, the simulated surveillance is to identify all the 151 employees (some-
one@enron.com) and other third parties who communicated with one of the
employees. Figure 2 shows the message distribution for the 5-year time period.
The message volume peaks around Oct. 2001.

4 Experimental Results

4.1 Simulation Specifics

Surveillance time window The two types of window are used in this work;
time based and message based. In the time based, the entire data set is divided
by a time period. Each window has the same time span. Some windows see a
large number of email messages while some others do not. In the message based,
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Fig. 2. Distribution of email messages in time [14]

the entire data set is divided by a number of messages. Each window has the
same number of messages. Some windows take a large time span while some oth-
ers take a short time span. Once the simulation started, each window is fetched
from the MySql database in sequence, and, is given to the simulation software
for surveillance processing.

Target selection scope The target nodes in the communication map are the
subjects, with which the simulated surveillance runs for the next time window.
This work uses three simple strategies for target selection; HDF, HTF, and
RAND at the end of each surveillance period. In the process of target selection,
the surveillance needs to see the pool of candidates. The pool can be formed in
two ways; local and global. The local pool is formed by the nodes observed in
the current window of communication map. The global pool is formed by the
entire nodes observed from the beginning up to the current window included.
The local pool has fewer candidates while the global pool has an increasingly
large number of candidates. Depending on the setting of the target selection, the
three strategies (HDF, HTF, and RAND) select the target nodes either from the
local or from the global scope.

Eligibility of Re-Selection

1. Rule 1:
A target node in this work is not allowed to be selected again to be one of the
target nodes for the immediately following window. A target node however
can be selected again as one of the target nodes for the window, which is at
least two window-hops away. Two neighboring windows are one window-hop
away from each other. This is different from the target selection scope. The
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Fig. 3. Illustration of surveillance example (target selection strategy, target selection
scope, budget, window, re-selection eligibility)

target selection scope defines the pool of candidates. This rule defines the
eligibility of re-selection.

2. Rule 2:
One assumption of the simulation is that the target nodes will communi-
cate with unknown parties during the next surveillance window so that the
surveillance will identify more suspect nodes. A question arises when the
target nodes do not exhibit communication with any unknown parties. The
two choices are available in this case for selecting target nodes;

(a) Select one of the target nodes from the past for the next window, or,

(b) Use the target nodes of the current window for the next window because
no new candidates are available from the current window.

This work uses the second choice. This ”continued status of the target node
over two neighboring windows” is one exceptional case to the ”Rule 1” of eligi-
bility of re-selection.

Illustration of Simulation Specifics Figure 3 shows an illustration how the
surveillance works with different target selection strategies and scopes with the
same simulation data set for the same time windows and the same re-selection
eligibility rules; (a) shows HTF in the local scope in the three consecutive win-
dows, (b) shows HDF in the global scope in the same three consecutive windows.
The setting includes a time window of 6 hours, budget 2. The red (or dark in
black-and-white) nodes are the target nodes. The edge represents the identified
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communication between nodes. The weight of the edge is the communication
volume; the number of email messages exchanged by the pair of nodes.

In the first window of the Figure 3 (a), there are two target nodes (A, B).
Through the target nodes, the surveillance observes the communication between
A and B, A and C, A and D, and, B and C. In terms of HTF, A is still the highest
traffic node with 9 communications. However, since there are other unknown
nodes, C and D, A is not allowed to be selected to be a target node for the
next window. Accordingly, C and D are selected as the target nodes for the next
window of 6 hours. In the second window of (a), C is the highest traffic node.
Again, however, other new so-far unknown nodes are selected as the target nodes
for the third window; E and B.

The same rules are applied in Figure 3 (b). The differences are the target
selection strategy and scope; HDF in the global scope. The target nodes of the
first window are A and B. At the end of the first window, A and B are still the
highest degree nodes. Due to the ”eligibility of re-selection”, however, C and D
are selected as the target nodes for the second window. The global scope of the
second window is represented by the solid and dotted lines between nodes. The
solid line is the communication occurred in the current window. The dotted line
is the communication observed in previous windows. Likewise, the number in
the parenthesis on the edge is the cumulative communications between the pair
of nodes up to the immediately preceding window, while the number out of the
parenthesis represents the communications observed in the current window.

