
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4, August 2010 671
Copyright ⓒ 2010 KSII

This work was supported by the MKE (Ministry of Knowledge Economy), Korea, under the ITRC program
supervised by the NIPA (National IT Industry Promotion Agency) (NIPA-2009-(C1090-0902-0016)) and the IT
R&D program of MKE/KEIT (KI001863, The Development of Active Detection and Response Technology against
Botnet). Additionally supported by the National IT Industry Promotion Agency (NIPA) under the program of
Software Engineering Technologies Development.

DOI: 10.3837/tiis.2010.08.013

Classifying Rules by In-out Traffic Direction
to Avoid Security Policy Anomaly

Sunghyun Kim and Heejo Lee

Dept. of Computer Science and Engineering, Korea University
Seoul, Korea

[e-mail: afshkim, heejo@korea.ac.kr]
*Corresponding author: Heejo Lee

Received February 11, 2010; revised May 7 and July 18, 2010; accepted July 23, 2010;

published August 27, 2010

Abstract

The continuous growth of attacks in the Internet causes to generate a number of rules in
security devices such as Intrusion Prevention Systems, firewalls, etc. Policy anomalies in
security devices create security holes and prevent the system from determining quickly
whether allow or deny a packet. Policy anomalies exist among the rules in multiple security
devices as well as in a single security device. The solution for policy anomalies requires
complex and complicated algorithms. In this paper, we propose a new method to remove
policy anomalies in a single security device and avoid policy anomalies among the rules in
distributed security devices. The proposed method classifies rules according to traffic
direction and checks policy anomalies in each device. It is unnecessary to compare the rules
for outgoing traffic with the rules for incoming traffic. Therefore, classifying rules by in-out
traffic, the proposed method can reduce the number of rules to be compared up to a half.
Instead of detecting policy anomalies in distributed security devices, one adopts the rules from
others for avoiding anomaly. After removing policy anomalies in each device, other firewalls
can keep the policy consistency without anomalies by adopting the rules of a trusted firewall.
In addition, it blocks unnecessary traffic because a source side sends as much traffic as the
destination side accepts. Also we explain another policy anomaly which can be found under a
connection-oriented communication protocol.

Keywords: Firewall, security policy, policy anomalies, network security, ACL

672 Kim et al.: Classifying Rules by In-out Traffic Direction to Avoid Security Policy Anomaly

1. Introduction

The basic function of a firewall is to screen network communications to prevent
unauthorized access to or from a computer network [1]. Firewalls decide whether to deny or
allow traffic according to a predefined set of rules. Because firewalls provide fundamental
protection for the target network, they play a crucial role in the network traffic management.
To cope with increasing attacks and threats for network, most firewalls have a large number of
rules. A rule consists of predicates for protocol fields and appropriate action. When all
predicates of a rule are matched, firewalls allow or deny the packet based on the action of rules.
Firewalls are generally defined by order-sensitive and list-based rule set. Therefore, firewalls
find the first rule applied to packets among a set of rules.

As Wool observed [2], most firewalls include various types of configuration errors, because
the rule management is a complicated, complex and error-prone tasks for network
administrators and system managers. Though firewalls have been improved to handle high
speed network traffic and a lot of rules, unnecessary rules may downgrade the performance. If
there are rules which have different decisions to the same packet, a minor modification of
predicates or orders in a rule set can generate security holes. When new rules are added or
existing rules are deleted, unless you carefully consider relationships among the rules,
firewalls may deny normal services or permit attack traffic.

Predicates in a rule can be presented by multi-dimensional domain regions. Policy
anomalies in a rule set result from the overlap of the domain region among the rules. If no
overlap exists in all domain regions of predicates, in other words, if all predicates among the
rules are completely disjointed with others, policy anomalies will not happen except
wrongly-configured rules. Policy anomalies among the rules occur in both single and multiple
devices. Unlike in a single firewall, the overlap of predicates among the rules in distributed
firewalls can be normal or abnormal relations according to decision of rules.

With the observation of network traffic and dependency among the rules, we propose a new
method to remove policy anomalies in a single firewall and avoid policy anomalies in
distributed firewalls. The proposed method classifies rules by in-out traffic as our previous
research did [3]. It is similar to our previous research in that the proposed method splits
overlapping regions from predicates of rules and generates completely disjointed rules without
dependency among the rules. However, instead of comparing rules to find anomaly among
firewalls, the proposed method uses the aggressive way which could avoid anomalies by
replacing the one’s rules with the others. The contributions of this study are as follows:

• We found a new kind of misconfiguration based on communication protocols. When some
addresses in a rule set send without receiving or receive without sending traffic under a
two-way communication protocol, the network connection cannot be established. We
included the way to find and resolve the rules having an asymmetrical communication.

• We reduced the unnecessary cost of rule comparisons to find policy anomalies in firewalls.
The proposed method classifies rules of all firewalls into two categories, rules for incoming
traffic and rules for outgoing traffic. One firewall’s rules for incoming traffic have to be
matched the other firewalls' rules for outgoing traffic and vice versa. Therefore, without
detecting rule anomalies, we replaced the other firewalls' incoming rules by one firewall's
outgoing rules or vice versa.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4 August 2010 673

• We blocked the unnecessary traffic from source devices. The proposed method adopts
rules from the other devices. It means that the source devices send the packets as much as
the destination devices accept and vice versa.

The remainder of this paper is organized as follows: Chapter 2 briefly outlines related work.
Chapter 3 explains anomaly problem in security policy. Chapter 4 describes the proposed
method for a single security device. Chapter 5 presents the proposed method for multiple
security devices. Chapter 6 presents implemented application and experimental results. In
Chapter 7, we summarize our experience.

2. Related Work

A firewall is the network equipment that denies or accepts a packet based on policy. Policy
anomalies occur when multiple rules are applied a packet in a single device. In list-based
firewalls, since only the first matching rule is applied to the packet, the others are useless.
However, policy anomalies in distributed firewall are more complicated than in a single
firewall. Both network topologies and data paths should be considered when detecting policy
anomalies. There have been many challenges to solving such anomalies and maintaining the
configuration integrity of the security policy.

