
US 20140289848A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0289848 A1

Lee et al. (43) Pub. Date: Sep. 25, 2014

(54) METHOD FOR CLASSIFYING PACKING Publication Classi?cation
ALGORITHMS USING ENTROPY ANALYSIS

(51) Int. Cl.
(71) Applicant: Korea University Research and G06F 21/50 (2006-01)

Business Foundation, Seoul (KR) (52) US. Cl.
CPC G06F 21/50 (2013.01)

(72) Inventors: Heejo Lee, Seoul (KR); Munkhbayar 726/22
Bat-Erdene; Seoul (KR); Hyuncheol
Jeong; Seoul (KR); Daegull Ryu; Seoul (57) ABSTRACT
(KR) A method for classifying packed executable is provided. The

method includes unpacking an input packed executable by
(73) Assignee Korea University Research and using a decompression module included in the packed execut

' Business Foundation Seoul (KR) able; calculating an entropy value of a memory space on
’ Which decompressed code is mounted in the unpacking step;

converting the entropy value into symbolic representations;
(21) APP1~ NO-3 14/ 224,474 and classifying packing algorithms of the packed executables

based on the entropy value converted into symbolic represen
(22) Filed; Man 25, 2014 tations. The step of classifying includes inputting the entropy

value converted into symbolic representations to a packing
. . classi?er Which classi?es ackin a1 orithms of the acked

Related U's' Apphcatlon Data executables based on similgrity begtwein a pattern of thg pack
(60) Provisional application No. 61/ 804,844; ?led on Mar. ing classi?er and the data converted into the symbolic repre

25, 2013.

(Execuiion flow)
(Decompression moe‘ule} W1 16

(Packed code) V126

(a:l Initial state

(Execution flow}

sentations .

(Decompression module) V1 16

(Packed code} V120

(Unpaoked code) V130

(b) Progress state

(Decompression module:| v1 10

(Executizon iiow) (Packed code) V120

{Unpacked code) V132

(0) Completion state

Patent Application Publication Sep. 25, 2014 Sheet 1 0f 5 US 2014/0289848 A1

FIG. 1

100 200 300
/ / /

Entropy Symbolic Ciassification
calcuiation unit conversion unit unit

10

Patent Application Publication Sep. 25, 2014 Sheet 2 0f 5 US 2014/0289848 A1

Fl G. 2

(Execuiion ?ow)
(Decomprassion mociule) ~¢11O mm {Decompression module) V1 19

(Packed code) V120 (packed code} V120

(Unpacked code) V130

(a) Initia! state (b) Progress state

(Decompression module) V110

(Execution ?ew) {packed code) V120

7 (Unpacked code) “"132

((2) Completion state

US 2014/0289848 A1 Sep. 25, 2014 Sheet 3 0f 5 Patent Application Publication

FIG. 3

61:8- $58 $8

Patent Application Publication Sep. 25, 2014 Sheet 4 0f 5 US 2014/0289848 A1

FIG. 4

Aigurithm 1: An aigmiihm for conve?iag sym'tmiic rep
rasm'i'a'tion
Require: An aigm'ithm is 'reqnired far wnve?ing e‘m'mpy

valuas inn; symboiic: repi'esmiatkm. a number a? symbals,
mtmgxy' {3f {EHQMZXE-d code, breakpainls, symboiiif value
and mnnaiizaii entropy of unpacked code are abbreviatad
as *X anti ,respectéveiy, in {he failewi?g
pxemiacnde.

‘ lnsurv: Exiract symhslic unique pattemj which will be
nse?i in ?at-acting packing aigoriiimzs.
{Canve? taming? v'aiues inm- symbsiic representation}
we detect. m {gaskng algariiimi using of the symbmia
repmsenmiien, the SAX.
if Brazzkgmint 1‘ (s; $3,; am} normaiized. sf an:
ime than

w caiwiai-e a number Q? symbals with hraakmimés
else
Cm?inus this imp.

and if
if ’X~§~ mmveyii intu SAX true than

@{i analyxe ’X ming hmakpmimg
We exmm new unique :1 Sy'ilii’Rii'EQ pattern $9511 a
£2111?pr $213331.
Qaiauiate to simiiarity mmsumment, acmracy and
recall.

eisa
{Inniinua this; bag.

end if

Patent Application Publication Sep. 25, 2014 Sheet 5 0f 5 US 2014/0289848 A1

FIG. 5

CIassifying packing algorithm MS31 O

l 8320
/ / Ci ssifisation exis’zs'? a

Detection Of packmg ~5330 Generating new W8340
aigmlthm has been . . ‘

class?lcation completed?

