
US010146532B2

(12) United States Patent
Lee et al .

(10) Patent No . : US 10 , 146 , 532 B2
(45) Date of Patent : Dec . 4 , 2018

(56) References Cited (54) APPARATUS AND METHOD FOR
DETECTING CODE CLONING OF
SOFTWARE U . S . PATENT DOCUMENTS

(71) Applicant : Korea University Research and
Business Foundation , Seoul (KR)

(72) Inventors : Heejo Lee , Seoul (KR) ; Seulbae Kim ,
Seoul (KR)

6 , 954 , 747 B1 * 10 / 2005 Wang G06F 8 / 71
706 / 1

7 , 493 , 596 B2 * 2 / 2009 Atkin G06F 8 / 71
717 / 124

7 , 503 , 035 B2 * 3 / 2009 Zeidman GO6F 8 / 71
434 / 118

7 , 681 , 045 B2 * 3 / 2010 Pedersen GO6F 21 / 602
713 / 153

8 , 255 , 885 B2 * 8 / 2012 Zeidman G06F 8 / 71
717 / 136

9 , 110 , 769 B2 * 8 / 2015 Zhang G06F 8 / 751
(Continued)

(73) Assignee : Korea University Research and
Business Foundation , Seoul (KR)

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 0 days . FOREIGN PATENT DOCUMENTS

KR
KR (21) Appl . No . : 15 / 492 , 554

20140001951 A
101568224 B1

1 / 2014
11 / 2015

(22) Filed : Apr . 20 , 2017 OTHER PUBLICATIONS

(65) Prior Publication Data
US 2017 / 0308380 A1 Oct . 26 , 2017

(30) Foreign Application Priority Data

Apr . 26 , 2016 (KR) . 10 - 2016 - 0050845 (57)

(51) Int . Ci .
G06F 9 / 44 (2018 . 01)
G06F 8 / 75 (2018 . 01)
G06F 11 / 36 (2006 . 01)

(52) U . S . CI .
CPC G06F 8 / 751 (2013 . 01) ; G06F 11 / 3608

(2013 . 01)
(58) Field of Classification Search

CPC GO6F 8 / 42 ; G06F 8 / 43 ; GO6F 8 / 423
USPC 717 / 124 , 143 , 141
See application file for complete search history .

Roy et al . , “ Comarison and evaluation of code clone detection
techniques and tools : A qualiative approach ” , 2009 . *

(Continued)
Primary Examiner — Phillip H Nguyen
(74) Attorney , Agent , or Firm — Fox Rothschild LLP

ABSTRACT
An apparatus for detecting code cloning of software includes
a memory in which a program configured to detect code
cloning from software is stored ; and a processor configured
to execute the program . Wherein the processor extracts
multiple functions from a source code corresponding to the
software , performs normalization and abstraction and com
pares the normalized and abstracted multiple functions with
a vulnerable code clone set to determine whether there is
code cloning of the software , and the vulnerable code clone
set includes multiple vulnerable codes which are extracted
from multiple functions included in other software , and
normalized , abstracted and then stored .

8 Claims , 5 Drawing Sheets

START

EXTRACT MULTIPLE FUNCTIONS FROM SOURCE
CODE CORRESPONDING TO SOFTWARE - - S500

PERFORM NORMALIZATION AND ABSTRACTION
TO EXTRACTED MULTIPLE FUNCTIONS S510

- S520 DETERMINE WHETHER THERE IS CODE
CLONING OF THE SOFTWARE BY COMPARING
ABSTRACTED MULTIPLE FUNCTIONS WITH

VULNERABLE CODE CLONE SET

END

US 10 , 146 , 532 B2
Page 2

(56) References Cited
U . S . PATENT DOCUMENTS

9 , 519 , 464 B2 * 12 / 2016 Dang GO6F 8 / 36
9 , 720 , 925 B1 * 8 / 2017 Lawson GO6F 17 / 301

OTHER PUBLICATIONS
Bellon et al . , " Comparison and Evaluation of Clone Detection
Tools ” , 2007 . *
Church et al . , “ Dotplot : a Program for Exploring Self - Similarity in
Millions of Lines of Text and Code ” , 1993 . *
Ducasse et al . , “ On the effectiveness of clone detection by string
matching " , 2005 . *
Kodhai et al . , “ Method - level code clone detection through LWH
(Light Weight Hybrid) approach , ” Journal of Software Engineering
Research and Development (2014) ; 2 : 12 (29 pages) .

* cited by examiner

U . S . Patent Dec . 4 , 2018 Sheet 1 of 5 US 10 , 146 , 532 B2

FIG . 1
120

130 DATABASE

110 PROCESSOR

MEMORY

100

FIG . 2
201

202 203

T

211 WwwWw wWMWWWWWWWWWWWWWWW ERKET mm 204
210 winter

PerPoir with

wwwwwwwwwwwwwwwwwwwww wwwwwwwwwwwwww

212

U . S . Patent Dec . 4 , 2018 Sheet 2 of 5 US 10 , 146 , 532 B2

FIG . 3
300 310

PROGRAMA PROGRAM B

1) SEARCH AND
NORMALIZE
FUNCTION

(S300) 02 . 311 301 302 311 312 (S3003
HEADER
LIST

BODY
LIST

2) ABSTRACT
(5310)