Al-Shaer et al. [4][5][6] analyzed anomalies that can occur in a single firewall or in multiple
firewalls. They formalized the relations among the rules and represented the firewall policy by
a policy tree. They also devised a state diagram for discovering firewall anomalies. This
technique was implemented in a software tool called the Firewall Policy Advisor (FPA). The
FPA finds potential problems in legacy firewalls and supports anomaly-free policy editing for
insertion, removal, and modification of rules.

Hamed et al. [7] provided the taxonomy of policy anomalies classified into access-list
conflicts and map-list conflicts in network security devices. They tried to find policy conflicts
in various types of security devices and implemented the Security Policy Advisor (SPA) tool,
which used the Ordered Binary Decision Diagram (OBDD) [8] to present and manipulate the
policy expressions. The SPA supports automatic discovery of security policy conflicts among
firewalls including IPSec devices.

Liu and Gupda [9][10][11] proposed three design principles for a firewall: consistency,
which means that the rules are ordered correctly; completeness which means that every packet
satisfies at least one rule in the firewall; and compactness which means that the firewall has no
redundant rules. They developed the Firewall Decision Diagram (FDD) to implement them.
They applied a sequence of five algorithms to FDD to generate, to reduce, and to simplify the
target firewall rules for maintaining consistency, compactness, and completeness of the
original FDD.

Lu et al. [12] proposed a method of representing the firewall rule table that allows for a
comparison of two tables. They compared the similarities between a set of packets that are
permitted by the two tables. If the sets of packets are same, the two tables are deemed
equivalent. This method can also be used to analyze changes to a rule table and to determine
whether desired changes are made correctly by comparing the original rule table and the
modified one.

Yuan et al. [13] proposed a system known as the FIREwall Modeling and Analysis
(FIREMAN), which applies static analysis techniques to check for misconfigurations or policy
anomalies in distributed firewalls as well as in individual firewalls. The FIREMAN discovers
the violation of user-specific security policies and inconsistencies among firewall rules.

674 Kim et al.: Classifying Rules by In-out Traffic Direction to Avoid Security Policy Anomaly

FIREMAN uses the Binary Decision Diagrams (BDDs) that have been used successfully in
hardware verification and model checking. The FIREMAN performs symbolic model
checking of the firewall configurations for all possible IP packets along all possible data paths.
It evaluates the firewall configuration as an entire set that is not just limited to relations
between two firewall rules in distributed firewalls.

Alfaro et al proposed the MIsconfiguRAtion manaGer (MIRAGE) [14][15][16], which
detects anomalies in a network security policy. They pointed out that some previous research
studies were incomplete in their efforts to find all anomalies. They described a set of
algorithms to manage policy consistency based on the analysis of relationships between the set
of filtering rules. They detected and removed anomalies among rules both in a single device
and in multiple devices. In addition, they generated a completely independent rule set that
removed correlation among the rules. They compared all rules in firewalls and Intrusion
Detection Systems on the network path from the network topology.

Algorithms to find policy anomalies require the high cost because the complexity of
comparison among the rules. Pozo et al. [17] proposed the Potential Conflicts Graph (PCG) to
diagnose the consistency of the firewall rule set. The PCG isolates all inconsistencies among
every pair of rules in an order-independent process and identifies the minimum number of
conflicting rules. However, it cannot find all kinds of policy anomalies as they stated.
Furthermore, they proposed a diagnostic method to use the Constraint Satisfaction Problem in
Artificial Intelligence [18]. Abedin et al. [19] proposed a method to generate a new rule set
without anomaly. It simultaneously detects and resolves any anomaly present in the rules by
reorder and split operations. Yoon et al. [20] proposed a method to reduce the size of the rule
set. The algorithm for the reduction of the rule set finds a group of rules and replaces them with
a smaller new group with the same meaning.

Research on policy anomalies mainly finds anomalies based on a set theory. The solution to
policy anomalies is to separate or disjoint such rules. Since the separation of rules generates
many subsequent rules, it requires the aggregation or the merging of rules. The complexity of
this task increases substantially in proportion to the number of rules. The proposed method
detects anomalies and generates completely disjointed rules without anomalies. It classifies
rules by in-out traffic: rules for incoming traffic and rules for outgoing traffic. Each group has
opposite addresses in the source address and the destination address. Since it is unnecessary to
compare rules in one group with the other group, the proposed method reduces the number of
rules to be compared when finding anomalies among the rules in each firewall. Rule-based
packet classification by in-out traffic showed good performance for signature matching an
Intrusion Detection System [21].

We devised a unique approach to distributed firewalls. It avoids anomalies by replacing
rules with one another among firewalls without anomaly detection. It simply replaces the other
firewall’s rules with the other firewall’s rules that an administrator can trust. If there is no
anomaly in each firewall, we can have the rules without anomalies in all distributed firewalls.
It also allows as much traffic as the source network and the destination network have to
exchange. Therefore, it is a more complete approach in that it blocks the unnecessary traffic
from its source. Besides, with the observation of the network protocol and traffic classification,
we found a new kind of misconfiguration which had not been found in previous research.

3. Problem of Policy Anomaly

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4 August 2010 675

We explain the problem of policy anomaly in a single firewall and among distributed firewalls
in this chapter. Policy anomalies occur when one rule has overlapping regions with others in a
rule set. In an order-sensitive rules set, when multiple rules are applied to a certain packet,
others except the most priority one are abnormal rules. Though all rules are completely
disjointed with others, firewalls can have rules which are not relevant to their traffic. Such
rules are useless and should thus be removed. We define all kinds of policy anomalies and
describe a new anomaly which was found in packet classification by in-out traffic. For the sake
of simplicity, we only considered a hierarchical network topology.

