5/2/23, 2:58 PM USPTO. EPAS. Receipt

Electronic Patent Assignment System

Confirmation Receipt

Your assignment has been received by the USPTO.
The coversheet of the assignment is displayed below:

PATENT ASSIGNMENT COVER SHEET

Electronic Version v1.1
Stylesheet Version v1.2

SUBMISSION TYPE: NEW ASSIGNMENT

NATURE OF CONVEYANCE: ASSIGNMENT

CONVEYING PARTY DATA

| Name || Execution Date |
[HEEJO LEE 1104/08/2023 |
[HYUNJI HONG 1104/08/2023 |
RECEIVING PARTY DATA

[Name: IKOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION |

Street Address: |[145, ANAM-RO, SEONGBUK-GU |

[City: [SEOUL |
|State/Country: |[KOREA, REPUBLIC OF |

|P0stal Code: ||O2841 |

PROPERTY NUMBERS Total: 1

Property Type Number
Application Number: 18142257
CORRESPONDENCE DATA
Fax Number: (202)315-3758
Phone: 2024290020
Email: pto@nsiplaw.com

https://epas.uspto.gov/com/receipt.jsp?iname=TVV7UXPYJ80P-46719 1/2

5/2/23, 2:58 PM

number, if provided; if that is unsuccessful, it will be sent via US Mail.

USPTO. EPAS. Receipt

Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent using a fax

Correspondent Name: NSIP LAW

Address Line 1: P.O. BOX 65745

Address Line 4: WASHINGTON, D.C. 20035
ATTORNEY DOCKET

NUMBER: 018198.0019
NAME OF SUBMITTER: YONGWOON KIM
Signature: /Yongwoon Kim/
Date: 05/02/2023

Total Attachments: 2
source=NewApp 0181980019 CDAupdated#pagel.tif
source=NewApp 0181980019 CDAupdated#page?2.tif

RECEIPT INFORMATION
EPAS ID: PAT7931850
Receipt Date: 05/02/2023

Return to home page

| .HOME | INDEX| SEARCH | eBUSINESS | CONTACT US | PRIVACY STATEMENT

https://epas.uspto.gov/com/receipt.jsp?iname=TVV7UXPYJ80P-46719

2/2

METHOD AND DEVICE FOR BUILDING VULNERABILITY DATABASE

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to and the benefit of Korean Patent Application
No. 10-2022-0138414 filed in the Korean Intellectual Property Office on October 25,

2022, the entire contents of which are incorporated herein by reference.

TECHNICAL FIELD

The present disclosure relates to a method and a device for building a

vulnerability database.

BACKGROUND ART

Open source software (OSS) refers to software which anyone can use within a
scope of following a license because a source code is released. The open source
software (OSS) can contribute to rapid software development by allowing reuse,
redistribution, and modification of the source code, but if the OSS is not properly
managed when the OSS is reused, a problem as vulnerability propagation can be caused.

In order to solve such a problem, developers generally updates a vulnerable
version or modifies a vulnerable source code by utilizing CVE information which is an
opened security vulnerability and exposure list. In particular, it is necessary to build a
vulnerability database loaded with a security patch and the vulnerability source code in
order to modify the vulnerable source code.

Despite the importance of the vulnerability database, conventional studies have
two limitations in collecting vast amounts of security patches. Specifically, a first

limitation is that a data source where the security patch is collected is limited. A second

-1 -

limitation is that security patches are collected only through shallow scanning.
Vulnerability information is scattered in various data sources (for example, repository
and issue trackers, etc.), but in most conventional studies, a method for collecting the
security patches only in the repository 'Github’ was considered. In addition, in many
conventional studies, since only patches which can be directly imported from a reference
URL provided by a ‘National Vulnerability Database (NVD)’ which is a vulnerability
public database are scanned and collected, many security patches cannot be collected.
Therefore, there is a demand for technology that can collect even security
patches that cannot be imported directly from the 'NVD' in consideration of various data

sources.

SUMMARY OF THE INVENTION

The present disclosure is contrived in response to the above-described
background art, and has been made in an effort to provide a method and a device for
building a vulnerability database by collecting security patches based on a directly patch
link, an indirect patch link, and an invisible patch link.

An exemplary embodiment of the present disclosure provides a method for
building a vulnerability database, which is performed by a computing device. The
method may include collecting a security patch from a data source based on a direct patch
link; collecting the security patch from the data source based on an indirect patch link;
and collecting the security patch from the data source based on an invisible patch link.

Alternatively, the collecting of the security patch from the data source based on
the direct patch link may include identifying a security patch link having a predetermined
pattern on a vulnerability information page, and collecting the security patch from a

security patch page connected through the security patch link.

2

Alternatively, the predetermined pattern may include vulnerability data source
domain name information and security patch identification character string information.

Alternatively, the collecting of the security patch from the data source based on
the indirect patch link may include crawling a website address identified on the
vulnerability information page, acquiring a security patch link having a predetermined
pattern or predetermined hint information, and collecting the security patch based on the
security patch link or the predetermined hint information.

Alternatively, the collecting of the security patch based on the security patch
link or the predetermined hint information may include collecting the security patch from
a security patch page connected through the security patch link.

Alternatively, the predetermined pattern may include vulnerability data source
domain name information and security patch identification character string information.

Alternatively, the collecting of the security patch based on the security patch
link or the predetermined hint information may include collecting a patch commit
corresponding to the predetermined hint information.

Alternatively, the predetermined hint information may include commit ID
information or bug ID information.

Alternatively, the collecting of the security patch from the data source based on
the invisible patch link may include collecting a Q&A post from a Q&A site, extracting
a change history of the collected Q&A post, identifying change information
corresponding to a predetermined feature from the extracted change history, and
acquiring an insecure code snippet based on the identified change information.

Alternatively, the predetermined feature may include changes in a security-
sensitive API, a security-related to keyword, and a control flow.

Alternatively, the collecting of the security patch from the data source based on

-3 .

the invisible patch link may include searching a commit message including CVE ID
information in a repository or an issue tracker.

Alternatively, the collecting of the security patch from the data source based on
the invisible patch link may include collecting the security patch from the search commit
message by analyzing the searched commit message based on the predetermined feature.

Another exemplary embodiment of the present disclosure provides a computer
program stored in a computer-readable medium, in which the computer program includes
instructions for allowing one or more processors to perform a method for building a
vulnerability database, and the method may include: collecting a security patch from a
data source based on a direct patch link; collecting the security patch from the data source
based on an indirect patch link; and collecting the security patch from the data source
based on an invisible patch link.

Still another exemplary embodiment of the present disclosure provides a
computing device for performing a method for building a vulnerability database. The
computing device may include a memory including computer executable components;
and a processor executing the following computer executable components stored in the
memory, in which the processor may collect a security patch from a data source based on
a direct patch link, collect the security patch from the data source based on an indirect
patch link, and collect the security patch from the data source based on an invisible patch
link.

According to exemplary embodiments of the present disclosure, a method and
a device for building a vulnerability database by collecting security patches based on a
directly patch link, an indirect patch link, and an invisible patch link can be provided.

The patch information of a vulnerability can be used for verifying the existence

of the vulnerability, as well as fixing the vulnerability of target software.

-4 -

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram illustrating a block diagram of a computing device
performing an operation for providing a method for building a vulnerability database
according to some exemplary embodiments of the present disclosure.