In Figure 3 (b), both B and F have the same degree, 2, at the end of the
second window. The tie is broken in this work in favor of higher traffic; B has
7(2) + 0(2), while F has 3 + 3. Eventually A and B are selected as the target
nodes for the third window. Note that A and B were the target nodes for the
first window. Both A and B are eligible to be a target node for third window
because the first and third windows are two window-hops apart. Note that the
two communication maps made by HDF and HTF grow differently with the same
simulation data set. Both communication maps are incomplete anyway due to
the limited resource.

4.2 Dynamic Surveillance with Limited Budget

In the figures below, the ”suspects”are the unique email addresses of 151 Enron
employees. The ”nodes” are the unique addresses, which are either suspects or
any other addresses, which have communicated with the employees at least once
during the surveillance.

Figure 4 shows six graphs which differ from each other in the window type and
target selection scope. The first column (a, c, e) shows the node discovery, and,
the second column (b, d, f) shows the suspect discovery. The first 4 graphs (a, b,
c, d) are obtained using the target selection from the local scope, while the last
two (e, f) are obtained by the global scope target selection. The X-axis shows
the surveillance window size in either message or time and its corresponding
percentage of the entire surveillance period (5 years). Note that the X-axis is not
a time line. One simulation run produces a value at one point of the curve. The
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Y-axis show the averaged intelligence either node or suspect discovery percentage
against the entire data set size with the given budget, window, target selection
strategy, and target selection scope.

The first two (a, b) use time windows while the last four (c, d, e, f) use
message windows. Each graph has five sets of curves; each set represents the
budget 4, 16, 64, 256, and 1024. Each set of the graph in turn shows the perfor-
mance of the three target selection strategies; HDF, HTF and RAND under the
same conditions of budget and window. Each graph has fifteen curves in total,
therefore.

Each point is obtained by the average value of 30 simulation runs with the
same simulation setting but different seed nodes. For example, in (a), both HDF
and HTF with the window of 96 hours and budget 256 produce the node discov-
ery ratio of about 25%. This is the averaged value of 30 simulation runs. So each
graph is a collection of averaged values from a set of independent simulation
runs. Simulation runs higher than 30 do not produce noticeable difference. The
best possible node discovery in this experiment as seen in the figure is about
35% or 36% of the entire nodes when the email data set is exhausted.

Global vs. Local Scopes The last two graphs (e, f) use the global target se-
lection scope while the first four (a, b, c, d) graphs use the local scope. One
can expect that the global scope would return higher intelligence because the
larger pool of candidates. To the contrary, the results are the opposite. The node
discovery rates of (e) are lower than those of (a) and (c). Similarly, the perfor-
mance of (f) is lower than (b) and (d). The reason is in the limited budget. The
global scope tend to select the same target nodes again in later windows due to
their accumulated higher degrees and traffic volumes. This trend prevents other
new more promising nodes from being selected. The local scope, however, has to
select the target nodes from the new local pool at each window.

Budget vs. Discovery Rates With the increasing budgets, the 151 suspect
nodes (employee addresses) are 100% discovered. As can be seen from (b), (d)
and (f), the complete suspect (employee) discovery is achieved with the budgets
256 and 1,024. So, budgets higher than 1,024 are not experimented. The graphs
(a), (c) and (e) show that higher budgets yield higher discovery of nodes. How-
ever, while the budget is increased by 4 times at each step, the discovery ratio
increases only sub-linearly.

The ratio of discovery to budget is found only to decrease. With this kind
of sub-linearity, an absurdly large budget would be required to discover higher
nodes than shown in (a) and (c). Further, the return intelligence is found in-
creasingly marginal from each multiplicatively higher budget investment.

Time vs. Message-BasedWindow In this experiment, as can be seen in Fig-
ure 4 (a) and (c) or (b) and (d), no big performance difference is found between
the two different kinds of surveillance period; time and message windows. This is
somewhat counter intuitive because the number of communication occurrences
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in the time window is likely to be different for each period. The logical explana-
tion to this is that the variation of the message volume in the time window was
not to the extent, where performance degradation would be seen. As seen later,
both windows find new nodes at a rather constant rate.