3034 ABSTRACTED
BODY LIST

13

3) CREATE
DICTIONARY

(S320)

304 DICTIONARY 314

4) COMPARE
DICTIONARY

(S330)

U . S . Patent Dec . 4 , 2018 Sheet 3 of 5 US 10 , 146 , 532 B2

FIG . 4A

1 72

Level 0 : No abstraction .
void avg (float arr [] , int len) {
static float sum 0 ,
unsigned int i ;
for (i 0 ; i < len ; i + +) ;

Y # 2 printf (" I d " , sum / len , validata (sum)) ;

FIG . 4B
Level 1 : Formal parameter abstraction ,
void avg (float FFARAMO , int EFARAN) {
static 110at Sumo ;
unsigned int i

6 printf (* $ f % d " , sum / EPARAM , validate (sum) ;

pyy FIG . 4C
Level 2 : Local variable name abstraction .
void avy (float FPARAMO) , int FPARAM) {

unsigned int
for (LVAR = 0 ; LVAR (FPARAM ; LVAR + +)
LYAR + FPARAM (LVAR) ;

printf (" % f % d " , LOE / FPARAM , Validate (LU
X

) .

U . S . Patent Dec . 4 , 2018 Sheet 4 of 5 US 10 , 146 , 532 B2

FIG . 4D
444444444 44 4 44444444 4444444444444444444444 444444444444 4444444444444444444444 444444444444 Y

Level 3 : Data type abstraction .
voia avg (float FPARAM [] , int FPARAM)
DTYPE IVAR OM
unsigned DIPELVAR :

LVAR FPARAM (LVAR) ;
1 3 od

FIG . 4E
Level 4 : Function call abstraction .

DTYPE LVAR = 0 ;

fom " (LVARO ; LVAR < FPARAM ; LVAR)
LVAR homo FPARAM (LVAR) ;

w M TV

U . S . Patent Dec . 4 , 2018 Sheet 5 of 5 US 10 , 146 , 532 B2

FIG . 5
START

EXTRACT MULTIPLE FUNCTIONS FROM SOURCE
CODE CORRESPONDING TO SOFTWARE P3300

PERFORM NORMALIZATION AND ABSTRACTION
TO EXTRACTED MULTIPLE FUNCTIONS S510

- S520 DETERMINE WHETHER THERE IS CODE
CLONING OF THE SOFTWARE BY COMPARING
ABSTRACTED MULTIPLE FUNCTIONS WITH

VULNERABLE CODE CLONE SET

END

US 10 , 146 , 532 B2

APPARATUS AND METHOD FOR According to a second aspect of the present disclosure , a
DETECTING CODE CLONING OF method for detecting code cloning of software by an appa

SOFTWARE ratus for detecting code cloning includes : extracting multiple
functions from a source code corresponding to the software ;

CROSS - REFERENCE TO RELATED 5 performing normalization and abstraction to the extracted
APPLICATION multiple functions ; and determining whether there is code

cloning of the software by comparing the normalized and
This application claims the benefit under 35 USC 119 (a) abstracted multiple functions with a vulnerable code clone

of Korean Patent Application No . 10 - 2016 - 0050845 filed on set . Herein , the vulnerable code clone set includes multiple
Apr 26 , 2016 in the Korean Intellectual Property Office the 10 vulnerable codes which are extracted from multiple func
entire disclosures of which are incorporated herein by ref tions included in other software , and normalized , abstracted
erence for all purposes . and then stored .

According to the present disclosure , a source code

TECHNICAL FIELD included in software is normalized and abstracted . There
15 fore , even if names and data types of a function and a

variable included in the source code are modified , it is The present disclosure relates to an apparatus and a possible to detect code cloning . method for detecting code cloning of software . Further , according to the present disclosure , integer type
BACKGROUND keys of the vulnerable code clone set and those of the

20 software are compared first , on the basis of the dictionary
data structure and hash values included in a narrowed search With the recent increase of open source software (OSS) space are compared through key search to finally detect a programs , some developers do not implement each func code clone . Therefore , time complexity can be reduced . That tionality required for software development . Instead , they is , according to the present disclosure , code cloning can be

increasingly perform code cloning which means copying or 25 detected within a constant time . so that it is possible to
reusing some or all of a code implemented in well - known rapidly and efficiently detect code cloning of large open
open source software . Such code cloning has advantages in source software .
terms of reduction in development time and costs . There
fore , recently , many developers have used code cloning in BRIEF DESCRIPTION OF THE DRAWINGS
well - known open source software when developing soft - 30
ware . In the detailed description that follows , embodiments are

However , code cloning may violate an open source described as illustrations only since various changes and
license due to code copying which does not comply with the modifications will become apparent to those skilled in the art
license policy . Also , if a bug or security defect is present in from the following detailed description . The use of the same
original software , the bug or security defect can also be 35 reference numbers in different figures indicates similar or
copied by code cloning . Therefore , the same bug or security identical items .
defect of the original software may also be present in FIG . 1 is a block diagram of an apparatus for detecting
code - cloned software . code cloning of software .

In this regard , Korean Patent Laid - open Publication No . FIG . 2 is an exemplary diagram illustrating a source code
10 - 2014 - 0001951 (entitled “ Intelligent code differencing 40 of software .
using code clone detection ”) discloses a technology of FIG . 3 is an exemplary diagram illustrating a process of
identifying a large and complex source code change and detecting code cloning .
tracking the change using a code differencing tool . FIGS . 4A , 4B , 4C , 4D and FIG . 4E (collectively referred

to as " FIG . 4 ") are exemplary diagrams illustrating abstrac
SUMMARY 45 tion of a function .

