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METHOD FOR CLASSIFYING PACKING 
ALGORITHMS USING ENTROPY ANALYSIS 

CROSS-REFERENCE TO RELATED 
APPLICATION 

[0001] This application claims the bene?t of US. Provi 
sional Patent Application No. 61/804,844 ?led on Mar. 25, 
2013, the disclosures of which are incorporated herein by 
reference. 

TECHNICAL FIELD 

[0002] The embodiments described herein pertain gener 
ally to a method for classifying packing algorithms using 
entropy analysis. 

BACKGROUND 

[0003] Various types of malwares destroy the security sys 
tem of user computers and collects users’ personal informa 
tion. As a result, there is the occasion where a signi?cant 
amount of ?nancial loss occurs. Negative attackers use vari 
ous techniques to make detection of such malwares dif?cult. 
One of the techniques that they are using is executable com 
pression or packed executable. 
[0004] Packing algorithm was developed to compress a size 
of ?les in the publicly known manners such as zip and rar 
using compression and encryption algorithms, or protect 
computer programs from copying program through reverse 
engineering. However, the packing algorithm compresses 
executables, and not data. When the packing technique is 
used, a ?le size of malwares becomes smaller, and thus, the 
propagation velocity of the malwares is faster. Further, the 
original code is transformed, thereby, making analysis of the 
malwares more dif?cult. For easy detection of the packed 
executable, there have been many researches on an unpacking 
technique. 
[0005] The previous researches on the unpacking technique 
are brie?y reviewed. 
[0006] For detection and classi?cation of packed execut 
able, there is known a method using a pattern recognition 
technique. This method uses publicly available unpacking 
tools and a signature based anti-malware system to distin 
guish between malwares and benign executable codes. In the 
method, it is identi?ed whether an executable is in the com 
pressed state; if the executable is in the compressed state, it is 
decompressed, and then, hidden ?les are detected; and the 
hidden ?les are transmitted to a virus detection module. If the 
executable is not in the compressed state, the executable is 
transmitted to the virus detection module. However, this 
method cannot decompress the packed executable that is not 
publicly known. 
[0007] Example embodiments described herein provide a 
method for identifying and classifying packing algorithms. 

SUMMARY 

[0008] In view of the foregoing, example embodiments 
provide a packed executable classi?cation method, which can 
identify and classify packing algorithms, no matter whether 
the packing algorithm is already known or not. 
[0009] In accordance with an example embodiment, a 
method for classifying packed executable is provided. The 
method includes unpacking an input packed ?le by using a 
decompression module included in the packed executable; 
calculating an entropy value of a memory space on which 
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decompressed code is mounted in the unpacking step; con 
verting the entropy value into symbolic representations; and 
classifying packing algorithms of the packed executables 
based on the entropy value converted into symbolic represen 
tations. The step of classifying includes inputting the entropy 
value converted into symbolic representations to a packing 
classi?er which classi?es packing algorithms of the packed 
executables based on similarity between a pattern of the pack 
ing classi?er and the data converted into the symbolic repre 
sentations. 
[0010] In accordance with the example embodiments, since 
entropy analysis is utilized for classi?cation of packed 
executables, the classi?cation can also be implemented for 
packing algorithms that is not already known. Furthermore, 
as time series data calculated upon the entropy analysis are 
converted into symbolic representations, a calculation 
amount required for data learning can be signi?cantly 
reduced. 
[0011] The foregoing summary is illustrative only and is 
not intended to be in any way limiting. In addition to the 
illustrative aspects, embodiments, and features described 
above, further aspects, embodiments, and features will 
become apparent by reference to the drawings and the fol 
lowing detailed description. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0012] FIG. 1 illustrates a packing classi?cation device in 
accordance with an example embodiment; 
[0013] FIG. 2 shows a structural change of a packed ?le in 
accordance with an example embodiment; 
[0014] FIG. 3 illustrates symbolic aggregate approximate 
(SAX) time series representations in accordance with an 
example embodiment; 
[0015] FIG. 4 illustrates a symbolic conversion algorithm 
in accordance with an example embodiment; and 
[0016] FIG. 5 is a ?ow chart showing a method for classi 
fying packing algorithms in accordance with an example 
embodiment. 

