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Abstract

The completion times of tasks are not always predictable, and scheduling such tasks under energy
constrained environments has become an important issue. In this paper, we solve the utility maximization
problem in the execution of multiple tasks under a resource constraint. The tasks have probabilistic
execution times and are executable on discrete operation modes having different utilities with different
resource requirements. Armed with the theoretical solution to the problem, we design two adaptive
scheduling methods that efficiently work for the tasks having widely varying execution times under a
limited energy budget: Optimal Method and Approximate Method. The Optimal Method statistically yields
the maximum utility at the cost of heavy run-time overhead. The Approximate Method, on the other
hand, provides a near-maximum utility with much less overhead, where the utility decrease is bounded.
Extensive experiments on the adaptive MPEG streaming of multimedia tasks show that the proposed
methods give higher utility, by up to about 150%, than existing methods that solve for the worst-case

execution time.

Index Terms

Energy constraint, Utility maximization, Probabilistic execution time, Optimal algorithm, Approxi-

mate algorithm.

I. INTRODUCTION

For battery-operated mobile devices, energy management is an issue of paramount importance. Nu-

merous studies have been conducted to reduce operational energy consumption of the devices, thereby
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extending the battery lifetime. However, there has been a dearth of works that accommodate the possibility
of quality degradation for the purpose of completing the given task. In many tasks on mobile devices,
such flexibility could be of considerable value. On mobile IPTV devices, for instance, completing a live
sports broadcast in lowered quality is usually preferred to sudden termination in the middle of high
quality broadcasting due to lack of available energy [1]. Attempting to reduce the energy consumption
leaving the level of performance intact as in the aforementioned schemes has a more limited solution
space that it can lead to significantly lower user-perceived utility, i.e., unexpected task abortion instead
of lower quality. Thus we are motivated to develop an energy management framework that maximizes
the system performance subject to the battery lifetime for the (statistically) specified task duration.

In this paper, we assume that a given task can choose one of the energy-aware operation modes and the
task can change to another operation mode at any time. Each of energy-aware operation modes provides
different utility with correspondingly disparate energy consumption. Our solution framework focuses on
the scheduling decisions to be made over the set of energy-aware operation modes to attain the objective
of maximizing the utility value subject to battery lifetime constraint. Probabilistic Chip [2], selected as
one of the 10 emerging technologies of 2008 by MIT, is the most prominent device supporting a set of
energy-aware operation modes which trade a degree of computation accuracy induced by noise in CMOS
devices for substantial energy savings. Other representative examples of energy-aware operation modes
are: CPU voltage and frequency scaling [3], [4], energy-aware networking [5], [6], power-aware page
allocation [7], adaptive disk spin-down [8], power-aware backlight scaling [9], adaptive speed control of
motor [10], [11], and adaptive forward error correction (FEC) [12]. When these energy-aware operation
modes are executed with higher energy consumption, they yield better performance such as faster speed
of CPU, transmission of larger images, faster RAM access, faster disk access, brighter screen, faster
motor revolution, and more robust resiliency to error, respectively. In another work, combinations of
heterogeneous operations are handled as a set of modes in the cross-layer framework [13]. In this paper,
these performance metrics are quantified with what we call the utility value. If tasks are executed in
the energy-aware operation mode with a higher utility, the battery is consumed at a faster rate and vice
versa. In this setting, we investigate how to maximize the cumulative utility gained by performing dynamic
scheduling over the energy-aware operation modes of multiple tasks with the requirement to sustain the
energy support until their completion under a given energy budget.

For better utilization of available energy, we take into account the statistical execution times of
tasks when determining their operation modes, instead of the worst case. The execution times of most

multimedia tasks such as 3G cellular calls and IPTV streaming service are usually not predictable.
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This uncertainty makes it difficult to determine the energy consumption rates (i.e., the operation modes)
without premature exhaustion of battery. The most conservative model to deal with the execution time
unpredictability is to schedule for the worst-case execution time, but this approach results in significant
waste of resources if the average execution time is much shorter than the worst case. As an alternative,
therefore, we utilize the probability distribution of the given task’s execution time [3], [4], [14], [15]
for better energy management. If an enough number of the execution samples of the given task type
are collected, we can obtain the probability distribution of the completion time of the task, so as to

statistically estimate the execution time for the task’s next run.
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Fig. 1. Motivation example: (a) the conservative approach and (b) the probabilistic approach

In contrast to the existing proposals that select the operation mode based on the assumption that
tasks always carry on through their worst-case execution, our method assigns the high-utility high-energy
operation modes to those parts of the task execution that are more likely to perform. It can be shown that
our method statistically yields a higher utility than the method using any single operation mode throughout
the whole task. As an example of the application of the proposed idea, let us take a Major League Baseball
game played on a mobile IPTV device. The playing times of baseball games are between 2 and 4 hours in
most cases, but rarely exceed 4 hours with the worst-case value of about 8 hours. If the device’s battery
is running short, the proposed method assigns a high-resolution MPEG-4 streaming mode [16], [17] for
2 hours, and schedules increasingly lower-resolution modes for the execution thereafter. Statistically, this
approach can provide higher average resolution than the previous methods assigning the fixed streaming
mode, and guarantees that the IPTV device will work for 8 hours without battery exhaustion. Fig. 1
shows an example of assigning available energy of 30 Joules to a task having widely varying completion
times, where the task is executable in one of three operation modes whose energy consumption rates
are 9, 3 and 1 watts with their respective utility values of 9, 3 and 1 frames/sec. In Fig. 1(a), a fixed
operation mode executes the task for the worst-case time of 10 seconds, whereas the operation mode

executing the task is changed along with the elapsed execution time in Fig. 1(b). If the task is executed
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with the completion time of 2 seconds, the cumulative utility gained during its execution in Fig. 1(a)
is 6 frames, which is tripled in Fig. 1(b). In case the task is executed for the whole worst-case time,
both methods provide the same cumulative utility of 30 frames with the same energy consumption. If
the task is executed six times with completion times 2, 2, 2, 2, 2 and 10 seconds, the mean value of its
cumulative utility is 10 frames in Fig. 1(a), which is doubled in Fig. 1(b).

The contribution of this paper is threefold. We first show that the problem of maximizing the cumulative
utility of multiple tasks with the constraint of a single resource can be formulated into a tractable schedul-
ing problem of operation modes, if tasks have exact probabilistic execution times and are executable on
a set of discrete operation modes providing different utility with their correspondingly disparate resource
requirements. Second, armed with a derived optimal solution to the problem, we propose an adaptive
scheduling method, called Optimal Method, which determines an instant operation mode so as to maximize
the cumulative utility of multiple tasks while guaranteeing the completion with a given budget of energy.
The average time complexity of the Optimal Method is O(log% FErar- Ef‘io(N t.logy W*-logy Emar +
W?)) for M tasks, where N and W* are the number of available operations and the worst-case execution
time of i*” task and E,,, is given energy budget. Third, in order to address the complexity of the optimal
algorithm, we propose another scheduling algorithm, called Approximate Method, which provides a near
optimal utility with drastically reduced run-time overhead. The Approximate Method is applied to on-line
processing in a semi-static manner, where a set of solutions is computed at compile time and one of
them is selected at runtime according to the given energy budget. We show that the utility reduction in
the Approximate Method is bounded to a small number. Through experimental evaluation, we show that
the proposed methods provide higher utility than existing methods, up to about 150% in the cases.