FIG . 5 is a flowchart illustrating a method for detecting
In view of the foregoing , the present solution provides an code cloning of software by an apparatus for detecting code

apparatus and a method for rapidly and efficiently detecting cloning .
code cloning of software by narrowing down a search space
for detecting code cloning based on a dictionary data struc - 50 DETAILED DESCRIPTION
ture .

However , problems to be solved by the present disclosure Hereinafter , embodiments of the present disclosure will
are not limited to the above - described problems . There may be described in detail with reference to the accompanying
be other problems to be solved by the present disclosure . drawings so that the present disclosure may be readily

According to a first aspect of the present disclosure , an 55 implemented by those skilled in the art . However , it is to be
apparatus for detecting code cloning of software includes a noted that the present disclosure is not limited to the
memory in which a program configured to detect code embodiments but can be embodied in various other ways . In
cloning from software is stored and a processor configured drawings , parts irrelevant to the description are omitted for
to execute the program . Herein , the processor extracts the simplicity of explanation , and like reference numerals
multiple functions from a source code corresponding to the 60 denote like parts through the whole document .
software , performs normalization and abstraction and com - Through the whole document , the term “ connected to " or
pares the normalized and abstracted multiple functions with “ coupled to ” that is used to designate a connection or
a vulnerable code clone set to determine whether there is coupling of one element to another element includes both a
code cloning of the software . The vulnerable code clone set case that an element is directly connected or coupled to "
includes multiple vulnerable codes which are extracted from 65 another element and a case that an element is " electronically
multiple functions included in other software , and normal connected or coupled to ” another element via still another
ized , abstracted and then stored . element . Further , it is to be understood that the term “ com

US 10 , 146 , 532 B2

prises or includes ” and / or " comprising or including ” used in In general , software may include one or more files . The
the document means that one or more other components , files may include functions , variables , and constants .
steps , operation and / or existence or addition of elements are The function may include commands for actually per
not excluded in addition to the described components , steps , forming tasks , constants , and variables . Herein , the function
operation and / or elements unless context dictates otherwise . 5 may become a module , a method , and a procedure depend

Code cloning means copying some or all of a source code ing on the programming environment in which the software of other software . The code cloning can be roughly classified is developed , but is not limited thereto .
into four types . By way of example , in the C language or C + + language , The first type of code cloning is copying a source code the function may be divided into a header and a main . without any modification . In this case , the original source 10 Herein , the header includes a data type of a returned value , code and a code - cloned source code are exactly identical to a function name , and data types of multiple parameters input
each other . into the function . The main includes at least one line in The second type of code cloning is modifying names or which a specific task is specified . If the main includes data types of some variables and functions in a source code .
Therefore , the original source code and a code - cloned source 15 multiple lines , the main may include braces (* { ' , * } ') and the
code are identical to each other except data type , identifier . multiple lines may be included in the braces (° { ' } ') .
comment , and whitespace . Further , in the C language or C + + language , a line may be

The third type of code cloning is modifying names of divided by a semicolon (; ') . That is , characters prior to a
some variables or functions of a source code and correcting semicolon (* ; ') may form a line regardless of the appearance
a structure of the source code . In this case , the correction of 20 of a newline character (“ \ n ”) .
a structure may be insertion or deletion of a part of the The apparatus 100 for detecting code cloning may detect
source code or rearrangement of some sentences of the code cloning based on multiple functions included in the
source code . Therefore , the original source code and a source code of the software . Herein , the apparatus 100 for
code - cloned source code are only partially identical to each detecting code cloning may include a memory 110 , a data
other . 25 base 120 , and a processor 130 . The apparatus 100 for

Also , the fourth type of code cloning is semantic cloning . detecting code cloning illustrated in FIG . 1 is just an
That is , the semantic cloning means that an original source exemplary apparatus implementing the present solution .
code and a code - cloned source code are semantically iden - Therefore , the apparatus 100 for detecting code cloning can
tical to each other but syntactically different from each other . be modified in various ways based on the components
That is , the original source code and the code - cloned source 30 illustrated in FIG . 1 .
code are functionally identical to each other and thus may The memory 110 stores a program configured to detect
perform the same task . code cloning from the software . In this case , the memory 110

In order to perform the third and fourth types of code is a general name for non - volatile storage devices that can
cloning , i . e . , correcting a part of a structure of a source code preserve information stored therein without electric power
and semantically cloning a source code , it takes some time 35 and volatile storage devices that need electric power to
to sufficiently analyze an original source code and verify and preserve information stored therein .
debug an added sentence . Therefore , in order to perform the The database 120 may store a vulnerable code clone set
third and fourth types of code cloning , a lot of time and for detecting code cloning . In this case , the database 120
high - level programming technology is needed . may be connected to the apparatus 100 for detecting code