HDF, HTF vs. RAND In (a) and (c), the set of curves seems to have a
mild peak. Interestingly, the three selection strategies do not show much per-
formance difference until that point. After the peak, RAND shows the lowest
performance while HTF is only slightly lower than HDF. Throughout the range
of budgets, HDF and HTF do not show noticeable difference. One possible log-
ical explanation to these results is that, up to some window sizes and budgets,
for example, 512 messages or 48 to 96 hours and 64 or higher budgets, intuitive
algorithms do not necessarily perform better than a random approach. In other
words, the windows and budgets up to the peak point may not be large enough
for the intuitive algorithms to exploit some patterns in the communication maps.

Peak Interestingly, in (a) and (c), there tends to be a peak in the node discovery
ratio. For example, in (a), the node discovery reaches about a little more than
35% with the budget 1024, the window of 48 hours regardless of the strategy.
Similarly, in (c), the ratio reaches about 36% with the budget 1024, the window
of 512 messages, again, regardless of the strategies. The peak becomes more rec-
ognizable with higher budgets. In this work, the peak is interpreted that budgets
larger than certain percentage of the entire nodes may have some optimal range
of windows to maximize the return intelligence.

The peak is clearer in the message windows in (c) although the overall perfor-
mances are not much different from those of time windows in (a). This is because
the number of message appearing in each window is constant in (c), while it is
necessarily fluctuating in the time windows in (a). The even distribution of mes-
sages in (b) must have helped manifest the optimal range of windows.

The performance degradation of (a) and (c) after the peak point is also
interpreted due to the larger window. The peak point is effectively the turning
point where the window size becomes sufficiently large to create the global scope
effect for target selection. By the same argument, the global scope also produces
flat curves in (e),

Another side effect of the global scope is the larger gap between RAND and
the other two (HDF, HTF) with large budgets (256, 1,024). In (a) and (c), the
gap between RAND and the other two becomes visible only with large budgets
and large windows. Statistically RAND has higher probability to choose worse
nodes in the global scope than in the local scope. The wider variety of the global
scope contributes to the poor target node selection of RAND. In the local scope,
since it is always created by the most promising nodes from the previous window,
RAND has lower probability to choose low performing nodes.
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4.3 Variations of Dynamic Surveillance

Strategically Uneven Budget Allocation So far, the budget is evenly allo-
cated to each window. This is to reflect the general situation that the dynamic
surveillance would not know when more new nodes would appear in the surveil-
lance. Without knowing the future information, the strategy of even budget
allocation would be a reasonable choice.

The general question is whether there would be a better way of budget al-
location in an effort to improve node discovery. To be fair, the total amount of
budget needs to be assumed fixed. The total amount of budget is defined as the
average budget per window multiplied by the number of windows of the entire
surveillance period, 5 years.

One immediate way is to allocate a relatively large portion of budget to
the early stage of surveillance. The idea is to exploit the general pattern of
communication map that a small percentage of nodes are connected to most of
the nodes.

The hope is that if such small percentage of nodes would be discovered at
an early stage, the node discovery would be more effective for the rest of the
surveillance even with less amount of budget to the following windows. Therefore,
the two variations of budget allocation are experimented here: firstly 50% of the
total budget to the early 10% of the surveillance period, secondly 90% of the
total budget to the early 10% of the surveillance period. The rest of surveillance
windows receive the even distribution of the remaining budget in both cases.

Figure 5 shows the results of the two cases; (a) and (c) show the node and
suspect discovery rates for the first case (50% allocation first), and, (b) and (d)
show the second case (90% allocation first). In comparison to Figure 4 (c) and
(d) (message window, local scope), the node discovery rates of Figure 5 (a) and
(c) are not higher, and those of Figure 5 (b) and (d) are lower. These results
apparently do not support the hope of finding more node.

More interestingly, in Figure 5, (b) and (d) (90% budget to the first 10%
of surveillance period) show even lower rates than in (a) and (c) (50% budget
to the first 10% of surveillance period). This result means that higher budget
allocation to the early stage results in even lower node discovery. In an effort
to understand this interesting result, the micro behavior of node discovery is
further analyzed next.