The rest of this paper is organized as follows: In section 2, we provide background to facilitate
the understanding of the proposed methods and review the prior work. In section 3, we formulate the
maximization problem of cumulative utility gained from multiple tasks’ execution under a resource
constraint, and theoretically derive an optimal solution to the problem. In section 4, we describe the
detailed implementation of the optimal solution, called the Optimal Method, that adaptively schedules
the energy-aware operation modes with relatively heavy run-time overhead. As the main result of this
paper, we also describe a practically modified version of the optimal solution, called the Approximate
Method, which provides a near maximum utility with low run-time overhead. In section 5, we evaluate

the proposed methods and finally conclude this paper in section 6.
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II. BACKGROUND AND PREVIOUS WORK

In this section, we lay the groundwork for our proposal by defining key notions, and discuss the related

work.

A. Utility of Energy-aware Operation Mode and Measurement of Energy Consumption and Lifetime

Not surprisingly, empirical studies show that the operation modes consuming higher energy yield better
performance. For instance, the speed of Dynamic Voltage Scaling (DVS)-enabled CPU is exponentially
proportional to the energy consumption rate [3], [4], and the size of transmitted images on wireless
networks is linearly proportional to the energy consumption [18]. Essentially, we can see that there is
a tradeoff relation between the energy consumption and the performance. The DVS scheme can change
the clock frequency supplied to the CPU, Fine-Granular-Scalability (FGS) video coding [16], [17] and
adaptive FEC [19], [12] schemes can change the size of transmitted images per second, power-aware
backlight scaling [9] scheme can change the brightness of display screen, power-aware page allocation [7]
and adaptive disk spin-down [8] schemes can change the access time of memories, and adaptive motor
control [10], [11] scheme can change the moving speed of mobile robots. In this paper, we associate an
operation mode with the notion of utility, which denotes the aforementioned performance measure. We
assume that the utility value corresponding to each energy-aware operation mode is initially given by a
user or system administrator. As more realistic model, we consider an arbitrary set of discrete operation
modes instead of infinitely continuous modes.

When a given mobile device provides multiple modes, low-energy management mechanisms can make
use of the tradeoff between the utility and the energy consumption for the purpose of energy-efficient
operation. For instance, mobile robots can change their moving speed by controlling rotation speed of
motors, and the risk of collisions with obstacles by adjusting the sensing range of real-time obstacle
avoidance [10]. Assigning fast speed and wide sensing to earlier running time and vice versus to later
running time can reduce the mean completion time of search & rescue (or retrieval) [20], rather than
assigning a fixed speed and sensing range to the whole running time under the constraint of limited
energy amount.

Several tools are available to assist and possibly enable the utility-energy tradeoff. PowerScope [21],
Advanced Power Management(APM), Advanced Configuration and Power Interface(ACPI), PCCextend
140 CardBus extender [18], and an application-level tool [22] have been developed to allow the operating
system (OS) to accurately measure the energy consumption rate for executing each operation mode. The

lifetime prediction techniques [23], [24] enable the OS to estimate the lifetime of the battery based on
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the energy consumption rate of running tasks and the available energy of a battery. To manage a battery
lifetime for a given finite temporal horizon, OS can determine the maximally allocatable energy for the

execution of tasks given their energy consumption rates [25], [21].

B. Probabilistic execution time

For simplicity and safety, battery-operated systems could be designed to schedule tasks by their worst-
case execution times, i.e., to administer energy usage for the worst case. But it would lead to unnecessarily
low utility in case the execution time falls short of the worst case. Indeed, the execution times of tasks
can wildly vary due to the diversity of input data or disparate user requests made on them [4], [26], [27].
On the other hand, task scheduling approaches tailored to the average execution times are likely to suffer

from untimely energy depletion in case the task runs close to the worst case.
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Fig. 2. Distribution of task completion times: (a) the probability distribution of completion times, (b) the cumulative distribution

of Fig. (a), and the tail distribution of Fig. (b)

To overcome this problem, we propose in this paper that the probability distribution of execution times
should be exploited. The distribution could be derived from statistical models of the variation sources,
on-line profiling, or off-line profiling [3]. Fig. 2(a) shows an example model of probability distribution
of the execution times of a task, where Fig. 2(b) is its cumulative probability distribution. Fig. 2(c) is the
tail distribution of the cumulative probability distribution, denoted as P; at time . P, is the probability
that the task continues its execution for at least time ¢. Notice that if z < y, then P, > P, because the
cumulative distribution of all probability functions is always non-decreasing and thus its tail distribution
is always non-increasing.

It is certainly true that we cannot know a priori the exact completion time of a task with varying

execution times. Nevertheless, we still can make good use of the distribution of its previous completion
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times, in order to boost the total utility of the task execution. As we can see in Fig. 2(c), the tail distribution
of the task completion time is non-increasing, so the earlier processing time of the task always has higher
probability to be executed. We will prove later that in such case assigning a larger portion of available
energy to the earlier part of the processing leads to the maximum utility. The only remaining question is,
then, how to deal out the energy as a function of ¢ and P;. In Section III, we will formulate this problem

more formally, and find the optimal solution.

C. Related Work

Many low-energy management mechanisms [6], [28], [29], [30], [16] have been investigated as ways to
reduce energy consumption rate and thereby extend the lifetime of batteries while satisfying the required
minimum performance. Recently, some studies [21], [25], [31] have considered the control mechanisms
that accommodate performance degradation as a way to sustain the battery operation for a specified
critical duration. Graceful degradation [21], [25] or stopping unimportant tasks [31] when energy is low
can allow critical tasks to run for the specified duration. Lee, et al. [32], [33] addressed the problem
of maximizing the utilities, which consists of multi-dimensional values, with multiple tasks executing
under resource constraints. They showed that this problem is NP-hard and proposed iterative algorithms
to find a suboptimal solution with polynomial time complexity. Recent studies [34], [35] addressed the
problem of maximizing the utility of a real-time task while satisfying energy and real-time constraint.
Unfortunately, however, all of these studies considered the energy management of tasks only with their
fixed execution time, i.e., the worst-case execution time, lacking the consideration for many tasks with
varying execution times. More recent studies [36], [37] addressed a similar approach that maximizes the
utility of extra computation by dynamically exploiting the slack energy left by execution time variation.
This method uses the slack energy of previously scheduled task, earlier completed than the schedule,
for the additional computation of the later scheduled tasks, and works with an infinite continuum of
operation modes. Our approach contrasts with the work in two aspects: it can work during the execution
of concurrent tasks, and it assumes discrete operation modes, which is more realistic.

The probability distribution of task’s execution times has been utilized for the design of less energy
consumption in many real-time systems [3], [4], [15], [38], [39], [40]. These studies considered the
minimum energy consumption of CPU processing in the DVS framework, which dynamically accelerates
and decelerates the clock frequencies supplied to the CMOS-based processors along the execution of
tasks. Some of these methods [39], [40] could be applied to the problem tackled in this paper with some

modifications: changing the deadline constraint with the energy constraint, and changing the energy
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minimization of CPU with the utility maximization of a task. However, their practicability is an issue as
they are built on the exhaustive search over a finite number of transition points available at a given point
of execution. Since transitions are allowed at any point of a possibly large execution path, the heavy
computational cost makes them prohibitive for on-line processing. Furthermore, these methods deal with a
single task. Finally, speaking of a single task optimization, our previous work [27] maximizes total utility
for the execution of a single task on continuous operation modes with a specific relationship between

utility U and energy consumption rate R, i.e., U = (R)* for any 0 < R and 0 < «.