DETAILED DESCRIPTION 

[0017] Hereinafter, example embodiments will be 
described in detail with reference to the accompanying draw 
ings so that inventive concept may be readily implemented by 
those skilled in the art. However, it is to be noted that the 
present disclosure is not limited to the example embodiments 
but can be realized in various other ways. In the drawings, 
certain parts not directly relevant to the description are omit 
ted to enhance the clarity of the drawings, and like reference 
numerals denote like parts throughout the whole document. 
[0018] Throughout the whole document, the terms “con 
nected to” or “coupled to” are used to designate a connection 
or coupling of one element to another element and include 
both a case where an element is “directly connected or 
coupled to” another element and a case where an element is 
“electronically connected or coupled to” another element via 
still another element. In addition, the term “comprises or 
includes” and/or “comprising or including” used in the docu 
ment means that one or more other components, steps, opera 
tions, and/or the existence or addition of elements are not 
excluded in addition to the described components, steps, 
operations and/ or elements. 
[0019] FIG. 1 illustrates a packing classi?cation device in 
accordance with an example embodiment. 
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[0020] A packing classi?cation device 10 includes an 
entropy calculation unit 100, a symbolic representation unit 
200, and a classi?cation unit 300. 
[0021] For reference, the components illustrated in FIG. 1 
in accordance with an example embodiment may imply soft 
ware or hardware such as a ?eld programmable gate array 
(FPGA) or an application speci?c integrated circuit (ASIC), 
and carry out predetermined functions. 
[0022] However, the “components” are not limited to the 
software or the hardware, and each of the components may be 
stored in an addressable storage medium or may be con?g 
ured to implement one or more processors. 

[0023] Accordingly, the components may include, for 
example, software, object-oriented software, classes, tasks, 
processes, functions, attributes, procedures, sub-routines, 
segments of program codes, drivers, ?rmware, micro codes, 
circuits, data, database, data structures, tables, arrays, vari 
ables and the like. 
[0024] The components and functions thereof can be com 
bined with each other or can be divided. 
[0025] The entropy calculation unit 100 calculates entropy 
of a packed ?le in the process of executing the ?le to be 
unpacked. Korean Patent Application Publication No. 
10-2011-0100508 (Title of Invention: Unpacking Device 
Using Entropy Analysis and Method thereof), which was ?led 
by the inventor of the present disclosure, describes an entropy 
analysis method with respect to packing, the description of 
which is referenced herein. 
[0026] As the entropy calculation unit 100 executes the ?le 
to be unpacked to implement the unpacking, the ?le to be 
unpacked undergoes an internal change and exhibits an 
entropy change. For understanding of this process, it is nec 
essary to study the structure of the packed ?le. 
[0027] FIG. 2 shows a structural change of a packed ?le in 
accordance with an example embodiment. 
[0028] As illustrated in FIG. 2, the packed ?le in the initial 
state includes a decompression module 110 and a compressed 
code 120. The compressed code 120 corresponds to a data 
portion stored after an original executable is compressed by a 
packing program, and the decompression module 110 is gen 
erated by the packing program and used to restore the original 
executable. In other words, if the original executable is com 
pressed by executing the packing program, the compressed 
code 120 and the decompression module 110 are generated. 
As representative packing programs, there are UPX, ASPack, 
FSG, Telock, PECompact, WWPack32, EZip, Pex, JDPack, 
DoomPack, Mew and so on. 
[0029] Unpacking starts with execution of the decompres 
sion module 110. As the unpacking is implemented, a decom 
pressed code 130 is written in a memory space. In this case, 
the decompressed code 130 is written in a different space 
from the memory space where the compressed code 120 
exists, and this is controlled by the decompression module 
110. When the execution ?ow reaches the end of the decom 
pression module 110, all codes 132 decompressed from the 
compressed code 120 are written in the memory space, and 
the unpacking process is completed. At this time, the execu 
tion ?ow that has reached the end of the decompression 
module 110 jumps to the ?rst part of the decompressed codes 
132, rather than to the compressed code 120, and this part is 
called an original entry point. 
[0030] The entropy calculation unit 100 detects branch 
instructions among instructions executed while the packing 
process is implemented. Once a program is executed, pro 