US 2014/0289848 A1

METHOD FOR CLASSIFYING PACKING
ALGORITHMS USING ENTROPY ANALYSIS

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims the bene?t of US. Provi
sional Patent Application No. 61/804,844 ?led on Mar. 25,
2013, the disclosures of which are incorporated herein by
reference.

TECHNICAL FIELD

[0002] The embodiments described herein pertain gener
ally to a method for classifying packing algorithms using
entropy analysis.

BACKGROUND

[0003] Various types of malwares destroy the security sys
tem of user computers and collects users’ personal informa
tion. As a result, there is the occasion where a signi?cant
amount of ?nancial loss occurs. Negative attackers use vari
ous techniques to make detection of such malwares dif?cult.
One of the techniques that they are using is executable com
pression or packed executable.
[0004] Packing algorithm was developed to compress a size
of ?les in the publicly known manners such as zip and rar
using compression and encryption algorithms, or protect
computer programs from copying program through reverse
engineering. However, the packing algorithm compresses
executables, and not data. When the packing technique is
used, a ?le size of malwares becomes smaller, and thus, the
propagation velocity of the malwares is faster. Further, the
original code is transformed, thereby, making analysis of the
malwares more dif?cult. For easy detection of the packed
executable, there have been many researches on an unpacking
technique.
[0005] The previous researches on the unpacking technique
are brie?y reviewed.
[0006] For detection and classi?cation of packed execut
able, there is known a method using a pattern recognition
technique. This method uses publicly available unpacking
tools and a signature based anti-malware system to distin
guish between malwares and benign executable codes. In the
method, it is identi?ed whether an executable is in the com
pressed state; if the executable is in the compressed state, it is
decompressed, and then, hidden ?les are detected; and the
hidden ?les are transmitted to a virus detection module. If the
executable is not in the compressed state, the executable is
transmitted to the virus detection module. However, this
method cannot decompress the packed executable that is not
publicly known.
[0007] Example embodiments described herein provide a
method for identifying and classifying packing algorithms.

SUMMARY

[0008] In view of the foregoing, example embodiments
provide a packed executable classi?cation method, which can
identify and classify packing algorithms, no matter whether
the packing algorithm is already known or not.
[0009] In accordance with an example embodiment, a
method for classifying packed executable is provided. The
method includes unpacking an input packed ?le by using a
decompression module included in the packed executable;
calculating an entropy value of a memory space on which

Sep. 25, 2014

decompressed code is mounted in the unpacking step; con
verting the entropy value into symbolic representations; and
classifying packing algorithms of the packed executables
based on the entropy value converted into symbolic represen
tations. The step of classifying includes inputting the entropy
value converted into symbolic representations to a packing
classi?er which classi?es packing algorithms of the packed
executables based on similarity between a pattern of the pack
ing classi?er and the data converted into the symbolic repre
sentations.
[0010] In accordance with the example embodiments, since
entropy analysis is utilized for classi?cation of packed
executables, the classi?cation can also be implemented for
packing algorithms that is not already known. Furthermore,
as time series data calculated upon the entropy analysis are
converted into symbolic representations, a calculation
amount required for data learning can be signi?cantly
reduced.
[0011] The foregoing summary is illustrative only and is
not intended to be in any way limiting. In addition to the
illustrative aspects, embodiments, and features described
above, further aspects, embodiments, and features will
become apparent by reference to the drawings and the fol
lowing detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 illustrates a packing classi?cation device in
accordance with an example embodiment;
[0013] FIG. 2 shows a structural change of a packed ?le in
accordance with an example embodiment;
[0014] FIG. 3 illustrates symbolic aggregate approximate
(SAX) time series representations in accordance with an
example embodiment;
[0015] FIG. 4 illustrates a symbolic conversion algorithm
in accordance with an example embodiment; and
[0016] FIG. 5 is a ?ow chart showing a method for classi
fying packing algorithms in accordance with an example
embodiment.