III. UTILITY MAXIMIZATION OF MULTIPLE TASKS UNDER A RESOURCE CONSTRAINT
A. Problem formulation

In this section, we formulate and solve the problem of maximizing the total utility gained during the
execution of M tasks, subject to the constraint that the total energy used during the execution is no
larger than the given energy budget. As assumed, the tasks have probabilistic execution times and are
executable on a finite set of operation modes. We denote the j* operation mode of the i task, its utility,
and its energy consumption rate as O;-, U]Z-' and R;-, respectively. Then an operation mode is a tuple given
as O} = [R},UJ]. If there are N* operation modes feasible for the execution of the i*" task, we denote
them as { O¢ = [R}, U}, ---, O%: = [R%:,Uk:] }. To accommodate “no operation” (NOP) during the
execution of this task in the formulation, we define a special (and virtual) operation mode O} = [U¢, RY],
where U¢ = 0 and R}, = 0. Finally, the utility is a concave function of the energy consumption rate, i.e.,

if R. < R;, then U} < U;. The following is the list of notations used in the formulation below.

o 7%(t): energy consumption rate of the instantaneous operation mode of i*" task at a time .

u’(t): utility of the instantaneous operation mode of i** task at a time ¢.

o W' the worst-case execution time of i*" task.

P}: the probability that the ith task continues its execution for at least ¢, as described in Section II-B.

o FE.qz: the energy budget.

The energy-constrained multi-task utility maximization problem can then be formulated as follows:
Mo W .
max{ Z/ wi(t)- Pidt}, (1)
=170
subject to XM, JW' i (1) dt < Epnas

where uf(t) and r¢(t) are given by the operation mode used at time ¢, and r*(t) € {R},---, R} and

ut(t) € {U§,---, Uk} for any 0 < ¢t < W*.
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B. Optimal solution with a single task

Before delving into the multi-task utility maximization problem directly, we first derive the optimal
solution for the single-task case. For N’ discrete operation modes of this task, Equation (1) is rewritten
as follows:

w w
max{ / u(t) - Py dt }, subject to/ r(t)dt < E, )
0 0

where FE is the energy budget allocated for this task. We refer to the schedule producing the maximum
utility as the Optimal Schedule. The Optimal Schedule has the following properties, which are formally

proved in Appendix.

Lemma 1.  The Optimal Schedule does not use the operation mode O, such that g”:g: < gi:%
forany z <y < z.
Lemma 2. The Optimal Schedule assigns higher-utility operation modes to the earlier processing

times and lower-utility operation mode to the posterior processing times.
Lemma 3. The utility generated by the Optimal Schedule is a concavely increasing function of the

given energy F.

We select a subset of N operation modes satisfying Lemma 1 among given N’ operation modes, and
denote them as {Oy, -+, Ox} (N < N'). If P; were identical over all ¢, choosing O; would maximize
the utility. But as P; is a decreasing function of £, the Optimal Schedule selects the operation mode

according to Equation 2, restated so that it satisfies Lemma 2 as follows:

TN

TN —1 1
max{ UN-/0 Ptdt-l-UN_l-/ Ptdt+---+U1-/ Pdt}, 3)
T

N T2

subject to Ry - mn + Ry—1 - (*ny—1 —7n) + -+ Ry - (mp —me) < E,

where 7y, is the transition point from Oy to Og_1 and 0 < 7 < 1 < W forany 0 < k < N.

If we know the values of all 7gs, we directly get the Optimal Schedule. Unfortunately, however, 7j’s
depend on the given value of E. To find the values of 7’s, we first verify a relationship among ms and
next exploit it to search 7’s in a bisection manner on the basis of the value of E. If there is a specific
relationship among 7;’s, we can obtain all 7;’s satisfying the relationship from a fixed value of 71. The
obtained 7;’s match with a value of E. Exhaustive search on the value of 71 enables us to find m;’s
satisfying the relationship and matching with the given value of E.

Theorem 1, proved in Appendix, shows a relationship among the values of 7s. Up to the time point

o, using Oq instead of O; generates larger utility with the same energy amount than using O; instead
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of Qg after the time point 7, because P, - R2 %11 > P, - yo U° for any ¢; < w9 and m; < 9.

Similarly, using O, instead of O;_1 up to the point 7, generates larger utility with the same energy

amount than using O,_; instead of Oy_o after the time point 7,_;. Hence, Py, - Vo=l P - Vizlo

R2 R1 - Rl RO
Us—Us LU0y . . Un—Un_1 . Un_1—Un_2
P7r3 R3—Ry — P7r2 Ro—R;> ’ PWN Ry—Rn_1 — PWN—l Ry_1—Rn_2°
Theorem 1.
IfO<my <my<W forany N>z >y>1, then Py, - Ze=Ue=t — p . Dy=lsmr
z y > yun =z y=4 To " Ry—Re—y  ~ ™ R,—R,_1"

The procedure to find mgs, whose sum of energy is equal to E while satisfying the condition of
Theorem 1, works as follows. Initially, it assigns m; = 1 and searches the time points 7} such that

Pr,

k

=Py - % g: R: L for 2 < k < N.If Pr, <1, then it assigns T to 7 so that the values of P,
satisfy the condition of Theorem 1. If (Ry - 7ny + Ry—1- (An—1 —7n) + -+ Ry - (m — m2)) < E, it
increases the value of 7; by one, searches the time points T}, and assigns each T}, to 7 for each k. This
procedure is repeated until the sum (Ry -7y + Ry—1 - (7n—1 — 7n) + -+ + Ry - (m1 — m2)) becomes
equal to E. If m; = W but the sum is still less than F, it increases the value of w9 by one, searches the

time points T} for 3 < k < N, and assigns each T} to m. Similarly, it increases the value of ;1 by

one if m; = W but the sum is still less than E.

C. Optimal solution with multiple tasks

We next consider the problem of maximizing the total utility of M tasks. In this section, we use
superscripts to refer to tasks for convenience. When W' is the maximum value derived from Equation 3

for given energy E’, Equation 1 can be reformulated as follows:
max{ ¥' + ...+ M} subjectto (E' +...+ EM) < E s 4)

According to Lemma 3 proved in Appendix, the value ;’T decreases as E* increases. To find the solution

of Equation 4, we can use the Lagrange Multiplier Method [41].

L(Ey,Eq,--- ,Ex,A) = (Ut + ...+ M) 4 X (B — (E* +... + EM)),
a—L:E,m—(El+...+EM):0

oA
and 2L —A=0for1 <k<N.

9E* — BE’“

The above equations show that we get the maximum value when the values of a\I/T become identical. In
other words, the maximum value of Equation 4 is achieved when the derivative of each ¥* with regard

to E* becomes the largest. We can numerically find this largest derivative of W* with regard to E* as

August 18, 2008 DRAFT



11

follows. Initially, zero energy is assigned to each task. It calculates the increment of additional utility of
each task when assigning an additional unit of energy, and allocates the additional unit energy only to
the task having the largest increment of utility. This procedure is repeated until the available energy is
completely allocated.

The derived solution maximizes the total utility of multiple tasks, if tasks have exact probabilistic
execution times and are executable on a set of discrete operation modes providing different utility with
their correspondingly disparate resource requirements. In the next section, for tasks having uncertain
and varying execution time, we will describe how to efficiently implement the derived solution for the
adaptive scheduling method of energy-aware operation modes. The derived solution will be reformed
to guarantee the support of minimum utility for the worst execution time, operate with low run-time

overhead, and accommodate the switching overhead between operation modes.