Sep. 25, 2014 

cesses are implemented in the unit of instructions for writing 
address values in a consecutive order, storing data in a corre 
sponding address value, or other purposes.Accordingly, writ 
ing new branch statement or inserting execution statement is 
also implemented in the unit of instructions. An entropy value 
also needs to be measured based on the unit of instructions 
with respect to a target process. However, measuring an 
entropy value each time instructions are executed would be 
inef?cient. Thus, a device for distinguishing executable 
instructions is necessary. 
[0031] In setting criteria for distinguishing executable 
instructions, it is necessary to remember the unpacking pro 
cess. Since an original entry point address is eventually called 
after the branch instruction statement according to the execu 
tion ?ow, it is desirable to distinguish whether or not branch 
instructions are detected. For example, an entropy value is 
measured when branch instructions such as IMP or CALL are 
detected. 
[0032] The detected branch instructions perform the impor 
tant role of determining the time point for entropy detection. 
However, since the branch instructions are mostly executed at 
repeated loops or branch points, they delay the unpacking. To 
resolve this problem, a cache memory may be used. 
[0033] A speed of a hard disk is signi?cantly slower than a 
RAM. The slow speed is attributed to the circumstance that 
the disk should be read each time a program is executed. 
Accordingly, a temporary memory with a certain capacity is 
provided between a RAM and a disk such that contents loaded 
into the RAM when a program is initially executed are also 
stored in the temporary memory. Thereafter, when the pro 
gram is executed, the contents from the temporary memory, 
and not the hard disk, are read so that the reading time is 
shortened. The temporary memory is called a cache memory. 
[0034] If n branch instructions that have been most recently 
executed are stored in the cache memory, the execution speed 
in repeated call loops is faster, and thus, the speed of deter 
mining the original entry point is also faster. 
[0035] The entropy calculation unit 100 calculates an 
entropy value of a memory space on which unpacked ?le is 
mounted when branch instructions are detected. That is, the 
time point that the branch instructions are detected corre 
sponds to the time point for calculating the entropy value. 
Entropy is generally one of state functions of the thermody 
namic system and indicates statistical disorder. However, 
Shannon indicated an amount of information with numerals 
through the concept of “Information Entropy” to establish 
information entropy H with the following Math Formula 1: 

[0036] Where p(xi) is the probability of occurrence of xi, 
and I means self-information of a discrete probability variable 
X. As representative examples for the base number b of the 
logarithm, there are 2, Euler’s number e, and 10. In general, 
entropy in the information theory is commonly used in 
researching the ?eld relating to message compression. As 
data have high entropy, it means that all bits, which possibly 
appear, uniformly exist. Thus, as an entropy value of a par 
ticular compressed ?le is high, the compression rate is high. 
For example, there is a string code of“100100100111111.”If 
the string code is in a 3-bit unit, it can be compressed by 
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arranging the number of the consecutive strings and the con 
secutive strings in this order. The above-mentioned string 
code can be compressed to “011100010111” because the 
string code consists of 3 (011) consecutive codes 100 and 2 
(010) consecutive codes 111. Entropy of the above-men 
tioned code and the compressed code is calculated according 
to Math Formula 1 assuming that the base number b of the 
logarithm is 2. As a result, the entropy value of the com 
pressed code “011100010111”is approximately 1.5, which is 
greater than the entropy value of approximately 1 .0306 for the 
code “100100100111111” before the compression. 
[0037] If the target for the calculation of an entropy value is 
set to the entire virtual memory space, the degree of entropy 
change is insigni?cant, and thus, it would be dif?cult to 
analyze changes of the entropy. 
[0038] Accordingly, analysis of entropy changes may be set 
to be conducted for a speci?c memory space. For example, 
analysis of entropy changes may be set to be conducted 
through a ?xed memory space. Since the position where the 
original code is written corresponds to the ?rst section of the 
packing process, the ?rst section of the packing process may 
be set as the target memory space. This is because the entropy 
value for the portion where the original code is not newly 
written while the unpacking is implemented will not change 
even though it is calculated. If the ?xed memory space is set 
as the target for the entropy calculation, it is advantageous in 
that writing measurement algorithms is convenient, and 
execution routes are simple, requiring less execution time. 
However, depending on packing programs, there may be the 
occasion that the original code is not written in the ?rst 
section of the packing process. In this case, there is a high 
possibility that the original entry point cannot be determined 
or is erroneously determined. Moreover, the ?xed space as 
described above has limit in detection of rapidly evolving 
malwares. 
[0039] As another method, analysis of entropy changes 
may be set to be conducted based on a memory space on 
which unpacked ?le is mounted. The memory space on which 
unpacked ?le is mounted is a variable space, and not a ?xed 
space, and can be dynamically determined when the original 
code is written while the unpacking process is implemented. 
At the level of machine language instructions, the work for 
reading and writing in a memory consists of a combination of 
instructions for storing an address value of a memory in a 
resistor and instructions for moving data to the stored address 
value. Accordingly, by using the combination of the instruc 
tions, an address of a memory space on which unpacked ?le 
is mounted can be identi?ed. As an example for the instruc 
tions for storing an address value of a memory in a resistor, 
there are LEA instructions. As an example for moving data to 
the stored address value, there are MOV instructions. 