Micro Observation of Node Discovery Figure 6 shows the ”progress” of
node discovery of three budget allocation cases; even, 50% first, and 90% first al-
locations. The X-axis shows the time line in the number of surveillance windows.
The Y-axis shows the return intelligence either the number of nodes identified (a,
c, e) or the number of suspects (employees) (b, d, f) as the one time simulation
progresses on the time line. As such, the returning intelligence (Y-axis) only
grows on the time line (X-axis).

Note that these figures are different from the previous ones (Figure 4), where
the curves show the averaged return intelligence of multiple independent simu-
lation runs. Different points of the curve are from different simulation runs. In
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comparison, different curves of Figure 6 are from different simulation runs. The
points of one curve are all from the same simulation runs.

The left column of three graphs, (a), (c) and (e), show the node discovery
and the right three (b, d, f) show the suspect discovery. The first row, (a) and
(b), are for the even distribution, the middle two (c) and (d) for the 50% first,
and, the bottom two (e) and (f) are for the 90% first.

The highlight of this figure is the growing rate of the returning intelligence.
In (a), the even distribution of budget, the node discovery grows almost linearly
and eventually tops around 27,000 nodes, which is about 35% of the entire nodes.

In (c) the discovery grow rapidly for the first 10% surveillance period and
the growth rate goes down immediately after the first 10% surveillance period.
This phenomenon stands out more distinctively in (e). This trend remains the
same even in the suspect discovery rates in (d) and (f).

Interestingly, in (e), the 90% first does not boost the node discovery rate
even for the early 10% of surveillance period in comparison to (c). Evidently,
this tells that more than 50% budget allocation to the early 10% of surveillance
would not result any more intelligence return in this case study.

From a slightly different angle, this also suggests that the higher budget
allocation to the early 10% of surveillance was not much effective because the
possible pattern (power-law, for example) of communication map was not fully
recognizable in the early stage even by the temporarily large budgets. So, in this
case study, choosing the even budget distribution seems favorable for the two
selection algorithms, HDF and HTF.

4.4 Surveillance with Unlimited Resource

Using the same simulation data set, this section runs the simulation with un-
limited resource, i.e., the surveillance monitors every single communication oc-
currence between any two nodes. The communication map is complete at any
given moment, therefore. The motivation is to see the difference between the
intelligence returned by resource-limited and -unlimited surveillance.

Figure 7 shows four graphs on the X-Y plane with a logarithmic scale on
the X axis. As before, the Y-value is the ratio of node (unique email address:
both employee and third party combined) discovery. The X axis shows the top
percentage of nodes with the priorities assigned by the target selection algorithm.

For example, in (b), the top 1% of nodes selected (on X-axis) either by
HDF or HTF are connected with the other 70% or higher (Y-axis) nodes of
the communication map. This means that the selection of top 1% nodes by
the selection algorithms can identify more than 70% of the nodes at the given
moment. Since the surveillance has unlimited computing power, each single node
or communication addition causes a new complete computation of the entire
communication map. This allows the algorithm to assign the priority based on
the exact global and complete view at any moment.

The four graphs are obtained as follows. First, take the first 0.1%, 1%, 10%,
and 100% portion of the simulation data set from the time line. (Remember that
the simulation data set is a chronologically ordered communication occurrences
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among subjects.) Second, sort out the selected portion using the three algo-
rithms; HDF, HTF, and RAND. Here, all the nodes, which ever communicated
with any of the selected nodes are considered discovered. Third, create a curve
for each selection algorithm for the four different sets.

Since the four first portions (0.1%, 1%, 10%, and 100%) are different in size
from each other, the connectivity of the top percentage of the first portion to
the rest of the first portion is different from each other, too. For example, the
node discovery by top 1% is more than 80% in (a), more than 70% in (b), more
than 50% in (c), and lastly more than 40% in (d). The larger the first portion,
the smaller the top percentage nodes connectivity.

Note that Figure 7 cannot be directly compared to Figure 4, where the X-axis
was a time line while it is the top percentage of priority by the chosen target
selection algorithm.