IV. APPROXIMATE SCHEDULING METHOD WITH LOW RUN-TIME OVERHEAD

For the execution of tasks having widely varying execution time, the proposed scheduling method
assigns the operation mode with higher utility to the more likely parts of the task execution with a purpose
to statistically maximize total utility, based on the solution derived in Section III-C. The proposed method
departs from the solution in that it always provides at least the minimum utility U; for the worst-case time
whereas the solution does not. That is, the proposed method does not use the operation mode Og. Then,
7t = W' for each i hence E,qp > Ef\il R - W'. Henceforth, we assume E,,q; > Ef\il R: - W', The
proposed method estimates the probabilistic execution time of the tasks on the basis of the distribution
of previous completion times'!, and assigns the running times of operation modes before starting their
next execution.

In this section, we ultimately propose an approximate scheduling method which provides a near-
maximum utility with acceptable run-time overhead. We first explain how to efficiently calculate the
assigned running time of energy-aware operation modes for a single task with arbitrarily given energy
E. Next we explain how to efficiently distribute available energy F,,,, to M tasks so as to maximize
the total utility without consideration of acceptable run-time overhead. Finally, we describe its practical

variant which operates with little run-time overhead by allowing a bounded utility decrease.

'In this paper, we assume that the information about the probability distribution of previous completion times is transmitted

from the application server. Transmission protocol of this information is out of scope.
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A. PFartitioning of scheduling ranges in a single task

In this subsection, for a single task, we search the running interval 71, 7] of each operation mode
Oy, in the Optimal Schedule along with the value of E. We first determine the value ranges of E in
which the same set of operation modes is used in the Optimal Schedule. Next, for each value range
lez, ey] of E and each operation Oy, in the set, we search the time range [Tinin, Tinae) Of the switching
point from O, to Oy_1, i.e., the switching point is T},;, when E = e, and T},,; when E = e,. Finally,
we make narrow the value range of E and the time range of switching point by dividing them using the

bisectional method.

Energy Consump. Rate

A
An .
Rn-a—
N1
S I Ol N
Ao — :
Rs — ‘
LB 4
B 3 [ a | oo
Ry — i . i :
BT B
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7-0 T54 T3,2 TN3 W

Fig. 3. Scheduling ranges determined by the Coarse-grain Partitioning procedure

Even though the operation modes Oy, satisfies the condition of Lemma 1, the Optimal Schedule does
not use it if P, > 1 or m; > W. Among the operation modes satisfying the condition of Lemma 1, the
value of E determines the subset of operation modes used in the Optimal Schedule. Based on the points
Ty and Ty defined as follows, we calculate the value range of E' where the same subset of operation

modes is used in the Optimal Schedule.

. _ Upx—U,— R,—R,_
o« Tpy: Pr,, = RrRm_ll . Uin;’_ll for each £ and y such that N >z >y > 1.

e Ty: P, =1and Pr,4; < 1.
Then, Pr, - %:7%’”:11 =Pr,,- %’:7%’:11, which satisfies the condition of Theorem 1. If R; - W < E <
((R2 — Ry) - T32 + Ry - W), the Optimal Schedule uses only O; and Oy. Similarly, the value range of

E using only Oq, -+, Oy in the Optimal Schedule is
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(Rk—1 — Rg—2) " Typ1+--+(Ro—Ry) Tpo+ R -W<EZ
(R — Rk—1) T+ +(R2 — Ry) - Thpp12+ R - W.

The energy range using O1, -+, O in the Optimal Schedule is smaller than that using O1,---,O_1
because Ty > Ty if x > y > k, such as shown in Fig. 3. We sort these N ranges in the increasing
order of their values and call the k'® range Range k. In the Range k, the Optimal Schedule uses only
O1, -+, Og. For further explanation, we use the following notations for each Range k:

¢ ep: the maximum energy of Range k. That is, ey = Z?:l A; where A; is the area of rectangles

having index j in Fig. 3.
o 1)y: the maximum utility provided in Range k. That is, 4 = Uy -fOT’““”“Pt dt+Ug—1 -f%:“:’k’“_le dt+
4 Uy f}’k"ﬂﬂpt dt.
o ¢ the efficiency of energy utilization in Range k. That is, ¢ = %
We refer to the procedure to calculate ey, 9, ¢p, and Ty, for 1 <k < Nand N >z >y > 1 and
store them as Coarse-grain Partitioning. Table I shows an example of four ranges calculated with four
operation modes by the Coarse-grain Partitioning procedure. In this example, the Optimal Schedule uses
Oy from 0 to W if E > e4. The computational complexity of this procedure is O(N? - log, W + W)
because the operation to find all T} ,’s requires O(N 2. logaW) steps and the operation to calculate the

values of 9 requires O(W) steps. Its memory complexity is O(NN?2) to store their transition points Ty, ,’s

for N > £ > y > 1 and the values of e, ¥y and ¢ for 1 <k < N.

TABLE 1

EXAMPLE OF COARSE-GRAIN PARTITIONING

‘ Range H Energy Selected Modes: Range Transition Points Range of Max Utility
E
1 E<e 0O1:0~m T = Ry U <)
2 e1 < E<er O2:0~m, O1 :m2a~W 7{_2:ER—21i11%¥1/V 1[)1<\i/S¢2
3 ea < E<es O3 :0~ 73, Oz : w3 ~ T2, 0<7T3$T4,3,T3,2<71'2$T4,2, ¢2<\I/§1/)3
4 es< E<eq | O4:0~my, O3 :my ~ 73, 0<ms <W,Ty3<m3<W, Y3 < U <y
Os:m3~m2, O1:m2a ~W Tip <ma <W,
R R =
=7y - Us—U3z | Ra—Ry
R4—R3  Us—U;

If e, < E < (ex + (Rxyr1 — Rg) - Tp), we can directly find the Optimal Schedule because P; = 1

for 0 <t < Tp. In this case, the operation mode Oy is used from time O to time ﬁ and the
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operation mode Oy is used from the time ﬁ to the time T} ;1. The other operation modes are

scheduled as in Range k. We define e, to be
Ckx — €k + (Rk—|—1 — Rk) - Tp.

If e < E < egy1, we cannot get the Optimal Schedule directly from the Coarse-grain Partitioning. In

this case, we create more (sub)ranges within Range (k + 1), such as shown in Fig. 4.

Py 4 minimum maximum . L+W T2
. | 1 T 2| 1 1
Ra T
y 41 0
----- -1 4.2,
Rs . 4 2:
(Us— Up(Ra— o) 3 41 1 !
4 — \3— 2 »n
(Ra— Re)(Us— Up) Y > Rz -]
| | 2 3 |41,
(Us = Us}(Ro— Ry) 1 g R
(Re= Ro) (U= 1)) Y : >\ | 1
vy y\ X >
To ! ! rw w
T+ W Ti T2

(a) (b)

Fig. 4. Example of the Fine-grain Partitioning procedure: (a) searching the transition points and (b) dividing a range of energy

into two subranges

For further partitioning within Range k, we use the value of P( To+Tisie
as y in Fig. 4(a). From this value, we search (k — 1) transition points T, such that Py, = Ze=Ue=1 .

Rp—Rp-1
% -y, such as shown in Fig. 4(a). Then, Range k is divided into two subranges, denoted as

where T 1,y = W, denoted

Range k.1 and Range k.2. The maximum energy of Range k.1 is
ex1 = (Ry — Rp—1) - % + (Rk—1— Rg—o)-T1+ ...+ (R3— Ry) - Ty—1+ Ry - W.