3.1 Existing Policy Anomalies

It is very similar to define the terms of policy anomaly [3][4][6][9][10][13]. Based on the
previous researches, we explain the types of anomalies in view of set relation. Each rule in
firewalls has the form, . consists of
Boolean expressions over protocol fields, such as source address, destination address, source
port number, destination port number, etc. can be “deny” or “accept”. We
denote a set of rules by , i.e., = . Let , denote one of the rules

respectively and assume that has the precedence over . Let denote the

correlation. We represent the correlation using other terms, such as partial redundancy and
partial shadowing because they can be separated into three subsets, as in the following:

}{}{}{= xyxyyxyCx rrrrrrrr (1)

These three subsets do not have the intersection. Since is a subset of , is a

subset of , and xy rr is a subset of and both, can be presented by completely

disjointed subsets and exactly a matching subset. For the same reason, inclusive relation,

yx rr or yx rr , can be presented with completely disjointed subsets and exactly a

matching subset. It means that we can represent all relations only through completely
disjointed relations and exactly matching relations if we split them. Therefore, we defined
three types of anomalies in a single security device as follows:

Intra-shadowing occurs when any packet which matches the preceding rule also

matches the subsequent rule , and has a different decision from .

Intra-redundancy occurs when any packet which matches the preceding rule also

matches the subsequent rule , and has the same decision with .

Intra-irrelevance occurs when there is a rule which is irrelevant to the traffic of the
device.

Policy anomalies for distributed security devices are more complicated than that in a single
security device. To find anomalies among distributed security devices, we have to consider
data paths and topologies in the network. We define “zones” as network addresses directly

connected to the security device. Let denote the security device in source zone and

denote one rule of . Let denote the security device in destination zone and denote

one rule of . We assume that network traffic goes from to . Unlike a single device,

>< predicates >< decision >< predicates

>< decision
R R },...,{ 21 nrrr xr yr

xr)<(yxry C

yx rr xr xy rr

yr xr yr C

xr

yr xr yr

xr

yr xr yr

sF x
sF

sF dF y
dF

dF sF dF

676 Kim et al.: Classifying Rules by In-out Traffic Direction to Avoid Security Policy Anomaly

the overlap among rules in multiple firewalls can be normal or abnormal relations depending
on their policies. We defined three types of anomalies in multiple security devices as follows:

 Inter-shadowing occurs when the source device with a rule blocks a packet, the

destination device with a rule allows the packet. Since does not send a packet to

, is unnecessary.

Inter-redundancy occurs when the source device with a rule blocks a packet, the

destination device with a rule blocks the packet again. Since does not send a

packet to , is unnecessary.

Inter-spuriousness occurs when the source device with a rule allows any packet, the

destination device with a rule blocks that packet. Since sends a packet which is

denied by , is unnecessary.

Inter-redundancy anomaly can be intentionally allowed to enforce the security of a network.

For example, a conservative administrator may always block some traffic explicitly out of fear
that the upstream firewall may fail. Therefore, though our related works refer to it as an
anomaly, it is open to debate whether inter-redundancy anomaly is, in fact, even an anomaly.

3.2 Asymmetry Anomaly

The rules in a firewall generally can be classified by two types as traffic is divided by direction.
One type involves the rules for incoming traffic, and the other includes the rules for outgoing
traffic. We define them as incoming rules and outgoing rules, respectively. This simple idea
greatly reduces the complexity of anomaly detection because we do not need to compare one
group with the other group. Also, by classifying them, we can find another misconfiguration.
Most network communications require the interactions between hosts or networks. Most of all,
when TCP protocol creates a network connection, it requires two-way communication.
Therefore, if there is an IP address which only receives or sends a packet in a rule set, it cannot
be a normal situation. We define it as an intra-asymmetry anomaly.

Let denote a set of incoming rules and a set of outgoing rules in rule set R. Also,

we denote the set of source addresses and the set of destination addresses used in by

and , respectively. In the same way, let us denote and in . The

asymmetry anomaly occurs in the following situation:

 (2)

Intra-asymmetry occurs when there is a rule which only has a network address for

outgoing traffic or for incoming traffic under the protocol of two-way communication.

There are some restrictions in finding an intra-asymmetry anomaly. If the rules do not use a
two-way communication, it is unnecessary to find intra-asymmetry anomaly. Also, if there are
rules that keep track of currently- established connections in stateful firewalls, such rules do

x
sF

y
dF x

sF
y

dF y
dF

x
sF

y
dF x

sF
y

dF y
dF

x
sF

y
dF x

sF
y

dF x
sF

inR outR

inR
inRS

inRD
outRS

outRD outR

)()(
outRinRoutRinR SDorDS

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4 August 2010 677

not have the intra-asymmetry because they are used for both incoming traffic and outgoing
traffic. Therefore, when parsing the rules, if there is any rule having a connection state in the
rule set, we simply skip that rule. The intra-asymmetry anomaly is a new type of
misconfiguration which could not be found in previous research.

Fig. 1. Example of a network that has deployed two firewalls

3.3 Example of Policy Anomaly

Fig. 1 shows two firewalls deployed in a network. We can find all types of policy anomalies
that occur in a single firewall and among multiple firewalls in Fig. 1. The anomalies found in
Fig. 1 are listed in Table 1.

Table 1. Policy anomalies in Fig. 1

Abnormal rule Anomaly Associated rule

1z
F 's 2r Partial intra-redundancy

1z
F 's 1r

1z
F 's 3r Intra-shadowing

1z
F 's 2r

1z
F 's 6r Intra-irrelevance -

1z
F 's 7r Partial intra-asymmetry -

2zF 's 7r Intra-asymmetry -

2zF 's 2r Inter-spuriousness
1z

F 's 5r

1z
F 's 4r Inter-redundancy

2zF 's 3r

2zF 's 6r Partial inter-shadowing
1z

F 's 5r

For the purpose of simplicity, port numbers are generalized in this example. In , is

partially redundant to , while is completely shadowed with . in is irrelevant to

's traffic. 7r in allows receiving packets from IP addresses “2.1.1.1-20”, but there is a

rule for sending packets to “2.1.1.1-10”. Therefore, hosts in “2.1.1.11-20” cannot establish the

1z
F 2r

1r 3r 1r 6r 1z
F

1z
F

1z
F

678 Kim et al.: Classifying Rules by In-out Traffic Direction to Avoid Security Policy Anomaly

connection because these rules use TCP. So does in . The asymmetry anomaly can

occur partially ('s) or completely ('s) like the others. Among anomalies between

two firewalls, in is spurious with in because in allows traffic blocked

by in . in is completely redundant with in because of blocking the same

traffic. in is partially shadowed with in because in allows traffic

blocked by in . A rule with a complete anomaly should be removed from the rule set,

while a rule with a partial anomaly requires to be resized to its domain region. We explain how
to find all anomalies in the next section.