That is , code cloning is generally performed to save time 40 cloning or may be mounted in the apparatus 100 for detect
and effort required to develop a source code . Therefore , such ing code cloning , but is not limited thereto .
code cloning can be classified as the first or second type . The processor 130 may determine whether there is code
Accordingly , an apparatus 100 for detecting code cloning of cloning of the software by comparing multiple functions
software is configured to detect the first and second types of included in the source code of the software with functions
code cloning . That is , the apparatus 100 for detecting code 45 stored in the vulnerable code clone set in the database 120 .
cloning can detect code cloning such as copying a specific In this case , the vulnerable code clone set may include a
function included in a source code or modifying a function source code extracted from multiple functions of other
name , a variable ' s data type , and a variable name included previously collected software . Further , the vulnerable code
in a specific function and then copying the specific function clone set may include a source code extracted from software
by a user that performs code cloning . 50 including a vulnerable code or a source code extracted from

Hereinafter , the apparatus 100 for detecting code cloning open source software previously defined to determine
and a method for detecting code cloning by the apparatus whether license rules are violated , but is not limited thereto .
100 for detecting code cloning will be described with FIG . 2 is an exemplary diagram illustrating a source code
illustration of software developed using C language - and of software .
C + + language - based programming languages . However , 55 Referring to FIG . 2 , a source code of software may
programming languages are not limited thereto , and may include a first function 200 and a second function 210 . In this
include various programming languages such as JAVA , C # , case , multiple functions included in the source code may
Python , and BASIC in addition to the C language - and C + + respectively include headers 201 and 211 each including a
language - based programming languages . data type of a returned value , a function name , and data

Hereinafter , the apparatus 100 for detecting code cloning 60 types of multiple parameters input into the function and
of software will be described with reference to FIG . 1 to bodies 202 and 212 each configured to define a task to be
FIG . 4E . actually performed by the function .

FIG . 1 is a block diagram of the apparatus 100 for For example , the first function 200 includes “ func1 (bar) ”
detecting code cloning of software . as the header 201 . Further , the first function 200 may include

The apparatus 100 for detecting code cloning detects 65 four lines , i . e . , " foo = bar ; ” , “ foo + + ; " , " bar = fun2 (foo) ; " and
whether code cloning of open source software is performed , " return bar ; " in braces (* { ' , * } ') below the header as the body
from a source code included in specific software . 202 .

US 10 , 146 , 532 B2

Also , the second function 210 includes “ func2 (param) " main . Herein , the part unnecessary for code clone analysis
as the header 211 . Further , the second function 210 may may be a whitespace character and a comment .
include two lines , i . e . , " if (param) { while (param) The processor 130 may separate a header and a main from
{ param - ; } } ” and “ return 0 ; ” , in braces (* { ' , * } ') below the a function using the above - described parser and remove a
header as the body 212 . 5 whitespace character and a comment . Herein , the whitespace

FIG . 3 is an exemplary diagram illustrating a process of character may include a space , a tab character , and a newline
detecting code cloning . character . Otherwise , the whitespace character may also be

The processor 130 searches and extracts multiple func - a predetermined character in the corresponding language .
tions from a source code (S300) . Then , the processor 130 The processor 130 may perform abstraction to the nor
may perform normalization and abstraction to the extracted 10 malized function .
multiple functions (S300 , S310) . In this case , the processor In this case , the abstraction may be performed to detect
130 may use a parser . code cloning even if a variable name and a variable data type

In this case , the parser may be a robust parser created on in the function are changed by generalizing the variable
the basis of fuzzy parsing . The fuzzy parsing refers to a name and the variable data type . In general , modifying a
parsing technique which can be used even if parsing is not 15 variable name or a variable data type by a user who clones
available in a general parser due to a parsing error such as a source code or correcting a variable data type by adding a
an incomplete source code or a syntax error included in a qualifier to the variable data type is much easier than
source code . That is , the fuzzy parsing is a parsing technique modifying another part of the source code . Therefore , such
which can be applied to a source code without a header file , a case may occur very often .
a source code including a syntax error , and a source code of 20 As such , if variables included in two functions are dif
which a part is removed . ferent from each other in name or data type but source codes

By way of example , a fuzzy parsing - based parser per that actually perform a task are identical to each other , the
forms parsing using an island grammar . Herein , the island processor 130 may determine that the two functions are code
grammar is a grammar that only describes a small chunk of clones . To this end , the processor 130 may abstract a
the underlying language . 25 variable name and a variable data type and thus easily detect

A generally used parser uses a regular expression and has code cloning which is modifying a variable name and a
a disadvantage of being unable to process a user - defined data variable data type . In this case , the processor 130 may
type included in a source code . Further , the parser using a abstract the function using the above - described parser .
regular expression has a disadvantage of being unable to The abstraction of the function may be defined into Level
perform parsing if there is a syntax error . However , the 30 1 , Level 2 , Level 3 , and Level 4 . Herein , each level may
parser can perform parsing even if a sentence included in a include lower levels .
source is not incomplete or there is a syntax error and can In this case , Level 1 is formal parameter abstraction which
also easily process a user - defined data type . Further , the refers to abstraction of a parameter included in the corre
parser can perform parsing even if only a part of a source sponding function . For example , according to the abstraction
code is present . 35 of Level 1 , the processor 130 may abstract a parameter

Therefore , the processor 130 may extract a function based included in the corresponding function into a symbol , such
on a parser previously defined corresponding to a program - as “ FPARAM ” , corresponding to the parameter .
ming language that detects code cloning . Further , Level 2 is local variable abstraction which refers