FIG. 2 is a schematic diagram for a method for building a vulnerability database
according to some exemplary embodiments of the present disclosure.

FIG. 3 is a conceptual diagram for describing an operation of a security patch
collection unit according to some exemplary embodiments of the present disclosure.

FIG. 4 is a diagram for describing an exemplary embodiment of collecting
security patches by using a direct patch link according to some exemplary embodiments
of the present disclosure.

FIG. 5 is a diagram for describing an exemplary embodiment of collecting
security patches by using an indirect patch link according to some exemplary
embodiments of the present disclosure.

FIG. 6 is another diagram for describing the exemplary embodiment of
collecting security patches by using an indirect patch link according to some exemplary
embodiments of the present disclosure.

FIG. 7 is a diagram for describing an exemplary embodiment of collecting
security patches by using an invisible patch link according to some exemplary
embodiments of the present disclosure.

FIG. 8 is a graph of the year distribution of CVE patches in xVDB according
to some exemplary embodiments of the present disclosure.

FIG. 9 is a graph of the distribution of reference sites of CVE patches in xVDB

according to some exemplary embodiments of the present disclosure.

-5 -

FIG. 10 is a flowchart of a method for building a vulnerability database
according to some exemplary embodiments of the present disclosure.
FIG. 11 is a block diagram of a computing device according to some exemplary

embodiments of the present disclosure.

DETAILED DESCRIPTION

Hereinafter, various exemplary embodiments are described with reference to the
drawings. In the present specification, various descriptions are presented for
understanding the present disclosure. However, it is obvious that the exemplary
embodiments may be carried out even without a particular description.

Terms, “component”, “module”, "system” and the like used in the present
specification indicate a computer-related entity, hardware, firmware, software, a
combination of software and hardware, or execution of software. For example, a
component may be a procedure executed in a processor, a processor, an object, an
execution thread, a program, and/or a computer, but is not limited thereto. For example,
both an application executed in a computing device and the computing device may be
components. One or more components may reside within a processor and/or an
execution thread. One component may be localized within one computer. One
component may be distributed between two or more computers. Further, the
components may be executed by various computer readable media having various data
structures stored therein. For example, components may communicate through local
and/or remote processing according to a signal (for example, data transmitted to another
system through a network, such as Internet, through data and/or a signal from one
component interacting with another component in a local system and a distributed system)

having one or more data packets.

A term “or” intends to mean comprehensive “or” not exclusive “or". That is,
unless otherwise specified or when it is unclear in context, “X uses A or B” intends to
mean one of the natural comprehensive substitutions. That is, when X uses A, X uses
B, or X uses both A and B, “X uses A or B” may be applied to any one among the cases.
Further, a term “and/or” used in the present specification shall be understood to designate
and include all of the possible combinations of one or more items among the listed
relevant items.

A term “include” and/or “including” shall be understood as meaning that a
corresponding characteristic and/or a constituent element exists. Further, a term
“include” and/or “including” means that a corresponding characteristic and/or a
constituent element exists, but it shall be understood that the existence or an addition of
one or more other characteristics, constituent elements, and/or a group thereof is not
excluded. Further, unless otherwise specified or when it is unclear that a single form is
indicated in context, the singular shall be construed to generally mean “one or more” in
the present specification and the claims.

The term ““at least one of A and B” should be interpreted to mean “the case
including only A”, “the case including only B”, and “the case where A and B are
combined”.

Those skilled in the art shall recognize that the various illustrative logical
blocks, configurations, modules, circuits, means, logic, and algorithm operations
described in relation to the exemplary embodiments additionally disclosed herein may be
implemented by electronic hardware, computer software, or in a combination of
electronic hardware and computer software. In order to clearly exemplify
interchangeability of hardware and software, the various illustrative components, blocks,

configurations, means, logic, modules, circuits, and operations have been generally

described above in the functional aspects thereof. = Whether the functionality is
implemented as hardware or software depends on a specific application or design
restraints given to the general system. Those skilled in the art may implement the
functionality described by various methods for each of the specific applications.
However, it shall not be construed that the determinations of the implementation deviate
from the range of the contents of the present disclosure.

The description about the presented exemplary embodiments is provided so as
for those skilled in the art to use or carry out the present invention. Various
modifications of the exemplary embodiments will be apparent to those skilled in the art.
General principles defined herein may be applied to other exemplary embodiments
without departing from the scope of the present disclosure. Therefore, the present
invention is not limited to the exemplary embodiments presented herein. The present
invention shall be interpreted within the broadest meaning range consistent to the
principles and new characteristics presented herein.

In an exemplary embodiment of the present disclosure, a server may also
include other configurations for performing a server environment of the server. The
server may include any type of device. The server is a digital device and may be a digital
device, such as a laptop computer, a notebook computer, a desktop computer, a web pad,
and a mobile phone, which is mounted with a processor, includes a memory, and has
calculation ability. The server may be a web server processing a service. In an
embodiment of the present disclosure, the point management server can provide a new
and improved point management system using a plurality of merchant servers and point
servers by performing the method of managing points described below. The foregoing
kind of server is merely an example, and the present disclosure is not limited thereto.

FIG. 1 is a block diagram of a computing device performing an operation for

-8 -

providing a method for building a vulnerability database according to some exemplary
embodiments of the present disclosure.

As illustrated in FIG. 1, a computing device 100 may include a processor 110,
a memory 120, and a network unit 130. A configuration of the computing device 100
illustrated in FIG. 1 is only an example simplified and illustrated. In some exemplary
embodiments of the present disclosure, the computing device 100 may include other
components for performing a computing environment of the computing device 100, and
only some of the disclosed components may constitute the computing device 100.

The processor 110 may be constituted by one or more cores, and include
processors for data analysis and processing, such as a central processing unit (CPU), a
general purpose graphics processing unit (GPGPU), a tensor processing unit (TPU), etc.,
of the computing device. The processor 110 may read a computer program stored in the
memory 120, and according to some exemplary embodiments of the present disclosure,
the processor 110 may implement a security patch collection unit and modules of thereof
for performing a method for building a vulnerability database. In addition, the processor
110 may perform data conversion, operation, generation, etc., for performing the method
for building a vulnerability database according to some exemplary embodiments of the
present disclosure. In addition, the computer program performed by the computing
device according to some exemplary embodiments of the present disclosure may be a
CPU, GPGPU, or TPU executable program.

According to some exemplary embodiments of the present disclosure, the
memory 120 may store arbitrary form of information generated or determined by the
processor 110 or arbitrary form of information received by the network unit 130. The
memory 120 may store data generated in a process of performing the method for building

the vulnerability database by the processor 110. For example, the memory 120 may

-9 .

store security patches generated according to the method for building the vulnerability
database according to some exemplary embodiments of the present disclosure. Further,
the memory 120 may store data received from the outside in the process of performing
the method for building the vulnerability database by the processor 110. For example,
the memory 120 may store data received from a data source in the process of performing
the method for building the vulnerability database by the processor 110. However,
although not limited thereto, and the memory 120 may store various information for
performing a method for analyzing a medical image according to some exemplary
embodiments of the present disclosure.