DETAILED DESCRIPTION

[0017] Hereinafter, example embodiments will be
described in detail with reference to the accompanying draw
ings so that inventive concept may be readily implemented by
those skilled in the art. However, it is to be noted that the
present disclosure is not limited to the example embodiments
but can be realized in various other ways. In the drawings,
certain parts not directly relevant to the description are omit
ted to enhance the clarity of the drawings, and like reference
numerals denote like parts throughout the whole document.
[0018] Throughout the whole document, the terms “con
nected to” or “coupled to” are used to designate a connection
or coupling of one element to another element and include
both a case where an element is “directly connected or
coupled to” another element and a case where an element is
“electronically connected or coupled to” another element via
still another element. In addition, the term “comprises or
includes” and/or “comprising or including” used in the docu
ment means that one or more other components, steps, opera
tions, and/or the existence or addition of elements are not
excluded in addition to the described components, steps,
operations and/ or elements.
[0019] FIG. 1 illustrates a packing classi?cation device in
accordance with an example embodiment.

US 2014/0289848 A1

[0020] A packing classi?cation device 10 includes an
entropy calculation unit 100, a symbolic representation unit
200, and a classi?cation unit 300.
[0021] For reference, the components illustrated in FIG. 1
in accordance with an example embodiment may imply soft
ware or hardware such as a ?eld programmable gate array
(FPGA) or an application speci?c integrated circuit (ASIC),
and carry out predetermined functions.
[0022] However, the “components” are not limited to the
software or the hardware, and each of the components may be
stored in an addressable storage medium or may be con?g
ured to implement one or more processors.

[0023] Accordingly, the components may include, for
example, software, object-oriented software, classes, tasks,
processes, functions, attributes, procedures, sub-routines,
segments of program codes, drivers, ?rmware, micro codes,
circuits, data, database, data structures, tables, arrays, vari
ables and the like.
[0024] The components and functions thereof can be com
bined with each other or can be divided.
[0025] The entropy calculation unit 100 calculates entropy
of a packed ?le in the process of executing the ?le to be
unpacked. Korean Patent Application Publication No.
10-2011-0100508 (Title of Invention: Unpacking Device
Using Entropy Analysis and Method thereof), which was ?led
by the inventor of the present disclosure, describes an entropy
analysis method with respect to packing, the description of
which is referenced herein.
[0026] As the entropy calculation unit 100 executes the ?le
to be unpacked to implement the unpacking, the ?le to be
unpacked undergoes an internal change and exhibits an
entropy change. For understanding of this process, it is nec
essary to study the structure of the packed ?le.
[0027] FIG. 2 shows a structural change of a packed ?le in
accordance with an example embodiment.
[0028] As illustrated in FIG. 2, the packed ?le in the initial
state includes a decompression module 110 and a compressed
code 120. The compressed code 120 corresponds to a data
portion stored after an original executable is compressed by a
packing program, and the decompression module 110 is gen
erated by the packing program and used to restore the original
executable. In other words, if the original executable is com
pressed by executing the packing program, the compressed
code 120 and the decompression module 110 are generated.
As representative packing programs, there are UPX, ASPack,
FSG, Telock, PECompact, WWPack32, EZip, Pex, JDPack,
DoomPack, Mew and so on.
[0029] Unpacking starts with execution of the decompres
sion module 110. As the unpacking is implemented, a decom
pressed code 130 is written in a memory space. In this case,
the decompressed code 130 is written in a different space
from the memory space where the compressed code 120
exists, and this is controlled by the decompression module
110. When the execution ?ow reaches the end of the decom
pression module 110, all codes 132 decompressed from the
compressed code 120 are written in the memory space, and
the unpacking process is completed. At this time, the execu
tion ?ow that has reached the end of the decompression
module 110 jumps to the ?rst part of the decompressed codes
132, rather than to the compressed code 120, and this part is
called an original entry point.
[0030] The entropy calculation unit 100 detects branch
instructions among instructions executed while the packing
process is implemented. Once a program is executed, pro