Referring to FIG . 2 , the processor 130 may extract " fund to abstraction of a local variable name included in the
(bar) ” as the function header 201 from " func1 ” which is the 40 corresponding function . In this case , Level 2 may include
first function 200 and also extract a portion within the braces the abstraction of Level 1 . That is , Level 2 may include the
" { ' and ' } ' right below the function header 201 as the abstraction of the parameter and the abstraction of the local
function body 202 . Further , the processor 130 may extract variable name . For example , according to the abstraction of
“ func2 (param) " as the function header 211 from “ func2 " Level 2 , the processor 130 may abstract a parameter
which is the second function 210 and also extract a portion 45 included in the corresponding function into a symbol cor
within the braces ' { ' and “ } ' right below the function header responding to the parameter and abstract a local variable
211 as the function body 212 name included in the corresponding function into a symbol ,

Furthermore , the processor 130 may perform normaliza - such as “ VUDDY ” , corresponding to the local variable
tion and abstraction to the extracted multiple functions . FIG . name .
3 illustrates that the processor 130 performs normalization to 50 Level 3 is data type abstraction which refers to abstraction
the multiple functions and then performs abstraction thereto . of a data type of a variable included in the function . In this
However , the present solution is not limited to that shown in case , Level 3 may include the abstraction of Level 1 and the
FIG . 3 . Therefore , the sequence of normalization and abstraction of Level 2 . That is , Level 3 may include the
abstraction may vary depending on exemplary applications abstraction of the parameter , the abstraction of the local
or implementations of the present solution . 55 variable name , and the abstraction of the data type . For

That is , the processor 130 may perform normalization to example , according to the abstraction of Level 3 , the pro
the multiple functions and then perform abstraction thereto cessor 130 may abstract a parameter included in the corre
as illustrated in FIG . 3 . Otherwise , the processor 130 may sponding function into a symbol corresponding to the
perform abstraction to the multiple functions and then parameter , abstract a local variable name into a symbol
perform normalization thereto . 60 corresponding to the local variable name , and abstract a data

Herein , the normalization may refer to extracting a header type into a symbol , such as “ DTYPE ” , corresponding to the
and a body from a function and removing an unnecessary data type .
part from a code clone included in the extracted body . Further , Level 4 is function call abstraction which refers
Specifically , as described above , if a header and a main are to abstraction of all of function calls included in the func
separated from a function on the basis of a predetermined 65 tion . Further , Level 4 may include the abstraction of the
format , the processor 130 may remove a part unnecessary parameter , the abstraction of the local variable name , the
for code clone analysis from multiple lines included in the abstraction of the data type , and the abstraction of the

US 10 , 146 , 532 B2

10 + 1

function calls . For example , according to the abstraction of called function “ validate ” included in the body of the
Level 4 , the processor 130 may abstract a parameter function into “ FUNCCALL ” as illustrated in FIG . 4E .
included in the corresponding function into a symbol cor - Referring to the original function illustrated in FIG . 4A
responding to the parameter , abstract a local variable name and the function after the abstraction of Level 4 illustrated
into a symbol corresponding to the local variable name , 5 in FIG . 4E , the two functions are different from each other
abstract a data type into a symbol corresponding to the data in a parameter name of the function , a data type of a local
type , and abstract a function call into a symbol , such as variable included in the function , a variable name of the
" FUNCCALL . ” , corresponding to the function call . local variable , and a name of a function calling another

Abstraction of a function will be described in detail with function in the function . However , the original function and
reference to FIG . 4A to FIG . 4E . the abstracted function perform the same task , i . e . , receiving

FIG . 4A to FIG . 4E are exemplary diagrams illustrating a real number type array and an integer type value as
abstraction of a function . Herein , FIG . 4A is an exemplary parameters , calculating the average of the real number type
diagram of an original function . FIG . 4B is an exemplary array , and outputting the average on a screen .
diagram of the abstraction of Level 1 . FIG . 4C is an After performing the normalization and the abstraction to
exemplary diagram of the abstraction of Level 2 . FIG . 4D is the multiple functions included in the software , the proces
an exemplary diagram of the abstraction of Level 3 , and sor 130 may compare the normalized and abstracted func
FIG . 4E is an exemplary diagram of the abstraction of Level tions with the vulnerable code clone set by expressing them

using a dictionary data structure (S320) .
FIG . 4A shows an original function to which abstraction 20 The dictionary data structure may include a key and one

of a function is not applied . A header of the function includes or values corresponding to the key . In this case , the one or
“ arr ” which is a float array and " len ” which is an int array more values may be included in the form of an array or a set .
as parameters . Specifically , the processor 130 may set hash values cor

The processor 130 may perform abstraction by modifying responding to the abstracted function as a value , and using
a variable name of a parameter included in the header of the 25 the length of the body of the abstracted function as a key .
function into a predetermined symbol on the basis of Level And the processor 130 may add the value to the dictionary
1 . For example , the processor 130 may abstract a name of a data structure with respect to each of the multiple functions
variable included in a parameter of the function into a included in the software . In this case , the processor 130 may predetermined symbol , i . e . , " FPARAM ” , corresponding to extract a hash value corresponding to the key on the basis of the variable included in the parameter of the function as 30 a 30 a string extracted from the body of the function and a illustrated in FIG . 4B . predefined hash function . In case of performing the abstraction of Level 2 , the For example , the hash function may be determined to processor 130 may further perform abstraction to a local satisfy the following three conditions in order to optimize variable name included in a body of the function after
performing the abstraction to the parameter of the function 35 scalability and speed .
as illustrated in FIG . 4B . For example , the processor 130 First condition : Minimize a collision of hash values
may abstract a variable name included in the body of the calculated by the hash function .
function into “ LVAR ” as illustrated in FIG . 4C . Second condition : Set a hash function such that a hash

