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Abstract— ACK thinning refers to the technique to discard
or reduce TCP acknowledgements (ACKs) for the purpose of
diverting scarce bandwidth to TCP data traffic. Delayed ACK
and ACK filtering fall into the category. It has been shown that
under some circumstances the technique is effective to boost the
TCP throughput on wireless links, in particular the IEEE 802.11
wireless LAN (WLAN). In this paper, however, we show that
ACK thinning backfires under congestion due to its cross-layer
impact on the 802.11 MAC dynamics. With the ACK filtering
example, we demonstrate the phenomenon and analyze the cause.
Based on the analysis, we show how the IEEE 802.11 contention
window size control solves the problem. Although only the ACK
filtering and Delayed ACK are considered in this paper, any other
techniques to save on TCP ACK bandwidth usage share the same
fundamental issues.

I. INTRODUCTION

The cumulative property of the TCP acknowledgement
(ACK) scheme is originally designed to equip TCP with
the robustness against ACK losses [1]. Even if some ACKs
are lost, the acknowledgement information, i.e., the receiver
buffer availability (“window” size) and the ACK sequence
number, can still be conveyed by subsequent surviving ACKs.
From the early days of TCP, however, it has been noticed
that this property can be exploited to suppress some ACKs
to save scarce bandwidth. The Delayed ACK algorithm that
suppresses the transmission of an ACK up to 200ms is now a
standard feature of TCP [2]. On the wireless LAN (WLAN)
context in particular, delayed ACK has been shown to yield
higher throughput by giving a larger share of the wireless
bandwidth to TCP data traffic [3]-[5]. Above and beyond,
it has also been proposed that TCP ACKs be discarded by
network elements, independently of delayed ACK, on con-
strained [6] or asymmetric link settings [7], [8] for improved
TCP throughput. The idea is to drop preceding ACKs if the
ACKs from the same connection get to be cumulated in the
same interface queue. This technique called ACK filtering has
been briefly considered for satellite channels [9] in the wireless
context.

Collectively, the two classes of techniques introduced above
are referred to as TCP ACK thinning. In this paper, we
explore the impact of ACK thinning on the 802.11 MAC
[10] dynamics. We focus on the ACK filtering first, since it
is more elegant than the Delayed ACK, which we deal with
next. We demonstrate that ACK filtering (or any ACK thinning
approach for that matter) backfires in face of congestion on
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the 802.11 link. It turns out that it is due to the cross-layer
dynamics between TCP flow control and 802.11 MAC. When
we remove some of the ACKs, the consequence is that each
surviving ACK gets to acknowledge more bytes. As a result,
more bursty transmission takes place. Larger chunks of data
ends up in the MAC queue, raising the level of MAC layer
contention. Below, we analyze this cross-layer impact and
draw the solution approach from it. The contribution of this
paper is that it shows

e ACK filtering improves delay, fairness and stability of
TCP connections on 802.11 WLAN:S,

o« why ACK filtering can harm TCP throughput under
congestion,

e and the harmful TCP-MAC cross-layer interaction is
controllable, and the throughput improvement can be
retained through contention window modulation.

This paper is organized as follows. In section II, we briefly
discuss the concept of ACK filtering. Since ACK filtering has
not been considered for the IEEE 802.11 WLAN environment
so far in the literature, we also discuss some advantages of ap-
plying it to the wireless interface queue. Aside from expected
benefits such as small queuing delay, and higher throughput
(which we rebut below), previously unknown properties are
also uncovered such as stability and fairness. But the focus is
on the throughput problem, and it is discussed in section IIIL. In
particular, the throughput is shown to be worse than under no
ACK thinning in face of congestion. We analyze the cause to
be of cross-layer nature between TCP flow control and 802.11
MAC, and draw a solution approach from the analysis, based
on the contention window size modulation. In section IV, we
briefly discuss the delayed ACK case. We conclude the paper
in section V.

II. ACK FILTERING
A. Algorithm

1: if (pure_.TCP_ACK(a’"))
/* TCP pure ACK */

2: for all Q[k], 1 <k < sizeof(Q) /* search MAC queue */

3: if (flow(Q[k})==f and NACK(Q[k]) < NACK(a}"))
/* replaceable ACK found */ _

4: if (pure_ TCP_ACK(Q[k])) Q[k] = a}"; break;

Fig. 1. Pseudocode of the ACK filtering algorithm.