Sep. 25, 2014

cesses are implemented in the unit of instructions for writing
address values in a consecutive order, storing data in a corre
sponding address value, or other purposes.Accordingly, writ
ing new branch statement or inserting execution statement is
also implemented in the unit of instructions. An entropy value
also needs to be measured based on the unit of instructions
with respect to a target process. However, measuring an
entropy value each time instructions are executed would be
inef?cient. Thus, a device for distinguishing executable
instructions is necessary.
[0031] In setting criteria for distinguishing executable
instructions, it is necessary to remember the unpacking pro
cess. Since an original entry point address is eventually called
after the branch instruction statement according to the execu
tion ?ow, it is desirable to distinguish whether or not branch
instructions are detected. For example, an entropy value is
measured when branch instructions such as IMP or CALL are
detected.
[0032] The detected branch instructions perform the impor
tant role of determining the time point for entropy detection.
However, since the branch instructions are mostly executed at
repeated loops or branch points, they delay the unpacking. To
resolve this problem, a cache memory may be used.
[0033] A speed of a hard disk is signi?cantly slower than a
RAM. The slow speed is attributed to the circumstance that
the disk should be read each time a program is executed.
Accordingly, a temporary memory with a certain capacity is
provided between a RAM and a disk such that contents loaded
into the RAM when a program is initially executed are also
stored in the temporary memory. Thereafter, when the pro
gram is executed, the contents from the temporary memory,
and not the hard disk, are read so that the reading time is
shortened. The temporary memory is called a cache memory.
[0034] If n branch instructions that have been most recently
executed are stored in the cache memory, the execution speed
in repeated call loops is faster, and thus, the speed of deter
mining the original entry point is also faster.
[0035] The entropy calculation unit 100 calculates an
entropy value of a memory space on which unpacked ?le is
mounted when branch instructions are detected. That is, the
time point that the branch instructions are detected corre
sponds to the time point for calculating the entropy value.
Entropy is generally one of state functions of the thermody
namic system and indicates statistical disorder. However,
Shannon indicated an amount of information with numerals
through the concept of “Information Entropy” to establish
information entropy H with the following Math Formula 1:

[0036] Where p(xi) is the probability of occurrence of xi,
and I means self-information of a discrete probability variable
X. As representative examples for the base number b of the
logarithm, there are 2, Euler’s number e, and 10. In general,
entropy in the information theory is commonly used in
researching the ?eld relating to message compression. As
data have high entropy, it means that all bits, which possibly
appear, uniformly exist. Thus, as an entropy value of a par
ticular compressed ?le is high, the compression rate is high.
For example, there is a string code of“100100100111111.”If
the string code is in a 3-bit unit, it can be compressed by

US 2014/0289848 A1

arranging the number of the consecutive strings and the con
secutive strings in this order. The above-mentioned string
code can be compressed to “011100010111” because the
string code consists of 3 (011) consecutive codes 100 and 2
(010) consecutive codes 111. Entropy of the above-men
tioned code and the compressed code is calculated according
to Math Formula 1 assuming that the base number b of the
logarithm is 2. As a result, the entropy value of the com
pressed code “011100010111”is approximately 1.5, which is
greater than the entropy value of approximately 1 .0306 for the
code “100100100111111” before the compression.
[0037] If the target for the calculation of an entropy value is
set to the entire virtual memory space, the degree of entropy
change is insigni?cant, and thus, it would be dif?cult to
analyze changes of the entropy.
[0038] Accordingly, analysis of entropy changes may be set
to be conducted for a speci?c memory space. For example,
analysis of entropy changes may be set to be conducted
through a ?xed memory space. Since the position where the
original code is written corresponds to the ?rst section of the
packing process, the ?rst section of the packing process may
be set as the target memory space. This is because the entropy
value for the portion where the original code is not newly
written while the unpacking is implemented will not change
even though it is calculated. If the ?xed memory space is set
as the target for the entropy calculation, it is advantageous in
that writing measurement algorithms is convenient, and
execution routes are simple, requiring less execution time.
However, depending on packing programs, there may be the
occasion that the original code is not written in the ?rst
section of the packing process. In this case, there is a high
possibility that the original entry point cannot be determined
or is erroneously determined. Moreover, the ?xed space as
described above has limit in detection of rapidly evolving
malwares.
[0039] As another method, analysis of entropy changes
may be set to be conducted based on a memory space on
which unpacked ?le is mounted. The memory space on which
unpacked ?le is mounted is a variable space, and not a ?xed
space, and can be dynamically determined when the original
code is written while the unpacking process is implemented.
At the level of machine language instructions, the work for
reading and writing in a memory consists of a combination of
instructions for storing an address value of a memory in a
resistor and instructions for moving data to the stored address
value. Accordingly, by using the combination of the instruc
tions, an address of a memory space on which unpacked ?le
is mounted can be identi?ed. As an example for the instruc
tions for storing an address value of a memory in a resistor,
there are LEA instructions. As an example for moving data to
the stored address value, there are MOV instructions.