We call this procedure Fine-grain Partitioning. The computational complexity of the Fine-grain Parti-
tioning procedure is O(N - log, W). To find the Optimal Solution, this Fine-grain Partitioning procedure
is repeated until one of subranges has the maximum energy almost equal to F. Its average complexity is
O(N -logy W -logg Epyqz) because this procedure divides each range into two subranges having roughly

equal amount of energy. Calculating the maximum utility of each subrange requires O(W) steps.
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B. Optimal scheduling of multiple tasks

In this subsection, we propose an adaptive scheduling method, called Optimal Method, which distributes
available energy F,,,, to M tasks and finds the Optimal Schedule of each task with its distributed energy.
This method works in runtime and proceeds as follows. Each step, it calculates for each task the expected
utility increment for even allocation of available energy. Then it carries on the allocation of the divided
energy only to the task expected to have the largest increment. This procedure is repeated until the
available energy E,,,, is completely allocated. Finally, according to the amount of energy allocated to
each task, this method assigns the running times of operation modes for the tasks by exploiting the
Coarse-grain Partitioning and the Fine-grain Partitioning procedures.

The following pseudo-algorithm describes the Optimal Method, where E* and AE denote the amount
of energy allocated to i*" task and that remaining after allocating E?, i.e., AE = Epqp — Zfil E',

respectively.

Optimal Method

Step 1. Assign the energy RY - W' to E* and calculate AE < Ejpqp — Efil R - W

Step 2. Find the two maximum utility values when assigning E¢ and (E* + %) to each task by
exploiting the Coarse-grain Partitioning and the Fine-grain Partitioning procedures. Calculate
the utility increments when assigning the additional energy % to each task.

Step 3. Assign the additional energy % to the task having the largest utility increment in Step 2.
Update the value of AE, i.e., AE < (AE — A—Af)

Step 4. Repeat Steps 2 and 3 until AE ~ 0.

Step 5. Determine the running times of operation modes according to the value of E* for each task

by exploiting the Coarse-grain Partitioning and the Fine-grain Partitioning procedures.

The computational complexity of the Optimal Method is O(log% Ermae- Mo (N-logy W-logy Emas+
W?)). In Step 2, finding the maximum utility of each task requires O(N* - logy W* - logy Eppas + W?)
operations. The number of repetitions in Step 4 is log% FEpaz- In Step 5, determining the running time
of operation modes for each task requires O(N? - logy W* - logy Epnqz) operations. When the values of
W* and E,,q, are large, the computational overhead is too heavy to carry out this method at runtime.
Therefore in the next section, we modify this method to find a near-optimal solution with acceptable

compile-time overhead and little run-time overhead.
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C. Approximate scheduling of multiple tasks

In order to reduce the runtime overhead, we propose another adaptive scheduling method, called
Approximate Method, which simply selects one of pre-computed decisions for each task. To make a
set of pre-computed decisions, this method performs the Coarse-grain Partitioning and the Fine-grain

1

Partitioning at compile-time until e’“—+e_—e’“ < € for each k and i. We refer to the value of € as Error

Bound, which is given by the user or kthe system administrator and denotes the difference bound from
the solution of the Optimal Method. These subranges computed at compile-time are stored to guide the
runtime decisions.

The computational complexity at compile-time is O(max{N - logaW, W} - log(i¢ %), where
log(14.¢) %;‘,;i is the number of ranges generated at compile-time for i** task because (1+¢)? - Rt - W' ~

3\, -W'. The operation to find all Ty, ’s of each subrange k for N > z > y > 1 requires O(N -logos W)
steps as explained in section IV-A. The operations to calculate ey, ¥ and ¢;, of each subrange k require
O(N), O(W) and O(1) steps, respectively. The memory complexity to store these pre-computed solutions

R

of all subranges is O(Ef\il Nt. log(l +e) Tﬁ"—) Fig. 5 shows the data structure to store these pre-computed

solutions of a task.

elwlo [ [ Ipeeeatefulo] [ Ire--ate[ula] | [w
i start | end P! i start | end i start | end
mode | time | time mode | time | time mode | time | time
oy |ofo oy | 0] m oy | o[ w
On.1 0 0 Ont | 7 | 7o On.1 w| w
o, |o|w o, | m| w o, |[w|w

Fig. 5. Data structure to store the pre-computed solutions for each task

To distribute the available energy F,,q; to M tasks during on-line processing, this method proceeds
as follows. It first assigns the energy e} to E’ for the Range 1 of each task. Next, it selects the largest
value of ¢5* among all values of ¢9, and allocates the addition energy (e5* — ") to E™, i.e., E™ = ef".
Among the values of remaining gbfc not selected, it selects the largest value ¢7* and additionally allocates
(e —epr,) to E™. This procedure is repeated unless AE < (e — e]'_;). The following pseudo-code
describes the Approximation Method, where «; denotes the subrange finally selected for the execution of

R,
=), where

ih task. The computational complexity of the Approximation Method is O(Ef‘il log(14¢) 7

R, . . .
log(14¢) TNl is the number of subranges generated at compile-time for each task.
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Approximation Method
Step 1. Allocate €} (= R - W?) to E! for each i. That is, o;; <= 1 and AE < Epep — M, EL
Step 2. Search the largest value ¢’ || among all ¢fl 118, and allocate the energy (ey’ ¢ — ey ) to
E™. Thatis, E™ <= E™ + (ef, 11 —eq. ).
Step 3. Update the values of AE and a,. That is, AE <= AE — (e} | — el ) and oy, <= ap + 1.
Step 4. Repeat Steps 2 and 3, if AE > 0.
Step 5. Assign the running times of operation modes according to the schedule of the finally selected

subrange for each task.

Now, let us consider the difference between results of the Optimal Method and the Approximation
Method. We define error ratio as %, where ¥ and W are the results of the Optimal Method and the
Approximation Method, respectively. Then the Theorem 2 in the Appendix shows that the mean value
of the error ratio is less than the Error Bound € for any M > 1. The value of ¢ can be given by the
user or the system administrator at compile-time and controls the tradeoff between the solution’s quality
and overhead of the Approximation Method. If the value of € is decreased, the Approximation Method
provides higher utility at the cost of larger computational overhead at compile-time and larger memory

overhead to store more solutions at run-time.

D. Switching overhead between operation modes

To make the analysis more precise, in this section we consider an energy overhead to dynamically
change the operation mode of a task. Let Ay, denote the energy overhead to change the operation
mode from O to Op. When e < E < eg41, Ag41,x is required for the transition from Oy to Oy
because of additional use of O 1. In that case, while ey < E < ey + Ag41,k, using the energy Ay
for Oy, ..., Oy provides more utility than using the energy A1 j for the execution of Oy 1. We replace

the value of e, with (ey + Agy1,) and the values of 7, ..., w2 so that

ek+Ak+1’k:(Rk_kal)‘ﬂ-k‘I‘...“l_(RZ_Rl)'7T2+R1'W

_  Uk—Us—1  R;—R;j_. .
and Pr, = Pr, - g—p=> = for each 1 < j < k.