The memory 120 according to some exemplary embodiments of the present
disclosure may include at least one type of storage medium of a flash memory type storage
medium, a hard disk type storage medium, a multimedia card micro type storage medium,
a card type memory (for example, an SD or XD memory, or the like), a random access
memory (RAM), a static random access memory (SRAM), a read-only memory (ROM),
an electrically erasable programmable read-only memory (EEPROM), a programmable
read-only memory (PROM), a magnetic memory, a magnetic disk, and an optical disk.
The computing device 100 may also operate in connection with a web storage performing
a storing function of the memory 120 on the Internet. The disclosure of the memory is
just an example, and the present disclosure is not limited thereto.

The network unit 130 according to some exemplary embodiments of the present
disclosure may use an arbitrary type of known wired/wireless communication system.

The network unit 130 may transmit and receive information processed by the
processor 110, a user interface, etc., through communication with the other terminal.
For example, the network unit 130 may provide the user interface generated by the

processor 110 to a client (e.g., a user terminal). Further, the network unit 130 may

- 10 -

receive an external input of a user applied to the client, and transfer the received external
input to the processor 110. In this case, the processor 110 may process operations such
as output, modification, change, addition, etc., of information provided through the user
interface based on the external input of the user transferred from the network unit 130.
Specifically, for example, the network unit 130 may transmit and receive
various information for performing the method for building the vulnerability database
according to some exemplary embodiments of the present disclosure. For example, the
network unit 130 may receive security issue related data stored in the data source
including various repositories, issue trackers, and Q&A sites. Further, the network unit
130 may transmit some data generated in the process of performing the method for
building the vulnerability database according to some exemplary embodiments of the
present disclosure to the outside in order to store some data in the vulnerability database.
Meanwhile, the computing device 100 according to some exemplary
embodiments of the present disclosure may include a server as a computing system that
transmits and receives information to and from the client through communication. At
this time, the client may be an arbitrary type of terminal which may access the server.
For example, the computing device 100 which is the server may receive a query from the
user terminal, and generate a single information processing result corresponding to the
query. In this case, the computing device 100 which is the server may provide the user
interface including the processing result to the user terminal. At this time, the user
terminal may output the user interface received from the computing device 100 which is
the server, and receive or process the information through an interaction with the user.
In an additional exemplary embodiment, the computing device 100 may also
include an arbitrary type of terminal that receives the data resource generated by the

arbitrary server and performs additional information processing.

11 -

The present disclosure may provide a method and a device which can resolve a
problem in that the vulnerability database has a dataset which is biased and has an
insufficient dataset, which is generated by considering only one data source by collecting
the security patches from various data sources. According to the present disclosure, the
security patches may be collected from a data source which does not explicitly provide
vulnerability information. According to the present disclosure, the security patches may
be collected when there is no direct connectivity between a patch commit URL and a
corresponding CVE vulnerability (invisible link). Consequently, the present disclosure
may provide a method and a device which may collect the security patches from various
data sources by an automated methodology.

FIG. 2 is a schematic diagram for a method for building a vulnerability database
according to some exemplary embodiments of the present disclosure.

The processor 110 may collect security patches for a vulnerability which is
known or unknown on the data source 200. Here, the known vulnerability may include
a vulnerability managed by a public vulnerability database by allocating a CVE ID. The
unknown vulnerability may include a vulnerability not managed by the CVE. For
example, the unknown vulnerability may include a vulnerability secretly patched, and not
managed by the public vulnerability database.

According to some exemplary embodiments of the present disclosure, in order
to avoid a limitation by a limited data source, the processor 110 may collect security
patches 400 from three types of data sources 200. For example, the data source 200 may
include repositories, issue trackers, and Q&A sites.

In some examples, the repository may be a keeping space for storing a
collection of various versions of files of software programs. The repository may be a

site for managing software codes. For example, the repository may include ‘GitHub’.

- 12 -

In some examples, the issue tracker may include tools for tracking a bug of a
software supplier, and managing other issues. The issue tracker may be a site which
manages a security related bug and vulnerability. For example, the issue tracker may
include ‘Bugzilla’.

In some examples, the Q&A site may include a platform that discusses a code
problem. The Q&A site may be a site which is not managed by the public vulnerability
database such as a National Vulnerability Database (NVD), but generates and propagates
insecure code snippets. For example, the Q&A site may include ‘Stack Overflow’.

The example of the data source 200 is just an example, and the data source 200
may include various repositories, issue trackers, and Q&A sites.

The processor 110 may implement the security patch collection unit 300 that
performs various operations for collecting the security patches 400 from the data source
200. In some examples, the security patch collection unit 300 may collect the security
patches by directly or indirectly using security related information such as the CVE
information stored in the data source 200. Further, the security patch collection unit 300
may collect a security patch which is invisible from the CVE information, but may be
acquired from the data source 200. In some examples, the security patch collection unit
300 may include a direct patch link based collection module 310, an indirect patch link
based collection module 320, and an invisible patch link based collection module 330.
Exemplary operations of the security patch collection unit 300 including the direct patch
link based collection module 310, the indirect patch link based collection module 320,
and the invisible patch link based collection module 330 will be described below in detail
with reference to FIGS. 3 to 8.

The processor 110 may collect the security patches 400 from the data source

200 by the security patch collection unit 300. In some examples, the security patch 400

- 13 -

may include a source code-level patch applied to solve security issues. For example, the
security patch 400 may be provided in a ‘diff” form of a code before and after application
of the patch. The exemplary security patch 400 shown in Table 1 shows a security patch
fragment for a vulnerability standard code ‘CVE-2021-41216’ regarding a heap buffer
overflow vulnerability in a tensor flow.

[Table 1]

diff --git a/tensorflow/core/ops/array_ops.cc

1

2 b/tensorflow/core/ops/array_ops.cc

3|index 64bd4f3847854..14c%efaelddd3 100644

4 - a/tensorflow/core/ops/array_ops.cc

5|+++ b/tensorflow/core/ops/array_ops.cc

6

7|@@ -168,7 +168,7 @@ Status TransposeShapeFn(...) {

8

9 for (int32_t i = 0; 1 < rank; ++i) {

10 int64_t in_idx = datali];

11|{- 4if (in_idx >= rank) {

12|+ if (in—idx >= rank || in_idx <= -rank) {

13 return errors::InvalidArgument("perm dim "
in_idx, " is out of range of input rank ",
rank) ;

14|}

The security patch 400 may provide information for efficient vulnerability
management. For example, the security patch 400 may provide information on a source
file patched with the vulnerability (e.g., in Table 1, “array_ops.cc”). The security patch
400 may provide information on a file index value before and after applying the patch
(e.g., line #3 in Table 1). Further, the security patch 400 may provide information on a
code line number to which the patch is applied (e.g., in Table 1, 7 lines from line #168 in
the file “array_ops.cc”). The security patch 400 may provide information on actual code
lines added to or deleted from the security patch (e.g., in Table 1, line #11 and line #12).
However, although not limited thereto, and the security patch 400 may provide various
information in various forms.

The processor 110 may store the security patch 400 collected by the security
patch collection unit 300 in the vulnerability database. The exemplary vulnerability

database built according to the method and the device according to some exemplary

- 14 -

embodiments of the present disclosure may have a wide coverage by possessing a security
patch which may be collected from the vulnerability public database such as the ‘NVD’
and a security patch which may not be collected from the vulnerability public database.
The vulnerability database according to some exemplary embodiments of the present
disclosure enables whether there is the vulnerability which may not be detected by a
conventional scheme to be detected by collecting multiple security patches which may
not be directly acquired from the vulnerability public database to provide an effect of
enhancing the software security.