[0040] If entropy analysis is conducted for the variable
space, and not the ?xed space, a measurement value exclud
ing dummy data can be obtained. Furthermore, as the entropy
analysis space is clearly speci?ed, changes of the entropy also
become clear so that the original entry point detection prob
ability increases. Since the original data will be necessarily
written throughout the unpacking process, no matter what
packing programs are, it is possible to analyze packed ?les by
a compression program, which will be developed in the
future, as well as all existing packing programs.
[0041] Meanwhile, the entropy calculation unit 100 stores
the calculated entropy value in a storage medium. An entropy
value is calculated each time branch instructions are detected,

Sep. 25, 2014

and may be accumulatively stored. The accumulated entropy
value is used to determine the original entry point or decide
whether or not the unpacking process is completed.
[0042] The entropy calculation unit 100 determines the
original entry point by using changes of the calculated
entropy value. Since a packed ?le has a higher entropy value
than a common executable ?le, an entropy value of the cor
responding process memory increases at the initial unpacking
stage due to the packed code. However, the entropy value of
the memory becomes constantly stable throughout the
unpacking process. However, when the entropy analysis is
conducted for a memory part of a speci?c space, if another
code having high entropy exists in the portion where the
decompressed code is written, the entropy value may gradu
ally increases to become constantly stable.
[0043] In either case, entropy is constantly converged while
the unpacking process is completed. The time point that the
calculated entropy value begins to be constantly converged
corresponds to the time point that the unpacking process is
completed. The address, to which the execution ?ow moves
after the completion, corresponds to the original entry point.
[0044] By comparing the calculated entropy value with a
pre-de?ned entropy minimum value (Emin) and a pre-de?ned
entropy maximum value (Emax), it can be determined
whether or not the unpacking is completed. If the calculated
entropy value is between the pre-de?ned entropy minimum
value and the pre-de?ned entropy maximum value, it can be
determined that the unpacking has been completed. The
entropy minimum and maximum values may be set from a
multiple number of converged entropy sample values
obtained from unpacking ?les packed by various types of
packing programs in consideration of errors.
[0045] Returning to FIG. 1, the symbolic conversion unit
200 converts the entropy value calculated through the entropy
calculation unit 100 into symbolic representations. Since the
entropy data calculated through the entropy calculation unit
100 are time series data, which have high-dimensionality and
continuity, a calculation amount in a learning process for
classi?cation of time series data is increased.
[0046] In order to resolve this problem, for example, a time
series representation method such as symbolic aggregate
approximation (SAX) for ef?cient and effective processing of
time series data may be used. SAX combines segmentation
and discretization techniques to convert consecutive time
series data to be in the discrete form in a low dimensional
space. Such SAX uses the piecewise aggregate approxima
tion (PAA) segmentation technique to reduce the dimension
ality of the time series.
[0047] PAA decides an average of the time series data
belonging to the respective segments as a PAA coef?cient
value. PAA represents the time series data by using the PAA
coef?cient values. The discretization of SAX divides the
entire area by the Gaussian distribution curve into equal-sized
areas under the normality assumption to determine discreti
zation areas. The PAA coef?cient values located in the
respective discretization areas are discretized.

[0048] To be more speci?c, according to the PAA segmen
tation, n-dimensional time series data T are converted into
M-dimensional vectors, in which n>>M. That is, n-dimen
sional time series data T are divided into M segments in an
n/M size. The time series values located in the respective
segments are averaged to calculate a coef?cient for each of
the segments. The calculated coef?cient has a value of Math
Formula 2.