To find the values of 7,..., 72, we use the Fine-grain Partitioning procedure for a large Ay and
increase the original values of 7y, ..., T2 one by one for a small Ay ;. The computational complexity
accounting for the transitions with M tasks is O(3 M, (N?)? - log, W?), because the number of Ay 1 4

is (N* — 1) and the operation required for each transition is O(N°® - logy, W?).
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E. Extension to other problems

The proposed method can be applicable to other similar problems, which need to maximize the total
utility of tasks having probabilistic execution subject to a single resource constraint. For example, this
solution maximizes the entire communication quality of voice calls with a limited amount of prepayment
deposit, where charging per unit time depends on the communication quality and voice calls have widely
varied communication times. As well, this solution can maximize the energy saving of CPU executing
real-time tasks with a deadline constraint of the tasks, where the processing speed of DVS-enabled CPU

depends on its energy consumption and the tasks have widely varied computation amount.

V. PERFORMANCE EVALUATION

In this section, we compare the proposed methods with existing methods [21], [25]. For evaluation
metric, we define Utility Increment to be

L]PT ;JTU x 100,
where T'Up, and T'U, are the total utility provided by the proposed method and by the existing method,
respectively. This is the ratio of the additional utility created by the proposed method to that produced in
the existing method. We also define Feasible Energy to be %, where Ej(= YM_ R W™) and
En(= E%I:l R7T.. - W™) are the minimum energy required to complete the task in the lowest operation
mode and in the highest operation mode for the worst time, respectively. The Feasible Energy is the ratio
of the remaining energy after the worst time execution in O; to the energy difference when assigning
On and O; for the worst time execution. Because the worst-case execution time is usually selected with
a sufficiently large value, the range [E;, Ejp] covers the majority of battery’s energy if the number of
tasks or the energy difference between O; and Oy is large. Here, we do not take into account the energy

overhead required to change operation modes because the previous work [21] showed that the overhead

is relatively negligible.

A. Models of operation modes and varying execution times

To model the multi-task execution environment, we draw the data on the operation modes from the
MPEG-4 FGS streaming [16] and the Pioneer 3DX robot systems [11]. The video quality of the MPEG
streaming in the optimized communication and the straight moving speed of the robot without load are

used for their corresponding utility. Fig. 6 shows the relationship between their utility values and their
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Fig. 6. Utility and energy consumption rate of measured data and selected data in (a) the MPEG streaming and (b) the Pioneer

robot

TABLE I

MODELS OF OPERATION MODES

(a) Video qualities and energy consumption rates of MPEG-4 FGS streaming
Operation Mode H O ‘ 02 ‘ O3 ‘ O4 ‘ Os ‘

Utility = PSNR (dB) || 30 | 36 44 60 90
Energy (ml/s) 82 | 100 | 125 | 177 | 280

(b) Motor speeds and energy consumption rates of Pioneer 3DX robot
Operation Mode H O, ‘ (o) ‘ O3 ‘ on ‘

Utility = Speed (mm/s) 100 150 400 850
Energy (ml/s) 1200 | 1500 | 3300 | 6600

energy consumption rates. Their utility values are almost linearly proportional to the energy consumption
rates of the 802.11b WLAN card and the robot’s motors as follows, respectively.

« Energy rate of WLAN card (mJ/s) = 0.35 x PSNR of MPEG streaming (dB)

« Energy rate of robot’s motors (mJ/s) = 7.4 x Moving Speed (mm/s) + 290

It is clear that the upper bound of Utility Increment is UNT_lUl Evaluation results are limited by the
upper bound of Utility Increment. In order to avoid low upper bound of Utility Increment, we select three
data from the measured 6 data of the MPEG streaming and generate two data based on the above linear
increment in Fig. 6(a), while we just select four data from the measured 16 data of the robot in Fig. 6(b).

Table II(a) shows the five operation modes of the MPEG-4 FGS streaming, and Table II(b) shows the
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Fig. 7. Probability distribution of (a) the running times of YouTube clips and (b) the playing times of MLB baseball games

four operation modes of the robot, whose utility is a concave function of their energy consumption rate?.

In order to evaluate the impact of different distributions of execution times, we use the data from both
real-life multimedia tasks and synthetically generated tasks. The execution times of multimedia tasks are
drawn from the running time distribution of 2 sets of YouTube video clips (Fig. 7(a), 10K clips per set)
[42] and the playing time distribution of 2006 and 2007 New York Yankees baseball games (Fig. 7(a))
[43]. The longest running time of clips in the set 1, 3580 seconds, is used for the worst-case time. In
the case of baseball games, the longest playing time in 2006 is 330 minutes.

The execution times of synthetic tasks are generated between 1 and 1,000 with normal, exponential,
and uniform distributions. The worst-case execution time of all synthetic tasks is given as 1,000. Those
exceeding the worst time are replaced with the worst time. The mean value is initially given as 50% of
the worst time in the normal distribution and exponential distribution, and the standard deviation of the
normal distribution is given as 10% of the mean value. In the performance evaluation, the average values

of results obtained from 100,000 synthetic tasks are used.

B. Results of a single multimedia task

Fig. 8 shows the total utility gained from the execution of the multimedia tasks with the five operation

modes in Table II(a). In the Approximate Method, the Error Bound € is given as 0.05 (5%). Fig. 8(a)

2Even if there are operation modes whose utility values do not follow the concave function of their energy consumption rates,

it is shown that they are never used in the Optimal Schedule by Lemma 2 in Section III-B.
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Fig. 8. Total utility against the values of Feasible Energy in (a) YouTube clips and (b) baseball games
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Fig. 9. Utility Increments against the values of Feasible Energy in (a) YouTube clips and (b) baseball games

and (b) show the average values of the total utility in 10,000 runs of the set 2’s clips and in 162 runs of
2007 baseball games, respectively. The total utility in Fig. 8 is the integration of resolution gained from
the whole MPEG-4 streaming. The total utility of the Optimal Method and the Approximate Method in
Fig. 8(a) increases more rapidly, compared with those in Fig. 8(b). This is mainly due to the relatively
smaller mean value of Fig. 8(a). The increase patterns of the existing method in Fig. 8(a) and (b), however,
are almost identical.

Fig. 9(a) and (b) show the average values of Utility Increment. When the Feasible Energy is 20%, the
Approximate Method and the Optimal Method show the best value, 148.4% and 148.5% in Fig. 9(a) and
67.4% and 73.7% when the Feasible Energy is 45% in Fig. 9(b), respectively. The mean Utility Increments
of the Approximate Method and the Optimal Method in Fig. 9(a) are 83.0% and 83.2%, and those in
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TABLE III

ERROR RATIO (%) OF THE APPROXIMATE METHOD

(a) YouTube clips

Feasible Energy || 5% | 10% | 15% | 20% | 25% | 30% | 35% | 40% | 45% | s0% | 55% | 60% | 65% | 70%
¢ = 3% 06| 05]05]00] 0000000000l 00]o00]00]o00] o0

e = 5% 06 | 05 ] 05|00 00000000/ 00]00]o00]00]o00] 00

e = 10% 7 o5 |17 ]00]02]0000]00/00]00]00]o00]o00] o0

e = 20% 147 9 [ 17100 ] 0202]03]00]00]00]00]00]o00] 00

e = 30% 147197 17 | 3031 l02]03 0000|0001 00]o00]o00

(b) Baseball games

Feasible Energy || 5% | 10% | 15% [ 20% | 25% | 30% | 35% | 40% | 45% | 50% | 55% | 60% | 65% | 70%
¢ =3% 23] 12 1130306201207 18] 13 ]01]07]02]01

e =5% 23 12 |43 31302012 073730 12]15]02]03

e = 10% 23] 12 | 43 [ 85 302012 07715745 15]02]00

e = 20% 23] 12 |106] 85 | 30 | 109 | 12 | 81 | 141] 57 [100] 1.5 | 28 | 35

e = 30% 23 12 | 106|197 30 [ 109 | 12 | 81 | 141] 57 [100] 1.5 | 28 | 35

TABLE IV

NUMBER OF PRE-CALCULATED SOLUTIONS FOR THE APPROXIMATE METHOD

10% | 20% | 30%

5%

Error Bound H 3%

YouTube clips 95 | 69 45 28 23
Baseball games || 66 | 41 22 14 12

Fig. 9(b) are 41.4% and 43.5%, respectively. This experiment shows that the proposed method has better
performance for a smaller mean value compared with the worst-case execution time. If the worst-case
time is determined too tightly, the risk to irresistibly stop the execution before completion due to lacking
energy is increased. The large worst-case value expedites the profitable capability to accommodate the
completion of long execution exceeding the expected maximum execution time.