4. Detecting Anomalies and Rewriting Rules

In this section, we describe a new method not only to find policy anomalies but also to rewrite
new rules without anomalies. We classify the rules by in-out traffic to reduce the cost of rule
comparisons. If there is a rule not included in two classified groups, the rule has an irrelevance
anomaly. To find other anomalies such as shadowing, redundancy, and asymmetry, we
devised a bitmap array structure, called the Predicates Bitmap Constructor (PBC). Since
correlation and inclusive relation are split by overlapping region and non-overlapping region
within a PBC, all the rules have only exactly matching relations or completely disjointed
relations. The proposed method uses the PBC to remove all anomalies and rewrite new rules in
a firewall.

4.1 PBC (Predicate Bitmap Constructor)

In a firewall, given a set of rules, i.e., , let denote the set

of protocol fields presented in . Let denote the set of the

predicates associated with in . Let denote the set of distinct

comparative values extracted from used in in ascending order. We can describe one

rule of , , such as following:

 (3)

 A predicate used in can be presented as , where is an operator used in

the predicates (, , ,etc.). Therefore, Eq. (3) can be described as following:

 (4)

As seen in Eq. (4), one rule consists of conjunctive predicates of protocol fields. Let
 denote 's domain. When constant values exist, can be divided into

's interval regions and constant regions at most. According to predicates' comparative

values, domain of protocol field can be divided into constant regions and interval regions.

That is, can be divided into 's regions, where , such as following:

7r 2zF

2zF 7r 1z
F 7r

2r 2zF 5r 1z
F 2r 2zF

5r 1z
F 3r 1z

F 3r 2zF

6r 2zF 5r 1z
F 6r 2zF

5r 1z
F

},...,{= 21 nrrrR },....,,{= 21 mfffF

m R ,....},,{= 321

ifififif
pppP

if R ,...},,{= 321

ifififif
vvvV

if
P R

R xr
k

mf
j
f

i
fx pppr=

21

R k

ifi
j

if
vfp =

=
k

mfm
j
f

i
fx vfvfvfr ...=

2211

)(ifdom if k)(ifdom

1)(2 k

if

)(ifdom 1)(2 k |=|
if

Vk

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4 August 2010 679

}<,=,...,=,<<,=,>{=)(122242311211 k

if
k

if
k

if
k

ififififififififififi dvvdvdvdvvddvfdom (5)

 In Eq. (5), can be divided into two subsets, and

. is constant regions and the same to , which is the

set of 's comparative values of used in . are interval regions

between two constant regions. Based on domain values of , is determined. Depending

on , we can know that which rules among are matched. In one of 's domain

regions, we denote the domain bitmap to represent the result of each rule in by , i.e.,

= , where is the number of rules. We denote the set of 's domain bitmap in

each region of by . can be pre-computed

by . Also, can be obtained by a random value in each interval domain

region. Let denote one of result bitmaps which shows the result of each rule in . can
be obtained from each domain bitmap in corresponding protocol fields' domain region as
following:

 (6)

Predicates Bitmap Construct (PBC) is an array data structure holding the result bitmaps
according to each domain region of a protocol field . We described the structure of the PBC

in Fig. 2 and defined the PBC in Definition 1.

Definition 1 (Predicate Bitmap Construct) Given a set of rules = , let

denote a set of distinct comparative values extracted from all predicates of a protocol fields

 in , i.e. . Predicate Bitmap Array for , with

distinct constants is defined as an array of regions. Each PBC has following
entries:
 Region identifier (rif): An identifier indicates whether its corresponding region is a

constant region or an interval region. If , the of , is constant, it

holds one element of . Otherwise, , implying that

.

 Region domain bitmap (rdb[1..n]): A bitmap stores the pre-computed 's result of

its corresponding domain region. In the region of
if

PBC , the bit of the

bitmap is set to 0, i.e., , if 's predicate for whose

comparative value falls within the region cannot satisfy the predicates for

. Otherwise, the bit is set to 1. i.e., .

)(ifdom },...,{ 242 k

ififif
ddd

},...,,{ 1231 k

ififif
ddd },...,,{ 242 k

ififif
ddd

if
V

if R },...,,{ 1231 k

ififif
ddd

if if
P

if
P nrrr ,..., 21 if

R j

if
s j

if
s

nxxxx ...321 n R

)(ifdom },....,{= 1221 k

ifififif
sssS },...,,{ 242 k

ififif
sss

if
V },...,,{ 1231 k

ififif
sss

 R

k

mf
j
f

i
f sss &&&=

21

if

R },...,{ 21 nrrr
if

V

if R },...,,{= 21 k

ifififif
vvvV if if

PBC k

1)(2 k

][jPBC
if

thj
if

PBC

if
V nullrifjPBC

if
=].[

rifjPBCrifjPBCrifjPBC
ififif

1].[<].[<1].[

R
thj thk

0=][].[krdbjPBC
if kr if

][jPBC
if

if
thk 1=][].[krdbjPBC

if

680 Kim et al.: Classifying Rules by In-out Traffic Direction to Avoid Security Policy Anomaly

Fig. 2. Predicates Bitmap Constructor for

4.2 Removing Anomalies

We explain anomaly detection and correction in a rule set using PBCs. In a firewall, incoming
rules have external addresses in a source address and internal addresses in a destination
address, while outgoing rules have opposite source and destination addresses against incoming
rules. If there is a rule not included in two rule groups, an irrelevance anomaly is occurred
because the rule is irrelevant to traffic of the device. After classifying rules by in-out traffic,
we check the policy integrity in each group, and , respectively. This simple

classification reduces the number of rules to be compared in a firewall. Therefore, we create
the PBC of each rule group to detect anomalies. For example, there is a rule set which consists
of four rules in Table 2. If the firewall having this rule set has 1.1.1.0/24 for its zone address,
there are three rules for outgoing traffic (, ,) and one rule for incoming traffic ().