[0040] If entropy analysis is conducted for the variable 
space, and not the ?xed space, a measurement value exclud 
ing dummy data can be obtained. Furthermore, as the entropy 
analysis space is clearly speci?ed, changes of the entropy also 
become clear so that the original entry point detection prob 
ability increases. Since the original data will be necessarily 
written throughout the unpacking process, no matter what 
packing programs are, it is possible to analyze packed ?les by 
a compression program, which will be developed in the 
future, as well as all existing packing programs. 
[0041] Meanwhile, the entropy calculation unit 100 stores 
the calculated entropy value in a storage medium. An entropy 
value is calculated each time branch instructions are detected, 

Sep. 25, 2014 

and may be accumulatively stored. The accumulated entropy 
value is used to determine the original entry point or decide 
whether or not the unpacking process is completed. 
[0042] The entropy calculation unit 100 determines the 
original entry point by using changes of the calculated 
entropy value. Since a packed ?le has a higher entropy value 
than a common executable ?le, an entropy value of the cor 
responding process memory increases at the initial unpacking 
stage due to the packed code. However, the entropy value of 
the memory becomes constantly stable throughout the 
unpacking process. However, when the entropy analysis is 
conducted for a memory part of a speci?c space, if another 
code having high entropy exists in the portion where the 
decompressed code is written, the entropy value may gradu 
ally increases to become constantly stable. 
[0043] In either case, entropy is constantly converged while 
the unpacking process is completed. The time point that the 
calculated entropy value begins to be constantly converged 
corresponds to the time point that the unpacking process is 
completed. The address, to which the execution ?ow moves 
after the completion, corresponds to the original entry point. 
[0044] By comparing the calculated entropy value with a 
pre-de?ned entropy minimum value (Emin) and a pre-de?ned 
entropy maximum value (Emax), it can be determined 
whether or not the unpacking is completed. If the calculated 
entropy value is between the pre-de?ned entropy minimum 
value and the pre-de?ned entropy maximum value, it can be 
determined that the unpacking has been completed. The 
entropy minimum and maximum values may be set from a 
multiple number of converged entropy sample values 
obtained from unpacking ?les packed by various types of 
packing programs in consideration of errors. 
[0045] Returning to FIG. 1, the symbolic conversion unit 
200 converts the entropy value calculated through the entropy 
calculation unit 100 into symbolic representations. Since the 
entropy data calculated through the entropy calculation unit 
100 are time series data, which have high-dimensionality and 
continuity, a calculation amount in a learning process for 
classi?cation of time series data is increased. 
[0046] In order to resolve this problem, for example, a time 
series representation method such as symbolic aggregate 
approximation (SAX) for ef?cient and effective processing of 
time series data may be used. SAX combines segmentation 
and discretization techniques to convert consecutive time 
series data to be in the discrete form in a low dimensional 
space. Such SAX uses the piecewise aggregate approxima 
tion (PAA) segmentation technique to reduce the dimension 
ality of the time series. 
[0047] PAA decides an average of the time series data 
belonging to the respective segments as a PAA coef?cient 
value. PAA represents the time series data by using the PAA 
coef?cient values. The discretization of SAX divides the 
entire area by the Gaussian distribution curve into equal-sized 
areas under the normality assumption to determine discreti 
zation areas. The PAA coef?cient values located in the 
respective discretization areas are discretized. 

[0048] To be more speci?c, according to the PAA segmen 
tation, n-dimensional time series data T are converted into 
M-dimensional vectors, in which n>>M. That is, n-dimen 
sional time series data T are divided into M segments in an 
n/M size. The time series values located in the respective 
segments are averaged to calculate a coef?cient for each of 
the segments. The calculated coef?cient has a value of Math 
Formula 2. 
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1 ri [Math Formula 2] 
)7; = — (Xi) 

r j:r(i:l)+l 

[0049] where r:n/M, and x refers to each segment. 
[0050] The calculated coef?cient is converted into an inte 
ger vector or a symbol sequence. 