Hereinafter, an exemplary embodiment of building the vulnerability database
according to some exemplary embodiments of the present disclosure will be described
with reference to FIGS. 3 to 7.

FIG. 3 is a conceptual diagram for describing an operation of a security patch
collection unit according to some exemplary embodiments of the present disclosure.
FIG. 4 is a diagram for describing an exemplary embodiment of collecting security
patches by using a direct patch link according to some exemplary embodiments of the
present disclosure. FIG. 5 is a diagram for describing an exemplary embodiment of
collecting security patches by using an indirect patch link according to some exemplary
embodiments of the present disclosure. FIG. 6 is another diagram for describing the
exemplary embodiment of collecting security patches by using an indirect patch link
according to some exemplary embodiments of the present disclosure. FIG. 7 is a
diagram for describing an exemplary embodiment of collecting security patches by using
an invisible patch link according to some exemplary embodiments of the present
disclosure.

The security patch collection unit 300 may acquire link information capable of

collecting the security patch from a vulnerability information page provided by the data

- 15 -

source 200. The security patch collection unit 300 may collect the security patch from
a security patch page or a security related information page of various data sources 200
by using the collected link information.

In some examples, the vulnerability information page may include a page
providing information on the vulnerability in the public vulnerability database such as the
NVD, the CVE, or MITRE. For example, the vulnerability information page may
include a page providing information on each CVE in the public vulnerability database.
In the present disclosure, the vulnerability information page may also be referred to as a
CVE info page.

The security patch page may include a page providing the security patch for the
vulnerability. For example, the security patch page may include a page providing the
security patch for the CVE vulnerability. In the present disclosure, the security patch
page may also be referred to as a CVE patch page.

The security patch collection unit 300 may collect the security patch 400 from
the data source 200 by using three types of links defined according to some exemplary
embodiments of the present disclosure. Referring to FIG. 3, three exemplary types of
links may include a direct patch link, an indirect patch link, and an invisible patch link.
In some examples, the security patch collection unit 300 may acquire information on the
direct patch link, the indirect patch link, and the invisible patch link by parsing or crawling
a web page referred for the vulnerability information page and the vulnerability
information page. Three modules 310, 320, and 330 of the security patch collection unit
300 may collect the security patch by acquiring the direct patch link, the indirect patch
link, and the invisible patch link from the vulnerability information page. In some
examples, the direct patch link may include a link connected directly from the

vulnerability information page to the security patch page. In some examples, the

- 16 -

indirect patch link may include hint information capable of searching a link or a patch
commit connected to the security patch page from the web page connected from the
vulnerability information page. In some examples, the invisible patch link may include
a link and information capable of collecting the security patch other than the link
connected to the security patch page. An operation of a module based on each patch
link type will be described below.

According to some exemplary embodiments of the present disclosure, the direct
patch link based collection module 310 may collect the security patch from the data
source based on the direct patch link.

Specifically, the direct patch link based collection module 310 may identify a
security patch link having a predetermined pattern on the vulnerability information page.
Referring to FIG. 4, the direct patch link based collection module 310 may identify a
security patch link 610 having a predetermined pattern on the vulnerability information
page 600 of the NVD public vulnerability database. Here, the predetermined pattern
may include vulnerability data source domain name information and security patch
identification character string information. The security patch link 610 includes
vulnerability data source domain name information 'github.com’ and security patch
identification character string information 'commit'. In this case, the direct patch link
based collection module 310 may directly access a security patch page 700 of the
repository 210 through the security patch link 610. The direct patch link based
collection module 310 may collect the security patch from the security patch page 700
accessed through the security patch link 610. For example, the direct patch link based
collection module 310 may download a clone repository to a local environment of the
computing device 100 by using a command ‘git clone repository_url'. In addition, the

direct patch 1 ink based collection module 310 may extract ‘diff’s related to commit a

- 17 -

searched commit by using a command 'git show com-mit_id’ in the clone repository.
However, although not limited thereto, and the direct patch link based collection module
310 may operate in various schemes.

According to some exemplary embodiments of the present disclosure, the
indirect patch link based collection module 320 may collect the security patch from the
data source based on the indirect patch link.

Specifically, the indirect patch link based collection module 320 may crawl a
website address identified on the vulnerability information page. In some examples, the
website address identified on the vulnerability information page may be crawled by using
a crawler such as 'BeautifulSoup'. Referring to FIG. 5, the indirect patch link based
collection module 320 may identify
'http://bugzilla.redhat.com/show_bug.cgi?id=1891685" which is a website address of the
issue tracker identified on the vulnerability information page 600 for ‘CVE-2020-14323".
In this case, the indirect patch link based collection module 320 may crawl the identified
website address of the issue tracker by using the crawler.

Through crawling, the indirect patch link based collection module 320 may
acquire a security patch link having a predetermined pattern or predetermined hint
information for the security patch link. For example, as a first case, the indirect patch
link based collection module 320 may identify the security patch link having the
predetermined pattern. Similarly to the exemplary embodiment of the direct patch link
based collection module 310, the predetermined pattern may include the vulnerability
data source domain name information and the security patch identification character
string information. When acquiring the security patch link having the predetermined
pattern, the indirect patch link based collection module 320 may collect the security patch

from the security patch page connected through the security patch link. An operation of

- 18 -

collecting the security patch through the security patch link by the indirect patch link
based collection module 320 may be the same as the operation of the direct patch link
based collection module 310.

As a second case, the indirect patch link based collection module 320 may
identify predetermined hint information. Here, the predetermined hint information may
include commit ID information or bug ID information. Referring to FIG. 6, by crawling
'https://www3.sqlite.org/'cgi/src/info/4a302b42c7bf5e11' which is the website address of
the issue tracker identified on the vulnerability information page 600 for 'CVE-2020-
11655, the indirect patch link based collection module 320 may acquire a bug ID 82
which is an SHA3-256 hash value as the predetermined hint information. ~When
acquiring the predetermined hint information, the indirect patch link based collection
module 320 may collect a patch commit corresponding to the predetermined hint
information. Referring to FIG. 6, an example in which a related commit having the bug
ID 82 is searched in a commit message is illustrated. In addition, the indirect patch link
based collection module 320 may collect the security patch by outputting the ‘diff’s from
the searched commit. However, although not limited thereto, and the indirect patch link
based collection module 320 may operate in various schemes.

According to some exemplary embodiments of the present disclosure, the
invisible patch link based collection module 330 may collect the security patch from the
data source based on the invisible patch link.

Specifically, the invisible patch link based collection module 330 may collect
a Q&A post from the Q&A site. In some examples, the invisible patch link based
collection module 330 may be implemented based on ‘Dicos’ disclosed in "Dicos:
Discovering insecure code snippets from stack overflow posts by leveraging user

discussions”, in which the entire contents of which are incorporated herein by reference.

- 19 -

In some examples, the invisible patch link based collection module 330 may
extract a change history of the collected Q&A post. For example, referring to FIG. 7,
the invisible patch link based collection module 330 compares an oldest version and a
latest version through an edit log of the Q&A post to extract a ‘diff” type change history
for a description 921 and a code snippet 922 included in a Q&A column 920 of a post
900.