Table 2. Example of firewall rules

ID SIP SP DIP DP Act.

 1.1.1.4 * 2.1.1.[1-10] * A

 * * 2.1.1.4 * A

 1.1.1.[1-4] * 2.1.1.4 80 D

 2.1.1.[1-20] * 1.1.1.4 * A

We explain how to create the PBC only for the outgoing rules because the other is the same

process. Since there is no predicate of source port (SP), three PBCs for a source address (SIP),
a destination address (DIP), and a destination port (DP) are created. Algorithm 1 describes

how to create PBC for . is the interval region between and . For PBC for

SIP, we extract distinct comparative values from the predicates for source address used in ,

, and . After sorting them in ascending order, we identify constant regions and interval

regions between two constant regions as Eq. (5) describes. There are two distinct comparative
values, “1.1.1.1” and “1.1.1.4” in , , and . Since we already know the zone address, the

minimum and the maximum addresses of the zone are included. Each rule domain bitmap is
set by which returns a bitmap of in certain domain regions. In the region of

source addresses “1.1.1.1” - “1.1.1.3”, since and except are matched, the rule domain

bitmap has “011”. In order to reduce the array size, the domain regions having the same results
are merged. The PBC for DIP and the PBC for DP are created in the same way. Three PBCs in
Table 2 are presented in Fig. 3. Since the domain of protocol fields in the PBC are divided by
the minimum overlapping region, all rules in the PBC are divided by completely disjointed
relations or exactly matching relations without correlations and inclusive relations. We can
find which rules apply to which domain regions in domain of the protocol field. When rules

if

outR inR

1r 2r 3r 4r

1r

2r

3r

4r

outR 1j

if
v j

if
v 1j

if
v

1r

2r 3r

1r 2r 3r

SetBitmap outR

2r 3r 1r

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4 August 2010 681

share certain domain regions of protocol fields, anomalies occur in a rule set.

Algorithm 1 CreatePBC(,)

Require:

Ensure:

1: Extract from

2:

3: Create having ()'s size
4:

5: for to do

6: if then

7:

8:

9: SetBitmap()

10: SetBitmap()

11: end if
12: end for

Require:

Ensure: NL: linked list of normal rules, AL : linked list of abnormal
rules

Algorithm 2 ResolveAnomaly()

1: Extract from

2: Create -element of Array, and

3: for to do
4:)

5: &
6: end for
7: if GetHighestNonzeroPosition() = then

8: InsertList()
9: else

10: InsertList()
11: end if

Algorithm 2 shows the process of anomaly detection and the correction of each rule. We

if outR

},..,{= 21 nout rrrR

if
PBC

},....,,{ 21 k
fffif iii

vvvV outR

||
if

Vk

PBC 12 k
00

if
v

0=j k

11 j

if
j

if
vv

j

ifif
vrifjPBC].[2

nullrifjPBC
if

1].[2

rdbjPBC
if

].[2 out
j

if
Rv ,

 rdbjPBC
if

1].[2 out
j

if
Rv 1,

k

mfm
j
f

i
fx vfvfvfr ...:

2211

xr
k

mf
j
f

i
f vvv ,...,

21 xr

m Ardb },...,{=
21

k

mf
j
f

i
f vvvVT

1t m
][tArdb rdbtVTPBC

tf
]].[[

rbmaprbmap][tArdb

rbmap x
rbmapVTNL ,,

rbmapVTAL ,,

682 Kim et al.: Classifying Rules by In-out Traffic Direction to Avoid Security Policy Anomaly

search the rule domain bitmap in each PBC with comparative values of corresponding
predicates and do & (AND) operation on them as Eq. (6) indicates. In the algorithm,

 returns the position of the highest non-zero bit in the result

bitmap. If the position of the highest non-zero bit in result bitmap of is , is the first

rule to be applied to the domain region. Otherwise, the preceding rule is applied in the domain
region because of the priority among the rules. When finding the first rule to be applied to that
domain region of , we split into a normal domain region and an abnormal domain region.

We merge two domain regions when result bitmaps are the same; all domain regions of
protocol fields except one are the same, and the exceptional one is consecutive to the other.

 (a) Results of and

(b) Asymmetry anomaly

Fig. 3. Example of PBCs Fig. 4. Anomaly detection and rule rewriting using PBCs for
rules in Table 2.

 (“X” means “Don't Care Bit” and colored rows have anomalies)

Fig. 4(a) presents the process of the anomaly detection and rule rewriting for and in

Table 2. Each row in the table, which was split from the original rule, can be a rule. Is
excluded because it is the highest priority rule. Since the first matched rule is applied,
subsequent rules are anomalies. In case of , we can get two split rules without anomalies and

overlaps. In case of , is shadowed by in the domain region (, ,) and redundant

with in the domain region (, ,). Therefore, has a complete anomaly because the

preceding rules are first applied in all domain regions of .

The PBC is also used to resolve an asymmetry anomaly. The source addresses for incoming
rules must be the same as the destination addresses for outgoing rules and vice versa.
Therefore, we compare incoming rules and outgoing rules or vice versa after exchanging the
source address and destination address of each group. For the detection of the asymmetry
anomaly of incoming rules, we search PBCs for outgoing rules with each rule in incoming
rules as described in Algorithm 3. Fig. 4(b) shows how to find the asymmetry anomaly with
PBCs for outgoing rules and one rule for incoming rules. We search the PBC with exchanged
IP addresses and obtain a combined result bitmap, such as finding a redundancy anomaly and a
shadowing anomaly. The asymmetry anomaly occurs when the result bitmap has all “0” bits
like (). The rewriting process for removing the asymmetry anomaly is similar to other

itionNonzeroPosGetHighest

xr x xr

xr xr

2r 3r

2r 3r

1r

2r

3r 3r 2r 1S 2D 2P

1r 2S 2D 2P 3r

3r

32 , DS

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4 August 2010 683

anomalies. After finding normal domain regions, we rewrite rules from the original ones.