In case of performing the abstraction of Level 3 , the value include a small number of bits in order to create a
processor 130 may perform abstraction to a local variable 40 minimum dictionary .
data type included in the corresponding function after per - Third condition : Set a hash function such that complexity
forming the abstraction to the parameter of the function and of time required to create a hash value becomes O (n) .
the variable name as illustrated in FIG . 4C . Firstly , the The processor may calculate a hash value corresponding
processor 130 may delete a qualifier corresponding to a local to a key on the basis of the hash function satisfying the first
variable . In this case , the qualifier may include at least one 45 condition , the second condition , and the third condition . In
of short , long , signed , unsigned , static , extern , volatile , auto , this case , the hash function satisfying the first condition , the
and resister . Further , the qualifier may be predetermined for second condition , and the third condition may be a known
each language . The processor 130 may convert a data type hash function such as MD4 (message digest 4) , MD5
such as an integer data type , e . g . , int and char , a real number (message digest 5) , City Hash , MurmurHash , and Spooky
data type , e . g . , float and double , a logic data type , e . g . , bool , 50 Hash or a user - defined hash function developed to detect
or a void data type into a symbol corresponding to the data code cloning of software , but is not limited thereto .
type . There is a very low chance that multiple functions dif

For example , the processor 130 may remove a qualifier ferent from each other have the same result of abstraction
" static " included in a local variable included in the body of and normalization and also have the same hash value .
the function as illustrated in FIG . 4D and abstract a local 55 Therefore , in consideration of the second condition and the
variable of a “ float ” data type and a local variable of an “ int " third condition , the processor 130 may use MD5 which is a
data type into “ DTYPE ” . hash function with low time complexity among the known

In case of performing the abstraction of Level 4 , the hash functions .
processor 130 may perform abstraction to a function call Referring to FIG . 2 again , the processor 130 may set the
included in the corresponding function after performing the 60 abstracted body length “ 39 % of the first function 200 as a key .
abstraction to the variable name of the local variable and the Then , the processor 130 may calculate a hash value as “ 8b03
data type of the local variable as illustrated in FIG . 4D . In c2a8 ecea 8cc4 9c6d d780 9771 cfd9 ” on the basis of the
this case , the function call may be a call for a function abstracted body of the first function 200 and the hash
provided by the standard library included in the correspond function MD5 .
ing language or a call for a function included in an external 65 Further , the processor 130 may set the abstracted body
API , but is not limited thereto . For example , the processor length “ 39 ” of the second function 210 as a key . Further
130 may abstract names of a called function “ printf ” and a more , the processor 130 may set a hash value as “ 019c e125

US 10 , 146 , 532 B2
10

de43 45d0 87d7 706f 1482 2bf1 ” on the basis of the value is an integer , the processor 130 may search for a key
abstracted body of the second function 210 and the hash value more rapidly than comparing a string .
function . Meanwhile , the processor 130 may determine whether

The processor 130 may store a key and a hash value 204 there is code cloning of the software and then deliver the
for the first function 200 and a key and a hash value for the 5 presence or absence of code cloning of the software to a user
second function 210 in a dictionary corresponding to the who made a request to determine whether there is code
software . In this case , the same key is set for the first cloning . If there is code cloning of the software , the pro
function 200 and the second function 210 . Therefore , the key cessor 130 may deliver the presence or absence of code

" 39 " and a hash value set { “ 8b03 c2a8 ecea 8cc4 9c6d 0780 cloning to the user together with information about open
9771 cfd9 ” , “ 019c e125 de43 45d0 87d7 706f 1482 2bf1 " } 10 » Z 10 source software which is code cloned by the software and

information about a cloned function . corresponding to the key may be actually stored in the Hereinafter , a method for detecting code cloning of soft dictionary . ware by the apparatus 100 for detecting code cloning will be
Meanwhile , if a dictionary of the extracted multiple described with reference to FIG . 5 .

functions corresponding to the software is created , the 15 FIG . 5 is a flowchart illustrating a method for detecting
processor 130 may detect a code clone included in the code cloning of software by the apparatus 100 for detecting
software by comparing the dictionary with the vulnerable code cloning .
code clone set (S330) . The apparatus 100 for detecting code cloning extracts

In this case , a source code included in the vulnerable code multiple functions from a source code corresponding to
clone set may be stored after being normalized and 20 software (S500) .
abstracted . That is , the processor 130 may extract multiple Then , the apparatus 100 for detecting code cloning per
functions from previously collected software before detect - forms normalization and abstraction on the basis of the
ing a code clone of the software , and then may perform extracted multiple functions (S510) .
normalization and abstraction to the extracted functions . The apparatus 100 for detecting code cloning determines
Further , the processor 130 may store the normalized and 25 whether there is code cloning of the software by comparing
abstracted functions in the vulnerable code clone set on the the abstracted multiple functions with a vulnerable code
basis of the dictionary data structure . clone set (S520) . Herein , the vulnerable code clone set