The invisible patch link based collection module 330 may identify change
information corresponding to a predetermined feature from the extracted change history.
Here, the predetermined feature may include changes in a security-sensitive API, a
security-related to keyword, and a control flow. The invisible patch link based
collection module 330 may acquire an insecure code snippet based the identified change
information. For example, the invisible patch link based collection module 330 analyzes
whether the extracted change information is to solve the security issue based on the
predetermined feature to acquire the insecure code snippet as the security patch.

The invisible patch link based collection module 330 may search a commit
message including CVE ID information from the repository or the issue tracker. Since
the commit may be handled as a concept such as the change history, an insecure code
snippet type security patch may be additionally collected by analyzing the commit
message and the diff of the source code. For example, since the CVE ID information
may provide a hint for finding the related commit, the invisible patch link based collection
module 330 analyzes whether the commit message includes “CVE-20" to search a patch
commit (e.g., a command ‘git log -grep='"CVE-20" may be used). The invisible patch
link based collection module 330 analyzes whether the searched commit is to solve the
security issue based on the predetermined feature to collect the security patch from the

searched commit. However, although not limited thereto, and the invisible patch link

- 20 -

based collection module 330 may operate in various schemes.
Table 2 below shows the data source 200 capable of collecting the security

patch according to each link type.

[Table 2]
Type of link
Data source P
Direct Indirect Invisible
Repositories v v v
[ssue trackers I/ l/
Q&A sites v

As seen from Table 2, unlike a conventional methodology in which the data
source is limited to a single repository such as Git-hub, the method of the present
disclosure may collect the security patch through three types of links which may consider
a hidden connectivity between various data sources and the public vulnerability database.

Table 3 below shows an exemplary algorithm of the security patch collection

unit 300.

- 21 -

[Table 3]

Algorithm 1: Algorithm for Collecting Security Patches

1
2
3
4

10

11

12
13
14

15

16

Imput: v, C, R
// V: Vulnerability, C: CVE info

page,
// R: Repository reporting V
Output: P

// P: Security patch for V

procedure ExtractingPatch(v, C, R)

Ref <« References(V, C)
for URLin Ref do
if (“git” in URL) and (“commit” in URL)
then
// Collect P with direct
patch links
Jesesoda= Crawl(URL)
else
// Collect P with indirect
patch links
if GitURL in Visit(URL)then

[_ P <« Crawl(GitURL)

else if Hin Visit(URL) then
// H: Hints for detecting
patches (e.g., Commit ID
or Bug ID)
for CpinRdo
// Cp: Commit
P <« GetPatchCommit(Cp,
H)

// Collect P with invisible patch
links
for CpinRdo
if “CVE-20” in C, then
if (IsControlFlowChanged(Cp) or
IsSecurityAPIChanged(Cp))then
| P« Cn

B return P

According to the method for building the vulnerability database according to

- 22 -

some exemplary embodiments of the present disclosure, the present inventor conducts an
experiment of building the vulnerability database called ‘xVDB’. A result is disclosed
in 'xVDB: A High-Coverage Approach for Constructing a Vulnerability Database', in
which the entire contents of which are incorporated herein by reference.

The experiment is implemented as approximately 1000 lines of python codes
except for an external library (e.g., BeautifulSoup). ’Dicos’ which is an open source
tool is used for collecting the security patch through the invisible patch link in the Q&A
site. The source code of ‘Dicos’ is published in ‘https: //github.com/hyunji-

hong/DICOS-public'.

[Table 4]
Approach | Direct Indirect Invisible Total
R* R* IT R* IT! QA™ 4,076
CVE
PatchDB | 4,076 X X X X X 12,432
CVE
xVDB 6,387 1,644 3,020 2,966 1,766 12,458 | 12,458
Posts

R*: Repositories
IT": Issue trackers

QAT™: Q&A sites

Referring to Table 4, in case of the conventional 'PatchDB', only the security
patch provided from the ‘Git’ data source is collected in the ‘NVD’ which is the
vulnerability public database (only a C/C++ security patch is considered). As a result,

4076 CVE patches are collected.

- 23 -

In the case of 'xVDB' according to the present disclosure, 12432 CVE patches
and furthermore, 12458 insecure posts in the Q&A site are collected by considering even
the hidden connectivity of the ‘NVD’ and the security patch by targeting the repository,
the issue tracker, and the Q&A site (in the case of the CVE patch, C/C++, Java, JavaScript,
and Go, Python patches are considered, and in the case of the insecure post, C/C++, and
Android posts are considered). This indicates a result which is extended approximately
3 times more than the CVE patch as compared with the conventional study.

FIG. 8 is a graph of the year distribution of CVE patches in xVDB according
to some exemplary embodiments of the present disclosure.

Referring to FIG. 8, it can be seen that more than half of patches collected by
year are collected based on the indirect patch link and the invisible patch link.

FIG. 9 is a graph of the distribution of reference sites of CVE patches in xVDB
according to some exemplary embodiments of the present disclosure.

Further, referring to FIG. 9, a large number of security patches are collected
through the issue tracker.

FIG. 10 is a flowchart of a method for building a vulnerability database
according to some exemplary embodiments of the present disclosure.

According to some exemplary embodiments of the present disclosure, the
method for building the vulnerability database may include a step (s100) of collecting the
security patch from the data source based on the direct patch link.

According to some exemplary embodiments of the present disclosure, the
method for building the vulnerability database may include a step (s200) of collecting the
security patch from the data source based on the indirect patch link.

According to some exemplary embodiments of the present disclosure, the

method for building the vulnerability database may include a step (s300) of collecting the

- 24 -

security patch from the data source based on the invisible patch link.

The steps of the method described above are simply presented for description,
and some steps may be omitted or additional steps may be added. In addition, the above-
described steps may be performed in any order.

FIG. 11 is a block diagram of a computing device according to some exemplary
embodiments of the present disclosure.

FIG. 11 is a simple and general schematic diagram illustrating an example of
a computing environment in which the exemplary embodiments of the present
disclosure are implementable.

The present disclosure has been generally described in relation to a computer
executable command executable in one or more computers, but those skilled in the art
will appreciate that the present disclosure is combined with other program modules
and/or be implemented by a combination of hardware and software.

In general, a module in the present specification includes a routine, a
procedure, a program, a component, a data structure, and the like performing a specific
task or implementing a specific abstract data form. Further, those skilled in the art will
appreciate well that the method of the present disclosure may be carried out by a
personal computer, a hand-held computing device, a microprocessor-based or
programmable home appliance (each of which may be connected with one or more
relevant devices and be operated), and other computer system configurations, as well as
a single-processor or multiprocessor computer system, a mini computer, and a main
frame computer.

The exemplary embodiments of the present disclosure may be carried out in a
distribution computing environment, in which certain tasks are performed by remote

processing devices connected through a communication network. In the distribution

- 25 -

computing environment, a program module may be positioned in both a local memory
storage device and a remote memory storage device.

The computer generally includes various computer readable media. The
computer readable medium is a computer accessible medium, and includes volatile and
non-volatile media, transitory and non-transitory media, and portable and non-portable
media. As a non-limited example, the computer readable medium may include a
computer readable storage medium and a computer readable transmission medium.