The main idea of ACK filtering is simple. When a TCP
ACK is about to be queued in the MAC queue, it clears



out all preceding ACKs in the same connection that have a
smaller ACK number. The removal of TCP ACKs is doable
since, in TCP a following ACK always carries more up-to-
date acknowledgement information than its predecessor, if not
the same. Implementations can vary, but we will follow the
schemes of [7], [8], which is described in Fig. 1. In the
algorithm, agc" denotes the incoming packet for flow f, @
is the MAC queue, and Nacg(-) is a function that returns
the ACK number. In step (1), the ACK filtering process is
triggered by an incoming ACK. Pure_TCP_ACK is a test that
checks the protocol number field of IP header, the A flag of
TCP header, and the length of the payload. If the ACK is
a pure ACK (carrying no data), the MAC queue is searched
for a replaceable old ACK for the same connection (step (2)).
If a match is found (step (3)), it is checked if the match is
also a pure ACK. If so, the replacement is made in step (4).
Notice that if every incoming ACK causes this operation, at
most one preceding ACK with a smaller ACK number can
be found in the queue, so we break in step (4) as soon as
we replace an old ACK. Also notice that the strict inequality
in step (3) is important. In case an incoming ACK finds a
preceding ACK with the same ACK number in the queue,
neither is removed so that TCP’s Fast Retransmit algorithm
[1] is not affected. If we decided to drop duplicate ACKs, it
could prevent the Fast Retransmit from firing, not being able
to gather the required 3 duplicate ACKs. Also notice that no
additional queuing delay is caused by the replacement since
the newly incoming ACK simply replaces the preceding ACK
at its found position, i.e., step (4), which prevents itself from
affecting the Retransmission Time Out (RTO) calculation on
the sender side [1].

Fig. 2 exemplifies the ACK filtering operation with a 7-
slot queue. Connections are identified by an alphabet, and
subscripts represent TCP ACK numbers. For simplicity we
assume all packets in the queue are ACKs. In this example,
events occur in the following order (the transmission events
are independent of the arrivals):

1) ACK co arrives and replaces the preceding ACK c1; aq

is transmitted.

2) ACK e; arrives and is queued at the tail since there is
no preceding ACK for connection e in the queue; f is
transmitted.

3) ACK b arrives and replaces by; gp is transmitted.

4) ACK b3 arrives and replaces bs; ¢y is transmitted.

The ACK filtering algorithm is more elegant than delayed
ACK or its enhanced variants that eliminate ACKs more
aggressively. This is because the timing and the number of
ACK deletions in ACK filtering are automatically determined
by the congestion level on the wireless link itself. This is
because raised [lowered] congestion level will see more [less]
ACKs incoming to the interface queue before the preceding
ACK in the same connection is transmitted. As a consequence,
we do not need an additional control parameter to determine
the intensity of ACK elimination.

B. Advantages of TCP ACK filtering on 802.11

In this section, we explore the performance impacts of ACK
filtering other than throughput, the main topic we deal with in
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Fig. 2. ACK filtering execution example.

the next section. For experiments, we simulate in ns-2 [11]
a 802.11b Basic Service Set (BSS) where n terminals contend
for bandwidth using Distributed Coordination Function (DCF)
[10]. Fig. 3 shows the simulation topology used in the experi-
ments. We assume that all terminals are within mutual sensing
range, are equi-distant from the AP, and have 50 (small queue
size scenario) or 250 slots (large queue size scenario) in the
MAC queue. In practice vendor implementations can wildly
vary in queue size, but the 250 slot setting roughly maps to
250ms of queuing under 11Mbps bottleneck speed, which is a
rule-of-thumb guideline for Internet router configuration [13].

BSS

802.11b channel 10ms., 100Mbps

‘ AP

fixed host

Fig. 3. Simulation topology.

The algorithm exemplified in Fig. 1 and 2 implies that the
queueing delay should be smaller with ACK filtering. It is
because at most one ACK per connection can be queued in
the AP queue, barring the case of duplicate ACKs. Fig. 4
confirms the intuition. We notice that the queue length without
ACK filtering converges to the physical size quickly, while
it is bounded by the number of TCP connections with ACK
filtering for both 50 and 250 slots. As a consequence, the
queue length under ACK filtering becomes not only smaller
but also independent of the physical queue size configuration.