Algorithm 3 FindAsymmetry()

Require: : a rule in

1: CreatePBC(sip,)

2: CreatePBC(dip,)

3: destination address in

4: source address in

5: &

6: if then
7: return true
8: else
9: return false
10: end if

Table 3 shows the final result without anomalies after rule rewriting. Because there is no

overlap among the rules, we do not need to keep “accept” rules and “deny” rules at same time.
Therefore, we leave only one type of rules having the same decision. Since firewalls have
list-base ACLs which have order-sensitive properties, if the blacklisted IP addresses or
white-listed IP addresses are in a rule set, these rules are overlapped by subsequent rules.
Therefore, subsequent rules have partial redundancy or shadowing with the blacklisted IP
addresses or white-listed IP addresses. The proposed method splits them without overlaps, but
it generates too many rules. To avoid such a problem, the proposed method allows them. That
is, rules having intentional anomalies can be excluded when rules are parsed.

Table 3. Rewritten rules after removing anomalies

ID SIP SP DIP DP Act.

 1.1.1.4 * 2.1.1.[1-10] * A

 1.1.1.[1-3] * 2.1.1.4 * A

 1.1.1.[5-255] * 2.1.1.4 * A
 Removed

 2.1.1.1-10 * 1.1.1.4 * A

5. Avoiding Anomalies in Distributed Firewalls

Detecting anomalies and rewriting rules for multiple devices is a little more complicated than
doing so for a single device, as discussed above. We propose a different approach to solve
anomalies in distributed firewalls; namely, we strive to avoid them. The proposed method can
be used without removing intra-anomalies. However, for the sake of simplicity, we assumed
intra-anomalies of each firewall were removed by adopting our method for intra-anomalies.
Therefore, there is no overlap among the rules in each firewall.

We assume that one firewall can have multiple zones, but a zone is allocated to one firewall.

xr

xr inR

outR

outR

dipp xr

sipp xr

rdbpPBCrbmap dipsip].[rdbpPBC sipdip].[

0=rbmap

1r

2r

3r

4r

684 Kim et al.: Classifying Rules by In-out Traffic Direction to Avoid Security Policy Anomaly

Packets are exchanged between the zones. We classify firewalls into two types. One is a
gateway firewall which is charged with the entire network traffic between the external network
and the internal network. The other is a zone firewall which is charged with the network traffic

between its own zone and the other zones or the external zone. Let us denote nzzz ,..,, 21 each

zone in the zone firewalls. Also, we denote the set of internal network address by intz and the

set of external network address in the gateway firewall by extz . Let
nzzz FFF ,...,,

21
 be the set

of packets allowed in each zone firewall and gwF be the set of packets allowed in a gateway

firewall. To present the direction of packets in each firewall, we denote the set of packets

which has jz in their destination address field by jzd

izF
=

 and the set of packets which have jz

in their source address field by jzs

izF
=

.

Network traffic in a zone firewall can be classified by outgoing traffic and incoming traffic,
while network traffic in a gateway firewall can be divided by the internal traffic and the

external traffic. For example, jzd

izF
=

 , which is the traffic heading for jz in
izF , can be

outgoing traffic and the external traffic. izd

gwF
=

, which is the traffic heading for iz in gwF , can

be internal traffic and incoming traffic. The ideal state is that the other firewalls have to permit

as many as packets that are accepted by iz . That is, incoming traffic of the zone firewall iz is

the same as the other firewalls' traffic heading for iz as follows:

)(=
==

1=

=
jiFFF izd

gw
izd

jz

n

j

izd

iz (7)

 As the same reason,
izF 's outgoing traffic is the same to the other firewalls' traffic started

from iz as follows:

)(=
==

=1

=
jiFFF izs

gw
izs

jz

n

j

izs

iz (8)

 The gateway firewall has all the zone firewall's traffic heading for internal and external
networks as follows.

intzs

jz

n

j

zd

jz

n

j
gwz FFF

=

1=

int=

1=

= (9)

We denote a set of rules in
izF by

izR . Let izs

izR
=

 denote a subset of
izR whose source

address is iz and izd

izR
=

 denote a subset of
izR whose destination address is iz . Eq. (7), (8),

and (9) can be represented as follows:

)(==
=

=1

=

=1

==
jiRRRRR izd

jz

n

j

izs

jz

n

j

izd

iz
izs

iziz

(10)

extzd

jz

n

j

zs

jz

n

j

intzd

gw
intzs

gwgw RRRRR
=

=1

int=

=1

==
== (11)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4 August 2010 685

Algorithm 4 Avoid Anomaly ()

Require:

1: for to do

2: if then

3: for to 1… do

4: if then

5: delete from

6: end if
7: end for
8: for to do

10: if then

11: insert into

12:

 end if
13: end for
14: end if
14: end for

From Eq. (7), (8), and (10), we have two different approaches. One is to replace each
firewall’s incoming rules with one firewall's rules heading for the corresponding firewall.
Therefore, each firewall receives as much traffic as the corresponding firewall sends. The
other is to replace each firewall’s outgoing rules with one firewall's rules for the traffic starting
from the corresponding firewall. Likewise, each firewall sends as much traffic as the
corresponding firewall receives. If an administrator ensures the integrity of ’s incoming

rules, the other firewalls’ outgoing rules for can be replaced with ’s incoming rules.