We examine the error ratio of the Approximate Method against various values of Error Bound. Table III
shows the error ratios, which are rounded off to two decimal places, when e = 3, e = 5, € = 10, € = 20
and € = 30. Because the error ratios when Feasible Energy > 70% are smaller than 1%, we do not
display them. The average value of error ratios is smaller than the given Error Bound in all cases. The

error ratios in Table III(a) are very close to O except when Feasible Energy = 5% or 10%, whereas those
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Fig. 10. Utility Increments against the values of Feasible Energy (a) when using six operation modes with additional O¢ =

[Rs = 502, Us = 150] and (b) when using four operation modes without Os

in Table III(b) are relatively large in several places of Feasible Energy. This is because the total utility
in Fig. 8(a) becomes close to the upper bound of the total utility when Feasible Energy = 15% due to
its relatively smaller mean execution time. In contrast, the total utility in Fig. 8(b) becomes close to the
upper bound when Feasible Energy = 65% due to its relatively larger mean execution time.

Table IV shows the number of solutions calculated at compile-time and stored for the run-time selection
of the Approximate Method, when ¢ = 3%, ¢ = 5%, € = 10%, € = 20% and € = 30%. As the value
of Error Bound decreases, the number of pre-calculated solutions increases. The number of solutions
for YouTube clips is relatively larger than that for baseball games. The number of subranges generated
within Range 5 for YouTube clips is much larger than that for baseball games, while the numbers of
subranges generated within Range 1, Range 2, Range 3 and Range 4 for YouTube clips are equal to or
slightly smaller than those for baseball games. This is because the difference between the minimum and
maximum energy of Range 5 for YouTube clips is larger than that for baseball games. The minimum
energy of Range 5 for YouTube clips is equal to about Feasible Energy 7% , whereas that for baseball
games is equal to about Feasible Energy 24%. The maximum energy of Range 5 is equal to Feasible
Energy 100% in both cases.

To explore the effect of different utility definitions, we now change the utility assigned to each operation
mode. Fig. 10(a) and (b) show the results of the YouTube clips when using six operation modes with
an additional operation mode Og = [Rg = 502, Ug = 150] and when when using four operation modes

without the operation mode Os, respectively. Through the comparison of these results with those of
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Fig. 11. (a) Utility Increments and (b) error ratios of the Approximate Method against the worst-case value

Fig. 9(a), it is confirmed that the proposed methods achieve better Utility Increment when the relative
difference of utility values between O; and Oy, [{]—’I’, becomes larger.

To examine the impact of various distributions having different mean values, we change the worst
execution time 3580 of the YouTube clips with 500, 1000 or 2000. The execution times exceeding the
given worst value are truncated at the worst value. As the worst value decreases, the mean execution time
of the YouTube clips becomes close to the worst value. Fig. 11(a) shows the average Utility Increments
of the Approximate Method in the second set of 10,000 clips when the worst execution time is 500,
1000, 2000 or 3580. The Approximate Method achieves better utility enhancement when the mean value
of execution times is smaller than their worst value. When the Feasible Energy is larger, the performance
of the Approximate Method is less sensitive to the mean value of execution times. Fig. 11(b) shows
the error ratios of the Approximate Method with the Error Bound 10%. The mean error ratios when
W =500, W =1,000, W = 2,000 and W = 3,580 are 1.08%, 0.78%, 0.26% and 0.08%, respectively.
The Approximate Method has larger error ratio when the mean value of execution times is closer to their

worst value.

C. Results for synthetic tasks

We examine the performance impact when the probability distribution of execution times performed
with the proposed method does not match exactly with the expectation of the probability distribution P;.
In this experiment, we use the synthetic tasks generated with normal and exponential distributions. Fig. 12

shows Utility Increments of the Approximate Method with the operation modes in Table II(a), where
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Fig. 12.  Utility Increments with inaccurate expectation of the probability P; in (a) normal distribution and (b) exponential

distribution
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Fig. 13.  Utility Increments with accurate expectation of the probability P; in (a) normal distribution and (b) exponential

distribution

"Mean Value’ denotes the ratio of the mean execution time to the worst-case execution time. Fig. 12(a)
and (b) show the results when tasks are generated with normal distribution and exponential distribution,
respectively. The mean value of execution times used for the calculation of the probability distribution
P, is fixed to 50% of the worst time, whereas the mean value of execution times performed with the
proposed method is changed. In the figure, the performance of the Approximate Method becomes worse

as the mean value of actual execution times is closer to the worst execution time. As the value of Feasible
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Fig. 14. Utility Increments of two tasks against the Partition Ratio of Feasible Energy

Energy becomes larger, the performance difference is less sensitive to the mean value of actual execution
times.

Fig. 13(a) and (b) show the results when the probability distribution of execution times performed with
the proposed method matches well with the expectation of the probability distribution P;. Comparing the
results of Fig. 12 with those of Fig. 13, it is shown that the performance of the Approximate Method
is less sensitive to the expectation accuracy of the probability distribution P, if the Feasible Energy
becomes larger. In the experiments of Fig. 12 and Fig. 13, the error ratio of the Approximate Method
performed with the Error Bound 5% is always smaller than 5%.

We examine the performance of the Approximate Method when two tasks are running concurrently.
The first task is executed with the five operation modes of Table II(a) and generated with normal and
exponential distributions. The second task is executed with the four operation modes of Table II(b)
and generated with uniform distribution. Their mean values are the half of their worst values. The
execution times used for the calculation of P, are also generated with the same distribution for each task.
Fig. 14(a) and (b) show the results when the first task is generated with normal distribution and exponential
distribution respectively, where ’Partition Ratio’ denotes the ratio of the energy amount assigned for the
first task to that of F,,,,. Note that the previous method has different values of total utility according to

the value of Partition Ratio, while the Approximate Method has an identical value for the same Feasible
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Energy. It is interesting that the best case of Partition Ratio in the previous method depends on the value
of Feasible Energy. The best case of Partition Ratio in the previous method is identical in Fig. 14(a) and
(b). In this experiment, the error ratio of the Approximate Method performed with Error Bound 5% is

less than 5% in all cases.

VI. CONCLUSION

For mobile wireless systems relying on limited budget of energy, we propose an adaptive scheduling
method of discrete energy-aware operation modes, called Optimal Method, which statistically maximizes
the total utility of multiple tasks having probabilistic execution time with a given energy budget. In
order to release the computation overhead of the Optimal Method at runtime, we also propose another
scheduling method, called Approximate Method, which provides a near maximum utility within a given
error bound and little runtime overhead. The proposed methods assign the operation mode having higher
utility to the execution parts having higher probability, whereas the existing method assigns a fixed
operation mode derived from the assumption that tasks are always executed for the worst-case execution
time.