Perhaps a more interesting aspect of ACK filtering is its
superior stability and fairness. It turns out that the full queue
size possible in ordinary AP queue as shown in Fig. 4
has an unexpected implication in terms of the stability and
fairness of the TCP upload traffic. Fig. 5 compares the TCP
packet sequence number progression for 10 terminals with
and without ACK filtering. Fig. 5(c) is the ACK filtering
case, in which all connections share the uplink bandwidth
equally. With all other conditions (i.e., RTT, MSS, maximum
advertised window size) being equal in the simulation setting,
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[14]. The ACK filtering-controlled congestion window size
growth is adequate in such a situation, and contributes to the
stability that we see in Fig. 5(c). In contrast, Fig. 5(a) shows
that TCP connections without ACK control are unstable, mid-
to long-term unfair, and involve many long instances of stalled
transmission.

The contrast between Fig. 5(a) and (c) is beyond our
expectation. In particular, we notice from Fig. 5(a) that once a
connection times out, it can take a long time until it resumes
transmission. Since the AP queue is almost always fully
occupied in the ordinary MAC queue, an arriving ACK to such
a full queue is subject to a high drop probability. Although
ACK drops do not immediately lead to TCP timeouts and
retransmissions (thanks to cumulative ACK), the probability
that the ACK drop will lead to the timeout becomes higher

Fig. 5. Sequence number progression with and without ACK filtering, 10 connections.
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the results is only natural since the 802.11 MAC guaran-
tees asymptotically equal channel access probability to all
contending parties [12]. Nevertheless, the transmissions are
extraordinarily stable. This is because of few TCP timeouts
(5(d)) and the controlled growth of the congestion window
linked to the wireless channel traffic condition. It must be
emphasized again that ACK filtering takes effect only in the
situation where ACKs can be accumulated in the AP queue,
whose occurrence is related with packet losses and timeouts

for a smaller number of outstanding ACKs for a connec-
tion. Therefore, a connection that recently timed out and is
retransmitting (with a single data packet from Slow Start)
becomes the most vulnerable. It is because for the resulting
ACK, there are no ACKs that back up its rear. This is evident
from the trace of TCP timeouts in Fig. 5(b). It is visible even
at this timescale that the flow 1 and 8 are suffering from
RTO exponential backoffs (in boxes), which is only possible
when packet drops occur back-to-back [1]. Also the highly
concentrated timeouts observed from all flows strongly suggest
that once a connection falls into a timeout with unmodified AP



queue, it is likely that its subsequent retransmission will be
also unsuccessful. In contrast, we confirm that ACK filtering
has far fewer timeouts in Fig. 5(d).

III. CROSS-LAYER IMPACT ON THROUGHPUT DYNAMICS

We have seen that ACK filtering has benefits both in
queueing delay and stability/fairness. But does it improve
throughput as consistently as in wired environment(i.e. [7],
[81)? In this section, we argue that the answer can be negative,
and that it has a cross-layer explanation. First, we show the
throughput performance of ACK filtering as compared with
that of unmodified MAC queue, in Fig. 6.
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Fig. 6. Throughput with and without ACK filtering.

We observe that the throughput of ACK filtering starts
higher for small number of contending terminals, as we would
expect. But as the number of terminals increases, the margin
tapers off, and eventually it is overturned. For instance, n = 13
is the critical point for ACK filtering under the MAC queue
size ¢ = 250. To tell the conclusion first, this rather unexpected
result is due to the fact that the wireline works [7], [8] did not
have the issues of 802.11 MAC dynamics and the complex
cross-layer interaction between TCP and the MAC.

When we drop redundant ACKs in ACK filtering, each
surviving ACK gets to acknowledge more bytes. The sliding
window at the TCP sender proceeds accordingly, resulting in
a larger burst of data flushed down to the MAC layer. It does
not lead to the overall increase of the transmission rate of
the TCP connection, but it does imply that a significant part
of the throttle functionality moves down to 802.11 MAC from
TCP flow control. Namely, packets get to be held relatively
longer in the interface queue than in the TCP socket queue
than before. As a consequence, the average interface queue
occupancy increases and so does the MAC transmission at-
tempt probability from a wireless terminal, leading to higher
802.11 MAC contention level. Fig. 7 validates this claim,
where ACK filtering results in multiple times the collisions
that the unmodified interface queue generates (For clarity we
only show ¢ = 50 case, since ¢ = 250 exhibits the same
qualitative behavior.)