[0051] Through this process, entropy time series data can 
be converted into symbolic representations. 
[0052] FIG. 3 illustrates SAX time series representations in 
accordance with an example embodiment. 

[0053] FIG. 3 assumedthat the number of the segments is 7, 
and the number of discretization is 5, and symbolized the 
entire time series data into ?ve types of symbols (A, B, C, D, 
E). As the entire time series data are converted into symbolic 
representations, the calculation amount required for data 
learning can be reduced. 

[0054] FIG. 4 illustrates symbolic conversion algorithm in 
accordance with an example embodiment. 

[0055] As depicted in FIG. 4, symbolic conversion for 
entropy time series data is implemented. 
[0056] As a result of the symbolic conversion, the follow 
ing effects are achieved. 

[0057] First, the dimensionality of the entropy data is 
reduced. PAA algorithm is a technique for conversion into 
lower dimensionality, which is often used in analyzing time 
series data. The PAA algorithm divides time series data into 
several zones, and then, calculates an average value of the 
zones, to convert high-dimensional time series data into low 
dimensional time series data. 

[0058] Second, the lowest limit of the entropy data can be 
set. The lowest limit means a boundary value, which is 
smaller than or the same as all values of given entropy data 
sets. Setting the lowest limit provides a criterion for measure 
ment of a distance for the original entropy data before the 
conversion into symbolic representations. Accordingly, the 
distance between two different symbolic strings can be dem 
onstrated only from veri?cation of the PAA representation 
technique itself. 
[0059] Third, breakpoints can be set. Since normalized 
SAX entropy data have high normal distribution, one can 
easily determine the breakpoints that produce equally sized 
areas under the normal distribution curve. 

[0060] Fourth, the Euclidean distance for the symbolic con 
verted data as well can be calculated like Math Formula 3, 
through which similarity of data and others can be identi?ed. 

[Math Formula 3] 

[0061] where Q and S refer to data converted into symbolic 
representations. 
[0062] Returning to FIG. 1, the classi?cation unit 300 clas 
si?es packed executable by using the symbolic-converted 
entropy data. That is, the classi?cation unit 300 classi?es 
packing algorithms, by which corresponding packing is pro 
duced. The operation of the classi?cation unit 300 is 
described with reference to the drawings. 
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[0063] FIG. 5 is a ?ow chart showing a method for classi 
fying packing algorithms in accordance with an example 
embodiment. 

[0064] First, packing algorithm is classi?ed through com 
parison with previously known packing algorithm (S310). To 
this end, a classi?er for classifying packing should be con 
structed and may be constructed under a supervised classi? 
cation technique or an unsupervised classi?cation technique. 
Further, with respect to learning of the classi?er, a Naive 
Bayes classi?cation method, a support vector machine 
(SVM) method, and others may be used, but the present 
disclosure may not be limited thereto. 

[0065] Meanwhile, classi?cation of packing algorithm is 
selected based on similarity between the produced classi?er 
and input packed executable (S320). In this case, the similar 
ity can be calculated by using the following Math Formula 4: 

[Formula 4] 