US 2014/0289848 A1

1 ri [Math Formula 2]
)7; = — (Xi)

r j:r(i:l)+l

[0049] where r:n/M, and x refers to each segment.
[0050] The calculated coef?cient is converted into an inte
ger vector or a symbol sequence.

[0051] Through this process, entropy time series data can
be converted into symbolic representations.
[0052] FIG. 3 illustrates SAX time series representations in
accordance with an example embodiment.

[0053] FIG. 3 assumedthat the number of the segments is 7,
and the number of discretization is 5, and symbolized the
entire time series data into ?ve types of symbols (A, B, C, D,
E). As the entire time series data are converted into symbolic
representations, the calculation amount required for data
learning can be reduced.

[0054] FIG. 4 illustrates symbolic conversion algorithm in
accordance with an example embodiment.

[0055] As depicted in FIG. 4, symbolic conversion for
entropy time series data is implemented.
[0056] As a result of the symbolic conversion, the follow
ing effects are achieved.

[0057] First, the dimensionality of the entropy data is
reduced. PAA algorithm is a technique for conversion into
lower dimensionality, which is often used in analyzing time
series data. The PAA algorithm divides time series data into
several zones, and then, calculates an average value of the
zones, to convert high-dimensional time series data into low
dimensional time series data.

[0058] Second, the lowest limit of the entropy data can be
set. The lowest limit means a boundary value, which is
smaller than or the same as all values of given entropy data
sets. Setting the lowest limit provides a criterion for measure
ment of a distance for the original entropy data before the
conversion into symbolic representations. Accordingly, the
distance between two different symbolic strings can be dem
onstrated only from veri?cation of the PAA representation
technique itself.
[0059] Third, breakpoints can be set. Since normalized
SAX entropy data have high normal distribution, one can
easily determine the breakpoints that produce equally sized
areas under the normal distribution curve.

[0060] Fourth, the Euclidean distance for the symbolic con
verted data as well can be calculated like Math Formula 3,
through which similarity of data and others can be identi?ed.

[Math Formula 3]

[0061] where Q and S refer to data converted into symbolic
representations.
[0062] Returning to FIG. 1, the classi?cation unit 300 clas
si?es packed executable by using the symbolic-converted
entropy data. That is, the classi?cation unit 300 classi?es
packing algorithms, by which corresponding packing is pro
duced. The operation of the classi?cation unit 300 is
described with reference to the drawings.

Sep. 25, 2014

[0063] FIG. 5 is a ?ow chart showing a method for classi
fying packing algorithms in accordance with an example
embodiment.

[0064] First, packing algorithm is classi?ed through com
parison with previously known packing algorithm (S310). To
this end, a classi?er for classifying packing should be con
structed and may be constructed under a supervised classi?
cation technique or an unsupervised classi?cation technique.
Further, with respect to learning of the classi?er, a Naive
Bayes classi?cation method, a support vector machine
(SVM) method, and others may be used, but the present
disclosure may not be limited thereto.

[0065] Meanwhile, classi?cation of packing algorithm is
selected based on similarity between the produced classi?er
and input packed executable (S320). In this case, the similar
ity can be calculated by using the following Math Formula 4:

[Formula 4]

[ling [ix-2] [:1 [:1

[0066] where a similarity coe?icient ((I>(x,y)) measures the
linear relationship between two different symbolic represen
tation data (x, y) and calculates the strength and the direction
of the linear relationship. The value is always between —1 and
l, where 1 indicates a strongly positive relation; 0 means no
relation; and —1 means a strongly negative relation.
[0067] If there is a class where the similarity to input
packed executable is a threshold value or more, the packed
executable is classi?ed to have been compressed by packing
algorithm of the corresponding class (S330).
[0068] However, there is no class where the similarity to
input packed executable is a threshold value or more, new
classi?cation is produced based on the corresponding pack
ing data (S340).
[0069] As described, since the example embodiments use
the entropy analysis for classifying packing, it can also per
form the classi?cation for the packing that was not previously
known. Further, by converting the time series data calculated
upon the entropy analysis into symbolic representations, a
calculation amount required for data learning can be signi?
cantly reduced.
[0070] The example embodiments can be embodied in a
storage medium including instruction codes executable by a
computer or processor such as a program module executed by
the computer or processor. A computer readable medium can
be any usable medium which can be accessed by the computer
and includes all volatile/nonvolatile and removable/non-re
movable media. Further, the computer readable medium may
include all computer storage and communication media. The
computer storage medium includes all volatile/nonvolatile
and removable/non-removable media embodied by a certain
method or technology for storing information such as com
puter readable instruction code, a data structure, a program
module or other data. The communication medium typically
includes the computer readable instruction code, the data
structure, the program module, or other data of a modulated
data signal such as a carrier wave, or other transmission
mechanism, and includes information transmission medi
ums.