Since excessive contention is apparently the throughput
inhibiting factor for the ACK filtering queue, if we relax
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the MAC-level competition by using larger contention win-
dow size CW,,;n, the throughput gain from redundant ACK
removals should be more fully and consistently manifested.
Fig. 8 bears out the expectation. The figure shows that with
the relented contention level, ACK filtering now outperforms
the unmodified MAC queue by a visible margin. But how
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can we determine the optimal CW,,;, value for ACK fil-
tering? For one, adaptive methods such as [15], [16] could
be brought in to accomplish the objective. For instance, Fig.
9 plots the throughput in each case where the CW,;, size
is doubled upon transmission failure (i.e., collision in our
setting) and halved upon success. This method is called the
multiplicative-increase multiplicative-decrease (MIMD) mode
in the literature [15]. As implied by Fig. 8, the adaptation is
more advantageous for ACK filtering than for the unmodified
queue. For the unmodified queue, the adaptation even yields
slightly worse throughput for large population (Compare with
the unmodified system throughput with ¢ = 250 in Fig.
6). But the ACK filtering throughput is always over 6Mbps,
outperforming the unmodified system by more than 1Mbps in
all population regimes, i.e., in excess of 20% improvement.
Although designing the optimal C'W,,,;,, adaptation algorithm
is beyond the scope of this paper, Fig. 9 is enough to
demonstrate the potential of ACK filtering when it is supported
by the CW,,,;,, adaptation. With the advent of the new 802.11e



standard [17], we expect the CW,,;,, modulation to come in
handy for ACK filtering-enabled APs. We remark that ACK
filtering can be directly applied to higher-speed 802.11 links,
as well as the 802.11b exemplified in this paper.
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Fig. 9. Throughput comparison under MIMD CW,,,;,, modulation.

IV. THE CASE OF DELAYED ACK

As delayed ACK techniques also remove ACKs, they should
also cause the contention level to rise on the 802.11 MAC
layer. Although not as pronounced as in ACK filtering, the
effect of relaxing CW,,;,, from 31 to 63 in Fig. 10 (“no+DA”)
is more visible and consistent than in Fig. 8 (“no”). It implies
that there is increased contention under delayed ACK, so the
contention window modulation has more visible effect.
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Another observation from the figure is that delayed ACK
combined with ACK filtering yields almost identical through-
put as ACK filtering alone. It means that among the two, ACK
filtering drops ACKs more aggressively especially for large n
values, and the delayed ACK drops less than optimal amount
of ACKs. And delayed ACK or not, relaxing C'W,,;, helps
boost ACK filtering, but delayed ACK alone does not benefit
as much as ACK filtering. For delayed ACK, CW,,;,, = 63
is better than CW,,;,, = 31. However, with CW,,;,, = 127,
the throughput becomes even less than with C'W,,;,, = 31.

So Fig. 10 suggests that for delayed ACK there is not enough
contention to justify C'W,,;, = 127. This is contrast to ACK
filtering, where the comparison of the peak throughput in Fig.
10 and 9 suggests that even larger contention window size is
necessary for ACK filtering.

Although not shown for space, it should be noted that there
is also a qualitative difference between ACK filtering and
delayed ACK: unlike ACK filtering, delayed ACK does not
solve the instability problem [18]. In essence, it exhibits the
same phenomenon that we saw in Fig. 5(a). The qualitative
difference between delayed ACK and ACK filtering does
not stem from the difference in the aggressiveness in ACK
dropping. Rather it results from how ACK filtering controls
the drops. ACK filtering reacts to the wireless link condition,
and automatically regulates the dropping rate. In contrast,
(enhanced) delayed ACK is arbitrary, simply removing every
k" ACK. It cannot, and is not designed to, adapt to the
wireless link condition. So it always harbors the potential to
manifest the instability problem.

V. CONCLUSION

This paper is the first to show that TCP ACK thinning
induces a complex cross-layer dynamics, which makes the
throughput improvement nontrivial on 802.11 WLANs. The
contention level on MAC layer rises, so with increased pop-
ulation, the throughput improvement is offset. This issue can
be resolved by modulating the 802.11 contention window size
parameter, which is possible in the new 802.11e standard [17].
The modification enables ACK thinning queue to consistently
outperform the unmodified queue by a significant margin. The
analytical modeling of the cross-layer dynamics between the
TCP flow control and 802.11 MAC is currently under way.
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