[ling [ix-2] [:1 [:1 

[0066] where a similarity coe?icient ((I>(x,y)) measures the 
linear relationship between two different symbolic represen 
tation data (x, y) and calculates the strength and the direction 
of the linear relationship. The value is always between —1 and 
l, where 1 indicates a strongly positive relation; 0 means no 
relation; and —1 means a strongly negative relation. 
[0067] If there is a class where the similarity to input 
packed executable is a threshold value or more, the packed 
executable is classi?ed to have been compressed by packing 
algorithm of the corresponding class (S330). 
[0068] However, there is no class where the similarity to 
input packed executable is a threshold value or more, new 
classi?cation is produced based on the corresponding pack 
ing data (S340). 
[0069] As described, since the example embodiments use 
the entropy analysis for classifying packing, it can also per 
form the classi?cation for the packing that was not previously 
known. Further, by converting the time series data calculated 
upon the entropy analysis into symbolic representations, a 
calculation amount required for data learning can be signi? 
cantly reduced. 
[0070] The example embodiments can be embodied in a 
storage medium including instruction codes executable by a 
computer or processor such as a program module executed by 
the computer or processor. A computer readable medium can 
be any usable medium which can be accessed by the computer 
and includes all volatile/nonvolatile and removable/non-re 
movable media. Further, the computer readable medium may 
include all computer storage and communication media. The 
computer storage medium includes all volatile/nonvolatile 
and removable/non-removable media embodied by a certain 
method or technology for storing information such as com 
puter readable instruction code, a data structure, a program 
module or other data. The communication medium typically 
includes the computer readable instruction code, the data 
structure, the program module, or other data of a modulated 
data signal such as a carrier wave, or other transmission 
mechanism, and includes information transmission medi 
ums. 
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[0071] The method and the system of the example embodi 
ments have been described in relation to the certain examples. 
However, the components or parts or all the operations of the 
method and the system may be embodied using a computer 
system having universally used hardware architecture. 
[0072] The above description of the example embodiments 
is provided for the purpose of illustration, and it would be 
understood by those skilled in the art that various changes and 
modi?cations may be made without changing technical con 
ception and essential features of the example embodiments. 
Thus, it is clear that the above-described example embodi 
ments are illustrative in all aspects and do not limit the present 
disclosure. For example, each component described to be of a 
single type can be implemented in a distributed manner. Like 
wise, components described to be distributed can be imple 
mented in a combined manner. 

[0073] The scope of the inventive concept is de?ned by the 
following claims and their equivalents rather than by the 
detailed description of the example embodiments. It shall be 
understood that all modi?cations and embodiments con 
ceived from the meaning and scope of the claims and their 
equivalents are included in the scope of the inventive concept. 
We claim: 
1. A method for classifying packed executable, the method 

comprising: 
unpacking an input packed executable by using a decom 

pression module included in the packed executable; 
calculating an entropy value of a memory space on which 

decompressed code is mounted in the unpacking step; 
converting the entropy value into symbolic representa 

tions; and 
classifying packing algorithms of the packed executables 

based on the entropy value converted into symbolic rep 
resentations, 

wherein the step of classifying includes inputting the 
entropy value converted into symbolic representations 
to a packing classi?er which classi?es packing algo 
rithms of the packed executables based on similarity 
between a pattern of the packing classi?er and the data 
converted into the symbolic representations. 

2. The method for classifying packed executable of claim 
1: 

wherein the step of calculating the entropy value includes: 
calculating an entropy value of a memory space on which 

the decompressed code is mounted, when execution of a 
branch instruction is detected during the step of unpack 
ing; and 
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regarding an address, to which execution ?ow moves after 
the calculated entropy value is converged, as an original 
entry point. 

3. The method for classifying packed executable of claim 

wherein the step of converting converts the entropy value, 
which are consecutive time series data, to be in a discrete 
form in a reduced dimensional space, based on symbolic 
aggregate approximation (SAX) algorithm. 

4. The method for classifying packed executable of claim 

wherein the step of converting includes: 
segmenting the entropy value, by applying the piecewise 

aggregate approximation (PAA) method to the entropy 
value; 

calculating a coef?cient for each of the segmented entropy 
value by averaging time series values located in respec 
tive segment of the segmented entropy value; and 

symboliZing the coef?cients using a plurality of symbols. 
5. The method for classifying packed executable of claim 

wherein the step of classifying includes: 
inputting the data converted into symbolic representations 

to the packing classi?er generated from learning a pat 
tern of a publicly known packing algorithm; 

determining whether or not to belong to a class included in 
the packing classi?er based on similarity between the 
pattern of the packing classi?er and the data converted 
into the symbolic representations; and 

generating a new class for the corresponding packing data 
if the similarity with the class included in the packing 
classi?er is smaller than a threshold value. 

6. The method for classifying packed executable of claim 

wherein the step of classifying includes: 
inputting the data converted into symbolic representations 

to the packing classi?er generated from learning a pat 
tern of a publicly known packing algorithm; 

determining whether or not to belong to a class included in 
the packing classi?er based on similarity between the 
pattern of the packing classi?er and the data converted 
into the symbolic representations; and 

classifying the packing algorithm as a class with the high 
est similarity if there is a class where similarity with a 
class included in the packing classi?er is a threshold 
value or higher. 