Our experiments on the adaptive MPEG video streaming of multimedia tasks show that the proposed
methods provide higher utility, up to about 150%, than the previous method. Through extensive experi-
ments, we derive the following implications:

« The error ratio of the Approximate Method is smaller than the given value of Error Bound in all

cases.

« The Approximate Method gives larger increment of utility over the previous method, when the
difference between the utility values of operation modes becomes larger.

« The Approximate Method gives larger increment of utility over the previous method, when the mean
value of varying execution times is relative smaller than their worst value. The increment of utility
is less sensitive to the mean value of varying execution times, if the given budget of energy is larger.

« The Approximate Method gives larger increment of utility over the previous method with more
accurate expectation of the probability distribution of varying execution times. The increment of
utility becomes less sensitive to the expectation accuracy of varying execution times, if the given
budget of energy is larger.

« In the previous method, the best partitioning ratio of available energy among multiple tasks depends

on the value of the available energy amount.

In future work, we will implement a prototype system equipped with the proposed method.
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APPENDIX

Lemma /: If g % < gz:%" for any z < y < z, the operation mode Oy is not used in the Optimal

Schedule.

<

Proof: Let us assume that the Optimal Schedule uses the operation mode O, from time ¢ to time

(t + ). Then we can make another schedule by replacing O, with the operation mode O, from time

t to time (¢ + W) and with the operation mode O, from time (t + Fa=fela %R”)""
t+ (Ry—Rg) -«

Because P; is non-increasing, [/T*U, - P, dt < (, e U, - Prdt+ ft+3gy_Rm) .« Ug - Py dt). That is,

) to time (¢ + ).

this schedule provides more utilities than the Optimal Schedule with the same amount of energy. This

is a contradiction on the definition of the Optimal Schedule. Hence, the Optimal Schedule does not use

the operation mode Oy such that g %’ < g U’ forany z < y < z. [ |

Lemma 2: In the Optimal Schedule, u(¢;) > u(t2) and r(t1) > r(t2) for any ¢; < to.

Proof: Let us assume that u(¢1) < u(t2) in the Optimal Schedule for any ¢; < to. We can make
another schedule by replacing the operation mode at a time #; with that at a time 2. Then this schedule
provides more utilities than the Optimal Schedule, because P; is non-increasing function of ¢. This is a
contradiction on the definition of the Optimal Schedule. Hence, u(t1) > u(t2) and r(¢1) > r(t2) for any

t1 < tg in the Optimal Schedule. [ ]

Theorem /: The values of m in Equation 3 have the following relationship in the Optimal Schedule:

U —Us_ U,—Uy_1 :
Pﬁm-Rm_Rm_ll:Pﬂy-R;‘_iRz_ll1f0<7r$<7ry§WforanyN2x>y>O.

Proof: By Lemma 2, the utility values of the operation modes used in the Optimal Schedule construct
a concave function with input value of their energy consumptions. Let us apply the Lagrange Multiplier

Method [41] to solve Equation 3.

L(rn, N1, -+, %1,A) = (Un —Un=1) - [oVPedt + -+ (U — Uh) - [i?Pedt + (U — Up) -
Jo'Prdt+ X (E— ((Rv — Rn—1) - 7N + -+ (Re — Ry1) - ma + (R1 — Ry) - m1)),
g—i:E—((RN—RN—ﬂ-7rN+---+(R2—R1)-7r2-|-R1'7T1)ZO,

Ui—Us-1) [T* P d
and 2 — UV Py (R Ry ) =0 for 1<k <N
"k Pyd ]
Then, % =P, =X ?75’“_1 for 1 < k < N and the value of Py, is proportional to the value of
r—Re—1 2—Us— U,—Uy_1
7& Z Hence, Py, - gz_gz_l =Py, - 7}{ —5— forany N >z >y > 1. [

Lemma 3: The utility values of the Optimal Schedule construct a concavely increasing function with
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a given energy F as input value.

Proof: By Lemma 2, u(t1) > u(te2) and r(t1) > r(t2) for any ¢; < t2 in the Optimal Schedule. Then,
u1(t) < uo(t) for any E; < F5 and any t where uq(t) and us(t) denote utility values of the operation
mode assigned at a time ¢ in the Optimal Schedule with energy amount F; and Fs, respectively. Because

:f;((g > 1:2(%) for all operation modes used in the Optimal Schedule by Lemma 1 and P; is non-increasing

along with values of ¢, the increment of additional utilities with additional unit energy is non-increasing
as the value of E increases. This means that the utility values of the Optimal Schedule construct a

concavely increasing function with a given energy E as input value. [ |

Lemma 4: When M = 1, the mean value of the error ratio is smaller than the Error Bound e.
Proof: When e < Epq. < egy1, the Approximate Method provides the utilities of 15 and the

Optimal Method provides at most the utilities of t,,1. Because U < Yr+1 and U = Pk, ‘i'% <

¢k+&J_¢k < w’c+12;:¢k . Because the values of 1, construct a concavely increasing function with input of

e, by Lemma 3, f—: > %:1 and thus > ¢ Then, Le1—% < e“é;“ <e Hence, =¥ <¢c. m

Pr
Yk+1 = ept1 Ve - 4

i 7 y/(x+1
| d
A | (4
= Wy i 7
: g
i 4
<> Yy 4
A i//
¢ > W1 -
| Y
e(x eoc+1

Fig. 15.  Relationship among the values of wé;, ¢4, 11 and Wi,

Theorem 2: The mean value of the error ratio is smaller than the Error Bound for any M > 1.
Proof: Lemma 4 shows that the error ratio of the Approximate Method is smaller than ¢ when
M = 1. Let us check the case when M > 2. We use the following notation for clear explanation.
« Ei: the value of E! assigned to i-th task by the Optimal Method.
« Ui the value of U gained from ¢-th task in the Optimal Method.
« wi: the instant derivative value of Ui with regard to the value of E.

« Ei: the value of E! assigned to i-th task by the Approximate Method.

« Ti: the value of O gained from :-th task in the Approximate Method.
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« wi: the instant derivative value of Ui with regard to the value of Ei.
. qﬁfh_: the efficiency of energy utilization of the subrange finally selected by the Approximate Method
for ¢-th task.
Then ¥ = Y M, Ui, Brpop = M, EL & = M U and Epge > XM, B
Lemma 3 shows that the value of wi decreases as the value of E‘ increases for each i. It is clear

that Ef < E! and W% < Wi,

if u;; > u;; for each 7. The Approximate Method preferentially selects
the subrange having the largest value of ¢’ among all tasks until Ey,.p < Zf\il Ei. Then wi >
maxlSjSM{qﬁin} > maxlSjSM{wi;+1}, such as shown in Fig. 15. The Optimal Method assigns
additional energy to the task having the highest derivative value until F,,., = Zf‘il E‘. That is,
W > maxlSjSM{wa;Jrl} > ‘*’(ix:+1 for each i. If wi > wa:H for each i, then Wi < Yt 4 and
(T —0) < =M (4. 11 — 9L.). Finally, ‘1'31' < ﬁ’;q’ < Z%gww) and Z%gwqj) < € because
w < € by Lemma 4. Consequently, ‘i’%‘p < € for any JM_ > 1. i [ |

i
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