The computer readable storage medium includes volatile and non-volatile
media, transitory and non-transitory media, and portable and non-portable media
constructed by a predetermined method or technology, which stores information, such
as a computer readable command, a data structure, a program module, or other data.
The computer readable storage medium includes a Random Access Memory (RAM), a
Read Only Memory (ROM), an Electrically Erasable and Programmable ROM
(EEPROM), a flash memory, or other memory technologies, a Compact Disc (CD)-
ROM, a Digital Video Disk (DVD), or other optical disk storage devices, a magnetic
cassette, a magnetic tape, a magnetic disk storage device, or other magnetic storage
device, or other predetermined media, which are accessible by a computer and are used
for storing desired information, but is not limited thereto.

The computer readable transport medium implements a computer readable
command, a data structure, a program module, or other data in a modulated data signal,
such as a carrier wave or other transport mechanisms, and generally includes all of the
information transport media. The modulated data signal means a signal, of which one
or more of the characteristics are set or changed so as to encode information within the
signal. As a non-limited example, the computer readable transport medium includes a

wired medium, such as a wired network or a direct-wired connection, and a wireless

- 26 -

medium, such as sound, radio frequency (RF), infrared rays, and other wireless media.
A combination of the predetermined media among the foregoing media is also included
in a range of the computer readable transport medium.

An illustrative environment 1100 including a computer 1102 and
implementing several aspects of the present disclosure is illustrated, and the computer
1102 includes a processing device 1104, a system memory 1106, and a system bus
1108. The system bus 1108 connects system components including the system
memory 1106 (not limited) to the processing device 1104. The processing device 1104
may be a predetermined processor among various common processors. A dual
processor and other multi-processor architectures may also be used as the processing
device 1104.

The system bus 1108 may be a predetermined one among several types of bus
structure, which may be additionally connectable to a local bus using a predetermined
one among a memory bus, a peripheral device bus, and various common bus
architectures. The system memory 1106 includes a ROM 1110, and aRAM 1112. A
basic input/output system (BIOS) is stored in a non-volatile memory 1110, such as a
ROM, an erasable and programmable ROM (EPROM), and an EEPROM, and the BIOS
includes a basic routine helping a transport of information among the constituent
elements within the computer 1102 at a specific time, such as starting. The RAM 1112
may also include a high-rate RAM, such as a static RAM, for caching data.

The computer 1102 also includes an embedded hard disk drive (HDD) 1114
(for example, enhanced integrated drive electronics (EIDE) and serial advanced
technology attachment (SATA)) - the embedded HDD 1114 being configured for outer
mounted usage within a proper chassis (not illustrated) - a magnetic floppy disk drive

(FDD) 1116 (for example, which is for reading data from a portable diskette 1118 or

- 27 -

recording data in the portable diskette 1118), and an optical disk drive 1120 (for
example, which is for reading a CD-ROM disk 1122, or reading data from other high-
capacity optical media, such as a DVD, or recording data in the high-capacity optical
media). A hard disk drive 1114, a magnetic disk drive 1116, and an optical disk drive
1120 may be connected to a system bus 1108 by a hard disk drive interface 1124, a
magnetic disk drive interface 1126, and an optical drive interface 1128, respectively.
An interface 1124 for implementing an outer mounted drive includes, for example, at
least one of or both a universal serial bus (USB) and the Institute of Electrical and
Electronics Engineers (IEEE) 1394 interface technology.

The drives and the computer readable media associated with the drives
provide non-volatile storage of data, data structures, computer executable commands,
and the like. In the case of the computer 1102, the drive and the medium correspond
to the storage of predetermined data in an appropriate digital form. In the description
of the computer readable storage media, the HDD, the portable magnetic disk, and the
portable optical media, such as a CD, or a DVD, are mentioned, but those skilled in the
art will appreciate well that other types of compute readable storage media, such as a zip
drive, a magnetic cassette, a flash memory card, and a cartridge, may also be used in the
illustrative operation environment, and the predetermined medium may include
computer executable commands for performing the methods of the present disclosure.

A plurality of program modules including an operation system 1130, one or
more application programs 1132, other program modules 1134, and program data 1136
may be stored in the drive and the RAM 1112. An entirety or a part of the operation
system, the application, the module, and/or data may also be cached in the RAM 1112.
It will be appreciated well that the present disclosure may be implemented by several

commercially usable operation systems or a combination of operation systems.

- 28 -

A user may input a command and information to the computer 1102 through
one or more wired/wireless input devices, for example, a keyboard 1138 and a pointing
device, such as a mouse 1140. Other input devices (not illustrated) may be a
microphone, an IR remote controller, a joystick, a game pad, a stylus pen, a touch
screen, and the like. The foregoing and other input devices are frequently connected to
the processing device 1104 through an input device interface 1142 connected to the
system bus 1108, but may be connected by other interfaces, such as a parallel port, an
IEEE 1394 serial port, a game port, a USB port, an IR interface, and other interfaces.

A monitor 1144 or other types of display devices are also connected to the
system bus 1108 through an interface, such as a video adaptor 1146. In addition to the
monitor 1144, the computer generally includes other peripheral output devices (not
illustrated), such as a speaker and a printer.

The computer 1102 may be operated in a networked environment by using a
logical connection to one or more remote computers, such as remote computer(s) 1148,
through wired and/or wireless communication. The remote computer(s) 1148 may be
a work station, a server computer, a router, a personal computer, a portable computer, a
microprocessor-based entertainment device, a peer device, and other general network
nodes, and generally includes some or an entirety of the constituent elements described
for the computer 1102, but only a memory storage device 1150 is illustrated for
simplicity. The illustrated logical connection includes a wired/wireless connection to a
local area network (LAN) 1152 and/or a larger network, for example, a wide area
network (WAN) 1154. The LAN and WAN networking environments are general in
an office and a company, and make an enterprise-wide computer network, such as an
Intranet, easy, and all of the LAN and WAN networking environments may be

connected to a worldwide computer network, for example, Internet.

- 20 -

When the computer 1102 is used in the LAN networking environment, the
computer 1102 is connected to the local network 1152 through a wired and/or wireless
communication network interface or an adaptor 1156. The adaptor 1156 may make
wired or wireless communication to the LAN 1152 easy, and the LAN 1152 also
includes a wireless access point installed therein for the communication with the
wireless adaptor 1156. When the computer 1102 is used in the WAN networking
environment, the computer 1102 may include a modem 1158, is connected to a
communication server on a WAN 1154, or includes other means setting communication
through the WAN 1154 via the Internet. The modem 1158, which may be an
embedded or outer-mounted and wired or wireless device, is connected to the system
bus 1108 through a serial port interface 1142. In the networked environment, the
program modules described for the computer 1102 or some of the program modules
may be stored in a remote memory/storage device 1150. The illustrated network
connection is illustrative, and those skilled in the art will appreciate well that other
means setting a communication link between the computers may be used.

The computer 1102 performs an operation of communicating with a
predetermined wireless device or entity, for example, a printer, a scanner, a desktop
and/or portable computer, a portable data assistant (PDA), a communication satellite,
predetermined equipment or place related to a wirelessly detectable tag, and a
telephone, which is disposed by wireless communication and is operated. The
operation includes a wireless fidelity (Wi-Fi) and Bluetooth wireless technology at least.
Accordingly, the communication may have a pre-defined structure, such as a network in
the related art, or may be simply ad hoc communication between at least two devices.