US 2014/0289848 A1

[0071] The method and the system of the example embodi
ments have been described in relation to the certain examples.
However, the components or parts or all the operations of the
method and the system may be embodied using a computer
system having universally used hardware architecture.
[0072] The above description of the example embodiments
is provided for the purpose of illustration, and it would be
understood by those skilled in the art that various changes and
modi?cations may be made without changing technical con
ception and essential features of the example embodiments.
Thus, it is clear that the above-described example embodi
ments are illustrative in all aspects and do not limit the present
disclosure. For example, each component described to be of a
single type can be implemented in a distributed manner. Like
wise, components described to be distributed can be imple
mented in a combined manner.

[0073] The scope of the inventive concept is de?ned by the
following claims and their equivalents rather than by the
detailed description of the example embodiments. It shall be
understood that all modi?cations and embodiments con
ceived from the meaning and scope of the claims and their
equivalents are included in the scope of the inventive concept.
We claim:
1. A method for classifying packed executable, the method

comprising:
unpacking an input packed executable by using a decom

pression module included in the packed executable;
calculating an entropy value of a memory space on which

decompressed code is mounted in the unpacking step;
converting the entropy value into symbolic representa

tions; and
classifying packing algorithms of the packed executables

based on the entropy value converted into symbolic rep
resentations,

wherein the step of classifying includes inputting the
entropy value converted into symbolic representations
to a packing classi?er which classi?es packing algo
rithms of the packed executables based on similarity
between a pattern of the packing classi?er and the data
converted into the symbolic representations.

2. The method for classifying packed executable of claim
1:

wherein the step of calculating the entropy value includes:
calculating an entropy value of a memory space on which

the decompressed code is mounted, when execution of a
branch instruction is detected during the step of unpack
ing; and

1

1

1

1

Sep. 25, 2014

regarding an address, to which execution ?ow moves after
the calculated entropy value is converged, as an original
entry point.

3. The method for classifying packed executable of claim

wherein the step of converting converts the entropy value,
which are consecutive time series data, to be in a discrete
form in a reduced dimensional space, based on symbolic
aggregate approximation (SAX) algorithm.

4. The method for classifying packed executable of claim

wherein the step of converting includes:
segmenting the entropy value, by applying the piecewise

aggregate approximation (PAA) method to the entropy
value;

calculating a coef?cient for each of the segmented entropy
value by averaging time series values located in respec
tive segment of the segmented entropy value; and

symboliZing the coef?cients using a plurality of symbols.
5. The method for classifying packed executable of claim

wherein the step of classifying includes:
inputting the data converted into symbolic representations

to the packing classi?er generated from learning a pat
tern of a publicly known packing algorithm;

determining whether or not to belong to a class included in
the packing classi?er based on similarity between the
pattern of the packing classi?er and the data converted
into the symbolic representations; and

generating a new class for the corresponding packing data
if the similarity with the class included in the packing
classi?er is smaller than a threshold value.

6. The method for classifying packed executable of claim

wherein the step of classifying includes:
inputting the data converted into symbolic representations

to the packing classi?er generated from learning a pat
tern of a publicly known packing algorithm;

determining whether or not to belong to a class included in
the packing classi?er based on similarity between the
pattern of the packing classi?er and the data converted
into the symbolic representations; and

classifying the packing algorithm as a class with the high
est similarity if there is a class where similarity with a
class included in the packing classi?er is a threshold
value or higher.