The vulnerable code clone set may include dictionaries includes multiple vulnerable codes which are extracted from
respectively created for one or more software programs or multiple functions included in other software , and normal
may be a dictionary created for one or more software 30 ized , abstracted and then stored .
programs . Meanwhile , after performing normalization and abstrac

Further , if a dictionary including functions included in the tion on the basis of the extracted multiple functions , the
software is created , the processor 130 may compare a key of apparatus 100 for detecting code cloning may create a
the created dictionary with a key of the vulnerable code dictionary for the software on the basis of the normalized
clone set . Then , if the key of the dictionary for the multiple 35 and abstracted multiple functions .
functions and the key of the vulnerable code clone set are in this case , the apparatus 100 for detecting code cloning
identical to each other , the processor 130 may compare may set a length of a string of the normalized and abstracted
values included in the respective keys . function as a key of the dictionary . Further , the apparatus
Referring to FIG . 2 again , the processor 130 may search 100 for detecting code cloning may set the normalized and

for a key identical to the key “ 39 ” included in the dictionary 40 abstracted function as a value of the dictionary .
corresponding to the software , from the vulnerable code Then , the apparatus 100 for detecting code cloning may
clone set . Then , if there is no key identical to the key “ 39 ” compare the created dictionary with the vulnerable code
in the vulnerable code clone set , the processor 130 may clone set in order to determine whether there is code cloning
determine that the software is not a code clone . of the software .

If there is a code identical to the key " 39 " in the 45 In this case , the vulnerable code clone set and the dic
vulnerable code clone set , the processor 130 may compare tionary created for the software may be created on the basis
a hash value corresponding to the key “ 39 ” with a hash value of the dictionary data structure .
{ " 8b03 . . . ” , “ 019c . . . " } extracted from the first function Therefore , the apparatus 100 for detecting code cloning
200 and the second function 210 . Then , if the hash value may compare a key of the vulnerable code clone set with a
extracted from the first function 200 and the second function 50 key of the dictionary created for the software . Then , if the
210 is not identical to the hash value corresponding to the keys have the same value , the apparatus 100 for detecting
key “ 39 ” in the vulnerable code clone set , the processor 130 code cloning may compare a value corresponding to the key
may determine that the software is not a code clone . If the of the vulnerable code clone set with a value corresponding
hash value extracted from the first function 200 and the to the key of the dictionary for the software .
second function 210 is identical to the hash value corre - 55 Finally , if the values are identical to each other , the
sponding to the key “ 39 " in the vulnerable code clone set , processor 130 may detect code cloning of the software .
the processor 130 may determine that the software is a code In the apparatus 100 and the method for detecting code
clone . cloning of software , a source code included in software is
As such , the processor 130 may first compare a key value normalized and abstracted . Therefore , even if names and

of the vulnerable code clone set with a key value corre - 60 data types of a function and a variable included in the source
sponding to a function extracted from the software on the code are modified , it is possible to detect code cloning .
basis of the dictionary data structure . Therefore , the proces Further , in the apparatus 100 and the method for detecting
sor 130 may not compare each of multiple source codes code cloning of software , a vulnerable code clone set and an
included in the vulnerable code clone set and multiple integer type key of the software are compared first on the
source codes included in the software . That is , the processor 65 basis of the dictionary data structure and hash values
130 may compare only source codes identical in key value , included in a narrowed search space are compared through
thereby narrowing down a search space . Further , since a key key search to finally detect a code clone . Therefore , time

11

5

15

US 10 , 146 , 532 B2
12

complexity can be reduced to be within a constant time . That wherein the processor compares a key included in the
is , in the apparatus 100 and the method for detecting code dictionary with a key of the vulnerable code clone set ,
cloning of software , code cloning can be detected within a and
constant time , so that it is possible to rapidly and efficiently if the key included in the dictionary and the key of the
detect code cloning of large open source software . vulnerable code clone set are identical to each other , the

The present solution can be embodied in a storage processor compares a value corresponding to the key
medium including instruction codes executable by a com included in the dictionary with a value of the vulnerable
puter such as a program module executed by the computer . code corresponding to the key of the vulnerable code
Besides , the data structure can be stored in the storage clone set to determine whether there is code cloning of
medium executable by the computer . A computer - readable the software , if the value corresponding to the key
medium can be any usable medium which can be accessed included in the dictionary and the value of the vulner
by the computer and includes all volatile / non - volatile and able code corresponding to the key of the vulnerable
removable / non - removable media . Further , the computer code clone set are identical , the processor has detected
readable medium may include all computer storage and 15 code cloning of the software .
communication media . The computer storage medium 2 . The apparatus for detecting code cloning of software of
includes all volatile / non - volatile and removable / non - remov claim 1 , wherein the processor calculates the value corre
able media embodied by a certain method or technology for sponding to the normalized and abstracted function on the
storing information such as computer - readable instruction basis of a MD5 (message digest 5) algorithm .
code , a data structure , a program module or other data . 203 . The apparatus for detecting code cloning of software of