One convenient way to interpret the four graphs is to regard each one (a, b,
c, d) as the snapshot of the surveillance with unlimited resource at the moments
where the communication map reaches the first 0.1%, 1%, 10%, and eventually
100% of the entire nodes. Because it is resource limitation-free, the surveillance
knows exactly what has happened. The current communication map itself reveals
100% discovery at any time. This is the big difference between the resource-
limited and -unlimited surveillance.

With the always complete Communication map a few interesting observations
are readily available.

1. As the surveillance progresses, HDF returns higher intelligence than HTF,
2. RAND returns constantly poor intelligence.
3. The curve patterns do not seem to change regardless of the size of the early

portion of data set.

Considering these observations, it can be said that there maybe some patterns
in the complete communication map, and, the HDF seems to exploit the patterns
most effectively. It indirectly shows that the pattern may be a power law-style.
Since RAND does not utilize any pattern, it should return the worst intelligence.

There is an interesting observation with the sizes of window. Figure 4 uses
a range of window sizes. For example, the largest window size in Figure 4 (c) is
16,384 messages, which corresponds to about 6.5% of the entire data set. This
window size is actually larger than those of Figure 7 (a) and (b). The largest
window of Figure 4 (a) is 3,072 hours, corresponding to about 8.5% of the entire
surveillance period. Interestingly even these large window sizes do not make the
node discovery higher than 40% in Figure 4 (a) and (c).

Again, the major contributor to this interesting result is the incompleteness
of the communication map due to the limited budget. The incomplete map
constantly leads a sub-optimal selection of target nodes for next surveillance
round. This phenomenon continues even with considerably large window sizes.

Lastly, the lowest curve in Figure 7 (d), is a hypothetical case, in which the
target group uses an anonymity system such that the node discovery is perfectly
linearly proportional to the surveillance budget. So, in order to find out X number
of subjects of the target group, the budget of X should be invested. Finding the
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existence of such an anonymity system is out of the scope. This case, however,
gives the lower bound to the surveillance performance. Even RAND performs
better than this imaginary case.

5 Conclusions

The motivation of this work is to obtain insights into the impact of limited
resource on the intelligence returned by surveillance. This work takes an ex-
perimental method in an effort to approach the right answer. The experiment
was done in a form of simulated surveillance using a publicly available Enron
email data set. The data set does not contain a complicated anonymity algo-
rithms except data encryption. So the target selection algorithms were simple
for the surveillance. However, the nature of the data set, a reflection of human
interactions as a real trace, gives some credit on the actuality of the data set.

The experiment was done firstly with limited resource and followed by an-
other form of surveillance with unlimited resource for comparison. As seen in
the two strikingly different graphs (Figure 4, Figure 7), the impact of limited
resource can be larger than expected. As seen in Figure 4, the idea of exploit-
ing some intuitive patterns (high degree or high traffic) on the communication
map was not effective with limited budgets. After the peak points, larger bud-
gets and larger window sizes produced worse intelligence. Although both HDF
and HTF perform much better that RAND after the peak, the intelligence re-
turned by both was monotonically decreasing with considerably larger budgets
and window sizes.

By comparing the two surveillance cases (resource limited vs. unlimited),
even though this work is about only one single case study with Enron email
data set, some conclusions can be drawn that:

– Surveillance with limited resource may have some optimal points in terms of
the combination of budget and window size that can maximize the quality
of intelligence returned by the surveillance.

– Even allocation of budgets throughout the surveillance may work better than
strategically uneven allocations.

– The incompleteness of the communication map seems to be maintained
throughout the surveillance. This may be the major contributor to the obser-
vation that both HDF and HTF do not return significantly higher intelligence
than RAND.

This work, although the generality is limited due to the scope of single case
study, solicits further work, including but not limited to, on the optimal combi-
nation of budget and window size while the hidden group size is still unknown
(with possible estimates of the group size), and, on the minimum size of com-
munication map that is yet large enough to show some patterns to be utilized.
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Fig. 4. Node discovery of dynamic surveillance
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Fig. 5. Node discovery with variable budget distribution in before-event surveillance
(message window based)
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Fig. 6. Progress of node discovery with various budget allocation cases
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(b) 1% data of whole email messages
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(c) 10% data of whole email messages
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Fig. 7. Surveillance with unlimited resource