The Wi-Fi enables a connection to the Internet and the like even without a

wire. The Wi-Fi is a wireless technology, such as a cellular phone, which enables the

- 30 -

device, for example, the computer, to transmit and receive data indoors and outdoors,
that is, in any place within a communication range of a base station. A Wi-Fi network
uses a wireless technology, which is called IEEE 802.11 (a, b, g, etc.) for providing a
safe, reliable, and high-rate wireless connection. The Wi-Fi may be used for
connecting the computer to the computer, the Internet, and the wired network (IEEE
802.3 or Ethernet is used). The Wi-Fi network may be operated at, for example, a data
rate of 11 Mbps (802.11a) or 54 Mbps (802.11b) in an unauthorized 2.4 and 5 GHz
wireless band, or may be operated in a product including both bands (dual bands).
Those skilled in the art will appreciate that the various illustrative logical
blocks, modules, processors, means, circuits, and algorithm operations described in
relation to the exemplary embodiments disclosed herein may be implemented by
electronic hardware (for convenience, called “software” herein), various forms of
program or design code, or a combination thereof. In order to clearly describe
compatibility of the hardware and the software, various illustrative components, blocks,
modules, circuits, and operations are generally illustrated above in relation to the
functions of the hardware and the software. Whether the function is implemented as
hardware or software depends on design limits given to a specific application or an
entire system. Those skilled in the art may perform the function described by various
schemes for each specific application, but it shall not be construed that the
determinations of the performance depart from the scope of the present disclosure.
Various exemplary embodiments presented herein may be implemented by a
method, a device, or a manufactured article using a standard programming and/or
engineering technology. A term “manufactured article” includes a computer program,
a carrier, or a medium accessible from a predetermined computer-readable device. For

example, the computer-readable storage medium includes a magnetic storage device

- 31 -

(for example, a hard disk, a floppy disk, and a magnetic strip), an optical disk (for
example, a CD and a DVD), a smart card, and a flash memory device (for example, an
EEPROM, a card, a stick, and a key drive), but is not limited thereto. A term
“machine-readable medium” includes a wireless channel and various other media,
which are capable of storing, holding, and/or transporting a command(s) and/or data,
but is not limited thereto.

It shall be understood that a specific order or a hierarchical structure of the
operations included in the presented processes is an example of illustrative accesses. It
shall be understood that a specific order or a hierarchical structure of the operations
included in the processes may be re-arranged within the scope of the present disclosure
based on design priorities. The accompanying method claims provide various
operations of elements in a sample order, but it does not mean that the claims are
limited to the presented specific order or hierarchical structure.

The description of the presented exemplary embodiments is provided so as for
those skilled in the art to use or carry out the present disclosure. Various modifications
of the exemplary embodiments may be apparent to those skilled in the art, and general
principles defined herein may be applied to other exemplary embodiments without
departing from the scope of the present disclosure. Accordingly, the present disclosure
is not limited to the exemplary embodiments suggested herein, and shall be interpreted
within the broadest meaning range consistent to the principles and new characteristics

suggested herein.

- 32 -

WHAT IS CLAIMED IS:

1. A method for building a vulnerability database, which is performed by a
computing device, comprising: collecting a security patch from a data source based on a
direct patch link;

collecting the security patch from the data source based on an indirect patch
link; and

collecting the security patch from the data source based on an invisible patch

link.

2. The method of claim 1, wherein the collecting of the security patch from
the data source based on the direct patch link includes

identifying a security patch link having a predetermined pattern on a
vulnerability information page, and

collecting the security patch from a security patch page connected through the

security patch link.

3. The method of claim 2, wherein the predetermined pattern includes
vulnerability data source domain name information and security patch identification

character string information.

4. The method of claim 1, wherein the collecting of the security patch from
the data source based on the indirect patch link includes
crawling a website address identified on a vulnerability information page,

acquiring a security patch link having a predetermined pattern or predetermined

- 33 -

hint information, and
collecting the security patch based on the security patch link or the

predetermined hint information.

5. The method of claim 4, wherein the collecting of the security patch based
on the security patch link or the predetermined hint information includes
collecting the security patch from a security patch page connected through the

security patch link.

6. The method of claim 5, wherein the predetermined pattern includes
vulnerability data source domain name information and security patch identification

character string information.

7. The method of claim 4, wherein the collecting of the security patch based
on the security patch link or the predetermined hint information includes

collecting a patch commit corresponding to the predetermined hint information.

8. The method of claim 7, wherein the predetermined hint information

includes commit ID information or bug ID information.

9. The method of claim 1, wherein the collecting of the security patch from
the data source based on the invisible patch link includes

collecting a Q&A post from a Q&A site,

extracting a change history of the collected Q&A post,

identifying change information corresponding to a predetermined feature from

- 34 -

the extracted change history, and

acquiring an insecure code snippet based on the identified change information.

10. The method of claim 9, wherein the predetermined feature includes

changes in a security-sensitive API, a security-related keyword, and a control flow.

11. The method of claim 1, wherein the collecting of the security patch from
the data source based on the invisible patch link includes

searching a commit message including CVE ID information in a repository or
an issue tracker, and

collecting the security patch from the searched commit message by analyzing

the searched commit message based on a predetermined feature.

12. A computer program stored in a computer-readable medium, wherein the
computer program includes instructions for allowing one or more processors to perform
a method for building a vulnerability database, the method comprising:

collecting a security patch from a data source based on a direct patch link;

collecting the security patch from the data source based on an indirect patch
link; and

collecting the security patch from the data source based on an invisible patch

link.

13. A computing device for performing a method for building a vulnerability
database, the computing device comprising:

a memory including computer executable components; and

- 35 -

a processor executing following computer executable components stored in the
memory,

wherein the processor

collects a security patch from a data source based on a direct patch link,

collects the security patch from the data source based on an indirect patch link,
and

collects the security patch from the data source based on an invisible patch link.

- 36 -

ABSTRACT
According to some exemplary embodiments of the present disclosure, disclosed
is a method for building a vulnerability database, which is performed by a computing
device. The method may include collecting a security patch from a data source based
on a direct patch link; collecting the security patch from the data source based on an
indirect patch link; and collecting the security patch from the data source based on an
invisible patch link. The patch information of a vulnerability can be used for verifying

the existence of the vulnerability, as well as fixing the vulnerability of target software.

- 37 -

DRAWINGS

100

4

110

NETWORK UNIT

120

PROCESSOR

130

MEMORY

Fig. 1

300

SECURITY PATCH
COLLECTION UNIT
310

200 DIRECT PATCH

LINK BASED
COLLECTION
MODULE

500
320 400 ~—

INDIRECT PATCH SECURITY PATCH
STORAGE || TRACKER LINK BASED

COLLECTION
MODULE

Y
Y

DATA SOURCE

330

INVISIBLE PATCH
LINK BASED
COLLECTION

MODULE

Fig. 2

300

310 330
CVE CVE | QvE |y CVE
info >\ patch info [rxirerm 2| patch
DIRECT \ ’INVISIBLE
| P90 patcy L7 P9y patcH P2
LINK LINK
320
CVE m—— CVE
info > Website ——> *** ——> patch
page page
— INDIRECT PATCH LINK
Fig. 3

600 —

610 —

JIXCVE-2020-14147 Detail

Current Description

An integer overflow in the getnum function in lua_struct.c in Redis before 6.0.3 allows context-dependent attackers with permission to run Lua
code in a Redis session to cause a denial of service (memory corruption and application crash) or possibly bypass intended sandbox
restrictions via a large number, which triggers a stack-based buffer overflow. NOTE: this issue exists because of a CVE-2015-8080 regression.