The system and method of the present disclosure has been claim 1 , wherein
explained in relation to a specific implementation , but its the processor removes a whitespace character included in
components or a part or all of its operations can be embodied the extracted multiple functions and converts a char by using a computer system having general - purpose hard acter included in the function from which the ware architecture . 25 whitespace character is removed into a lowercase char The above description of the present disclosure is pro acter and then performs the normalization and abstrac vided for the purpose of illustration , and it would be tion , and understood by those skilled in the art that various changes the whitespace character includes a space , a tab character , and modifications may be made without changing technical
conception and essential features of the present disclosure . 30 and a newline character .
Thus , it is clear that the above - described embodiments are 4 . The apparatus for detecting code cloning of software of
illustrative in all aspects and do not limit the present claim 1 , wherein the processor coverts at least one of a data
disclosure . For example , each component described to be of type of a local variable included in each of the extracted
a single type can be implemented in a distributed manner . functions , a variable name of the local variable included in
Likewise , components described to be distributed can be 35 each function , a function parameter included in each func
implemented in a combined manner . tion , or a function call included in each function into a

The scope of the present disclosure is defined by the predetermined symbol and performs normalization and
following claims rather than by the detailed description of abstraction to each function .
the embodiment . It shall be understood that all modifications 5 . The apparatus for detecting code cloning of software of
and embodiments conceived from the meaning and scope of 40 claim 4 , wherein the processor changes the data type of the
the claims and their equivalents are included in the scope of local variable included in each function to a first symbol , the
the present disclosure . variable name of the local variable included in each function

to a second symbol , the function parameter included in each
We claim : function to a third symbol , and the function call included in
1 . An apparatus for detecting code cloning of software 45 each function to a fourth symbol .

comprising : 6 . The apparatus for detecting code cloning of software of
a memory in which a program configured to detect code claim 1 , wherein the processor extracts the multiple func

cloning from software is stored ; and tions on the basis of a parser and performs normalization and
a processor configured to execute the program ; abstraction to the extracted multiple functions , and the
wherein the processor extracts multiple functions from a 50 parser is on the basis of fuzzy parsing .

source code corresponding to the software , performs 7 . A method for detecting code cloning of software by an
normalization and abstraction to the extracted multiple apparatus for detecting code cloning , the method compris
functions , sets a length of a body of each normalized ing :
and abstracted function as a key for the software and extracting multiple functions from a source code corre
sets hash values corresponding to each normalized and 55 sponding to the software ;
abstracted function as values for the software , creates a performing normalization and abstraction to the extracted
dictionary including keys and values of the normalized multiple functions ;
and abstracted multiple functions for the software , and setting a length of a body of each normalized and
compares the normalized and abstracted multiple func abstracted function as a key for the software ;
tions with a vulnerable code clone set to determine 60 setting hash values corresponding to each normalized and
whether there is code cloning of the software ; abstracted function as values for the software ;

wherein the vulnerable code clone set includes multiple creating a dictionary including keys and values of the
vulnerable codes which are extracted from multiple normalized and abstracted multiple functions for the
functions included in other software , and normalized , software ;
abstracted and then stored ; 65 determining whether there is code cloning of the software

wherein the vulnerable code clone set comprises keys and by comparing the normalized and abstracted multiple
values according to a dictionary data structure ; and functions with a vulnerable code clone set ,

US 10 , 146 , 532 B2
13 14

wherein the vulnerable code clone set includes multiple
vulnerable codes which are extracted from multiple
functions included in other software , and normalized ,
abstracted and then stored ;

wherein the vulnerable code clone set comprises keys and 5
values according to a dictionary data structure ; and

wherein determining whether there is code cloning of the
software includes :
comparing a key included in the dictionary with a key
of the vulnerable code clone set ; and

determining whether there is code cloning of the soft
ware by comparing a value corresponding to the key
included in the dictionary with a value of a vulner
able code corresponding to the key of the vulnerable
code clone set if the key included in the dictionary
and the key of the vulnerable code clone set are
identical to each other , if the value corresponding to
the key included in the dictionary and the value of
the vulnerable code corresponding to the key of the
vulnerable code are identical , the processor has 2
detected code cloning of the software .

8 . A non - transitory computer - readable storage medium
that stores a program configured to execute by a processor
on a computer , cause the processor to :

extracting multiple functions from a source code corre - 23
sponding to the software ;

performing normalization and abstraction to the extracted
multiple functions ;

setting a length of a body of each normalized and
abstracted function as a key for the software ;

setting hash values corresponding to each normalized and
abstracted function as values for the software ;

creating a dictionary including keys and values of the
normalized and abstracted multiple functions for the
software ;

determining whether there is code cloning of the software
by comparing the normalized and abstracted multiple
functions with a vulnerable code clone set ,

wherein the vulnerable code clone set includes multiple
vulnerable codes which are extracted from multiple
functions included in other software , and normalized ,
abstracted and then stored ;

wherein the vulnerable code clone set comprises keys and
values according to a dictionary data structure ; and

wherein determining whether there is code cloning of the
software includes :
comparing a key included in the dictionary with a key

of the vulnerable code clone set ; and
determining whether there is code cloning of the soft

ware by comparing a value corresponding to the key
included in the dictionary with a value of a vulner
able code corresponding to the key of the vulnerable
code clone set if the key included in the dictionary
and the key of the vulnerable code clone set are
identical to each other , if the value corresponding to
the key included in the dictionary and the value of
the vulnerable code corresponding to the key of the
vulnerable code are identical , the processor has
detected code cloning of the software .

* * * *