Therefore, all firewall rules can have the same integrity for such a traffic flow. When izs

izR
=

has m rules, i.e. },...,,{= 21= m

iziziz
izs

iz rrrR , Algorithm 4 describes how to replace one

firewall's incoming rules with the other firewalls’ outgoing rules. In the algorithm, the
proposed method deletes all of the other firewalls’ rules whose source address is included in
the zone address of a firewall and inserts ’s rules into the corresponding firewalls to

replace deleted rules. GetZoneAddress() is a function which returns the zone address of
parameter. If the algorithm is repeated in all zone firewalls, the proposed method can obtain
the consistency among the rules in all zone firewalls because the source zone firewalls send as
much traffic as the destination zone firewalls receive. In case of the gateway firewall, from Eq.
(9) and (11), it is possible to replace the gateway firewall’s rules with each firewall’s outgoing
rules and incoming rules for the external traffic or vice versa.

izs

izR
=

},...,,{= 21= m

iziziz
izs

iz rrrR

1=j n
ji

1=k p

)(.
iz

k

jz FrGetZoneAddsipr

k

jzr izs

jzR
=

1=l m
)(.

jz
l

iz FrGetZoneAddsipr
l

izr izs

jzR
=

1z
F

1z
F

1z
F

1z
F

1z
F

686 Kim et al.: Classifying Rules by In-out Traffic Direction to Avoid Security Policy Anomaly

Fig 5. Rule replacement among firewalls.

Fig. 5 shows the simple example of the network diagram deployed with three zone firewalls
and one gateway firewall. For the sake of simplicity, we generalized port predicates. All rules
have “accept” decisions. If an administrator trusts in ’s rules for incoming traffic, we call

 a trusted firewall. As the algorithm describes, the administrator simply replaces outgoing

rules of the other firewalls for with incoming rules in . In this example, the

administrator replaces rules of Fz2, Fz3, Fgw with corresponding rules in Fz1 (a trusted firewall).
For example, if incoming rules in Fz1 are right, they can be propagated to the other firewalls, (a)
is propagated to (b). When the rules in a trusted firewall have different decisions from the rules
of the other firewalls, it seems undesirable to replace the “deny” rules of the other firewalls
with the “accept” rules of the trusted firewall. However, if all firewalls are in a single
administrator’s domain and the administrator trusts in the rules of the target firewall, it does
not matter to substitute the rules of the trusted firewall for the rules of the other firewalls. By
propagating these rules to corresponding firewalls, the other firewalls send or deny packets as
the rules of the trusted firewall do.

The proposed method was devised to avoid detection of policy anomalies and comparison
of rules and to obtain the consistency among all firewalls. Since the proposed method is based
on an administrator’s trust in rules, the administrator has to verify the rules before propagating
them. Although the administrator trusts the “accept” rules of the target firewall, the
administrator may not want to replace the “deny” rules of the other firewall with the “accept”
rules of the trusted firewall. We define such a case as an inter-shadowing anomaly because the
trusted firewall denies traffic which cannot flow in its zone. Before propagating the rules of
target firewall, the administrator has to consider that problem. Trust of the rules includes that
there is no policy anomaly in the rules of the trusted firewall. However, if an administrator
does not have confidence in the rules of the trusted firewall or if an administrator want to keep
the “deny” rules of other firewalls, the administrator can insert the rules of the trusted firewall
into other firewall without deleting “deny” rules from other firewalls. In such a case, the rules
of other firewalls can deny the traffic which they want to deny but other firewalls may have
intra-anomalies, which can be solved by the proposed method for intra-anomalies.

izF

izF

izF
izF

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4 August 2010 687

Since there could be some conflicts among rules between two firewalls, some methods have
been proposed to detect such anomalies. For that purpose, we also proposed a method to detect
and correct policy anomalies among multiple firewalls in our previous paper [3]. After
removing policy anomalies among firewalls using such methods, we can adopt the proposed
method which replaces the rules of other firewalls with the rules of the trusted firewall.

6. Implementation and Experiments

The proposed method was implemented in a software prototype called the Policy Anomaly

Resolver (PAR). The PAR has been coded by C . The PAR parses rule sets and creates four
PBCs, as described above. The PAR can detect overlaps among the rules and rewrite
completely disjointed rules without anomalies and overlaps. The size of each PBC for protocol
fields depends on the distinct number of comparative values of corresponding predicates. The
size of the PBC does not have a great influence on detecting and rewriting performance.
However, the overlapping relation among the rules has a great effect on performance.
Therefore, the Rule Overlap Count (ROC) was introduced to present how many rules are

overlapped. In },...,,{= 21 nrrrR ,)(irROC indicates how many rules are overlapped between

ir and 1r , 2r ,..., 1ir . For example, 3=)(irROC indicates that there are three rules having

overlaps between ir and ir ’s preceding rules.

Table 4. Characteristics of rule set

Type #Rules #SIP #SP #DIP #DP Avg.ROC

ACL1 101 12 9 79 14 1.03

ACL2 278 38 45 95 13 0.95

ACL3 388 191 15 62 21 0.01

ACL4 632 106 23 171 26 2.77

SNT 150 2 12 2 146 0.57

For the experiments, we used two types of rule sets. One involves four different ACL rules

from the internal network switches, which were deployed in one Korean online game company.
Table 4 shows the detailed characteristics of three ACL rule sets. “#SIP,” “#SP,” “#DIP,” and
“#DP” are the numbers of distinct comparative values used in each predicate of a source
address, a source port, a destination address, and a destination port, respectively. “Avg. ROC”
is the average of ROC in each rule. “ACL3” has few overlaps among the rules, while “ACL4”
has a lot of overlaps among the rules. Since the overlap among the rules makes an anomaly,
“ACL3” is much better managed compared to “ACL1,” “ACL2,” and “ACL4.” The other one,
“SNT” was made from the VRT Certified Rules for Snort, version 2.7. [22]. We classified
Snort rules for TCP and grouped them by source address, destination address, source port,
destination port, and in-out traffic. Then, we chose 150 rules for outgoing traffic which have
specific port numbers in the destination port.