References to Advisories, Solutions, and Tools

700 —

http://lists.opensuse.org/opensuse-security-announce/2020-07/msg00058.html m
H https://github.com/antirez/redis/commit/ef764dde1cca2f25d00686673d1bc89448819571 | D
https://github.com/antirez/redis/pull /6875 { Patch]
https://security.gentoo.org/glsa/202008-17
https://www.debian.org/security/2020/dsa-4731
https://www.oracle.com/security-alerts/cpujan2021.html
v -} 10 EEEEE deps/lua/src/lua_struct.c ()

@@ -89,12 +89,14 @@ typedef struct Header {

89 89 } Header;
% 90
91 91
92 - static int getnum (const char **fmt, int df) {
92 + static int um (lua_State *L, const char **fmt, int df) {
93 93 if (lisdigit(**fmt)) /* no number? */
94 94 return df; /* return defau. /
95 95 else {
96 96 a=2;
97 97 do {
98 + if (a > (INT_MAX / 1@) || a * 1@ > (INT_MAX - (**fmt - '0')))
99 4+ lual_error(L, "integral size overflow");

Fig. 4

600 —(Depth 0) CVE | CVE-2020-14323

800 —[Depth 1) Reference link

https://bugzilla.redhat.com/show_bug.cgi?id=1891685

2020-11-06 12:38:53 UTC Comment 6

Upstream patches:

samba-4,13.1:
it.samba,org/? ;a=comnit s
t.samba,ora/? tia=comnit;
-—
sanba-4,12.9: 810
https git.samba.org ;a=comnit:h=f173

https ait.samba.org/Tp=sanba.ait ;a=comnit ;h=d0cat
samba-4,11.15:

https://git.samba,orga/?
https://git. samba.ora/

Commit
URLs

=samba.git;a=comnit:
tp=samba.git a=comnit:

70— Ipepth 2) Patch commit

dift —sit a/sourced/vinbindd/vwinbindd_lookuosids.c b/sourced/winbindd/vinbindd_lookupsids.c
Index d2805faS101 ., a2991d8510f 100644
=== a/sourced/windindd/windinad_|ockupsids.c
+ov b/fgourced/winbindd/winkindd_|ookupsids, ¢
00 47,7 +47,7 09 struct tevent_req swinbindd_|ookupsids_send(TALLOCCTY smen_ctyx,
DEBUGES, (" lookupsids®n™)l:

il (request—extra_len == 0) {
- tevent _req_done(req):
+ tevent _rea_nterror(req, NT_STATUS_INVALID_PARAMETER) :
return tevent_req.post(rea, ev):

Fig. 5

600 —
800 —

Depth 0) CVE | CVE-2020-11655

Depth 1) Reference link

https://www3.sqlite.org/cgi/src/info/4a302b42c7bf5el1l
Comment: In the event
problems du

SemMantic efror in an ag
incomplete or incorrect initi.
Downloads: Tarball | ZIP archive

t the re: ccumulator() fun
ginfo object. Fix for ticket faf45

Timelines: far
Files: |
SHA3-256:
User & Date: o
Other Links: manifest | tag

Hint for ‘ 820
patch commit

Depth 2) Patch commit

In the event of a semantic error in an aggregate query, early-out the
resetAccunulator() function to prevent problems due to incomplete or
incorrect initialization of the AggInfo object.

Fix for ticket [af4556bbSc285¢@B].

Fossilorigin-Name: 4a382b42¢7bfSe11ddb5522ca999f74aba3o7d3a7ebo1b1844bb02852772441 Hlnt rEtrIevecj from
patch commit

Browse files

P master
© version-3382 .. major-release
drh committed on 3 Apr 2020 1 parent 4db7abs commit c415d91087¢1680e4eb17def582b202c3c83c718

Fig. 6

number of CVE patches

— . . TH . . -
900 How do | trim leading/trailing whitespace in a standard way?
Is there a clean, pleterably standard method of mmmmg Ieadlng and Iramng whitespace from a
string in C? I'd roll my cwn, but | would think this is a common problem with an equally common
187 solution. 910
¢ aving whilespace tim 3
Question
—
s . —
If you can modify the string: j Descrlptlon
char *trimwhitespace(char *str)] \- 921
178, % e) 921
char *end;
// Trim leading space
V while(isspace((unsigned char)*str)) stres;
if(*str == @) // All spaces?
return str;
!/ Trim trailing space
end = str + strlen(str) - 1;
while(end > str && isspace((unsigned char)*end)) end--;
/{ Write new null terminator character
end[1] = '\@"; 922
e 920
} Code snippet
- J Answer
—
12 @Raj: Thera's nathing inherently wrong with raturning a different address from the one that was passed in.
There's no requirement here that the returned value be a valid argument of the free() function. Quite the
opposite - | designed this 1o avoid the need for memory allocation for efficiency. I the passed in address
was allocated dynamically, then the caller is still responsible for fresing that memary. and the caller needs to
be sure not 1o ovenwrite that value with the value refumed here.
You have to cast the argument for isspace 10 unsigned char . otherwise you invoke undefined behavior, 930
Comments
—
.
Fig.7
3 2,237
&
i} Direct Indirect Invisible <> Total
&
S 1,51 1,515 1,508
1,227
o ;
8 0
=2
=

764
656 660

575

90

o 0

o
P A P

Number of CVE patches

5,000

GitHub

3,893

Android T

2,043 2,038 1.789
3

762
- 143 121

Mozillat Chromiumt Self-managed Cgit
repository

Fig. 9

COLLECT SECURITY PATCH FROM DATA
SOURCE BASED ON DIRECT PATCH LINK

COLLECT SECURITY PATCH FROM DATA
SOURCE BASED ON INDIRECT PATCH LINK

COLLECT SECURITY PATCH FROM DATA
SOURCE BASED ON INVISIBLE PATCH LINK

Fig. 10

GitWeb GitLab

t: Issue tracker sites

— 5100

— 5200

— 5300

1102

w4
| PROCESSING DEVICE | A 1130}
1 || OPERATING SYSTEM ||
y__ 1108 1106 . 11321
SYSTEM MEMORY || APPLICATION |
mw |] R 1134,
P 7 ______ DB
1110 / o 1136
o

4 o KL A4 v o115

<—>{_INTERFACE EMBEDDED HDD 'EXTERNAL HDD.

1116

1126 FDD

<> INTERFACE |« ims
DISK

1120
1128 OPTICAL DRIVE

<—>| INTERFACE j+—> 1122 1144
[vonmoR_|

A

1146
<—»{ VIDEO ADAPTOR | 1138
— KEYBOARD |
1140
[MOUSE
1142~ WIRED/WIRELESS 1148
.| INPUTDEVICE [* 1158 1154 REMOTE
INTERFACE COMPUTER(S)
1150
1156 1152
WIRED/WIRELE
<—»{NETWORK ADAPTORFA
MEMORY/
STORING DEVICE

Fig. 11

	NewApp_0181980019_EPASreceipt
	NewApp_0181980019_SpecAsFiled
	NewApp_0181980019_DrawingsAsFiled