Fig. 6 shows the processing time of the PAR on each rule set. The PAR was executed on a
personal computer with 1Gbyte memory and a Core 2 2.13GHz CPU. The cost of rule
rewriting increased exponentially according to the number of rules. The major factor for the
processing time is the average ROC, as shown in Figure 15. On average, in “ACL4,” one rule

688 Kim et al.: Classifying Rules by In-out Traffic Direction to Avoid Security Policy Anomaly

is overlapped with three preceding rules. In addition, “ACL4” has a lot of predicates that have
“any” type of predicates in the rule set. That is the reason for the rapid increase of execution
time. “ACL1,” “ACL2,” and “ACL3,” which have low ROC values show a linear increase in
the cost of rule rewriting. Though “ACL3” has more rules than “ACL2,” “ALC3” shows a
better execution time than “ACL2” because of the low ROC value.

Fig. 6. Execution time for rule each rule set. Fig. 7. Execution time and rewritten rules Rewriting

 in according to average ROC in “SNT” rules.

Also, Fig. 7 shows the effect of ROC in “SNT” rules. Keeping the number of rules, we
changed the average ROC by replacing rules with other rules having “any” destination port in
Snort rules. As ROC increases, the execution time and number of rewritten rules are linearly
increase. In Table 5, after executing the PAR with each rule set, we analyzed the result. The
PAR searched policy anomalies in each rule set. For example, the poorly-managed rule set,
“ACL4,” with an average ROC of 2.77, has 34% complete redundancy and 65% partial
redundancy of total rules, while the well-managed rule set, “ACL3,” with an average ROC of
0.01, has little complete redundancy and partial redundancy.

Table 5. Results of rule rewriting

Type # Rules
Complete
Redundancy

Partial
Redundancy

Rewritten
Rules

Max.
split rules

ALC1 101 3 7 251 66

ALC2 278 41 70 439 13

ALC3 388 1 8 395 2

ALC4 632 218 413 1277 381

SNT 150 4 41 220 4

The PAR not only finds policy anomalies but also it removes them as Table 5 shows. Rules

with complete redundancy or shadowing are useless in a rule set. Therefore, they have to be

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 4 August 2010 689

removed from the rule set. Likewise, rules with partial redundancy or shadowing can be
rewritten without overlaps. Rewritten rules by the PAR do not have policy anomalies.

7. Conclusions

The policy maintenance is a complex and error-prone task. The policy anomaly problem arises
from the overlaps among the rules and results in security holes for attackers. In this paper,
classifying rules by the network direction, the proposed method reduced the unnecessary cost
of rule comparisons to find policy anomalies. Also, we found a new kind of anomaly which
can occur under a two-way communication protocol. The proposed method for a single
security device not only removes overlapping relations among the rules, but it also rewrites the
rules without the anomalies and overlapping relations. In multiple security devices, we
proposed a new way to avoid the anomaly, not to find the anomalies. The proposed method can
reduce the overhead to compare rules for finding anomaly and block the unnecessary traffic
from the source communication node.

We implemented the proposed method into a window application called the Policy
Anomaly Resolver (PAR) and tested it with real rule sets. The PAR converts original rules to
non-overlapping and anomaly-free rules without change of original policy. Therefore, it
makes tasks for rule management simple and clear. The PAR has disadvantages in the
processing overhead for a large scale rules like other methods. Therefore, we are trying to find
more efficient method to perform this process.

References

[1] Strasberg,Gondek and Rollies, “The Complete Reference Firewalls,” MacGrawHill, 2002.
[2] Avishai Wool, “A quantitative study of firewall configuration errors,” IEEE Computer, vol.37,

no.6, pp.62-67, Jun. 2004.
[3] Sunghyun Kim and Heejo Lee, “Abnormal policy detection and correction using overlapping

 transition,” IEICE Transactions on Information and Systems, vol.E93-D, no.5, pp.1053-1061,
 2010.

[4] Ehab S. Al-Shaer and H. Hamed, “Modeling and management of firewall policies,” IEEE
eTransactions on Network and Service Management, vol.44, no.3, pp.134-141, Apr. 2004.

[5] E. S. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, “Conflict classification and analysis of
distributed firewall policies,” IEEE Journal on Selected Areas in Communications, vol.23, no.10,
pp.2069-2084, Oct. 2005.

[6] E. S. Al-Shaer and H. Hamed, “Discovery of policy anomalies in distributed firewalls,” in proc. of
IEEE INFOCOM, pp. 2605-2616, Mar. 2004.

[7] H. Hamed and E. Al-Shaer, “Taxonomy of conflicts in network security policies,” IEEE
Communications Magazine, vol.44, pp.134-141, 2006.

[8] R. Bryant, “Graph-Based algorithms for Boolean function manipulation,” IEEE Transactions on
Computers, vol.35, no.8, pp.677-691, Aug. 1986.

[9] M. G. Gouda and A. X. Liu, “Firewall design: consistency, completeness, and compactness,” in
proc. of 24th International Conf. on Distributed Computing Systems (ICDCS), 2004.

[10] M. G. Gouda and A. X. Liu, “Structured firewall design,” Computer Networks Journal, vol.51,
no.4, pp.1106-1120, 2007.

[11] A. X. Liu, and M. G. Gouda, “Diverse firewall design,” IEEE Transactions on Parallel and
Distributed Systems, vol.19, no.6, pp.1237-1251, 2008.

[12] L. Lu, R. Safavi-Naini, J. Horton and W. Susilo, “Comparing and debugging firewall rule tables,”
International Journal of Information Security, vol.1, no.4, pp.143-151, 2007.

[13] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra, “FIREMAN: A Toolkit for

690 Kim et al.: Classifying Rules by In-out Traffic Direction to Avoid Security Policy Anomaly

FIREwall Modeling and Analysis,” IEEE Symposium on Security and Privacy, pp.199-213, 2006.
[14] J. G. Alfaro, N. Cuppens-Boulahia, and F. Cuppens, “Complete analysis of configuration rules to

 guarantee reliable network security policies,” International Journal of Information Security, vol.7,
 no.5, pp.103-122, 2008.

[15] F. Cuppens, N. Cuppens-Boulahia, and J.G. Alfaro, “Detection and removal of firewall
 misconfiguration,” in proc. of 2005 IASTED International Conf. on Communication, Network and
 Information Security, pp.154-162, 2005.

[16] J.G. Alfaro, F. Cuppens, and N. Cuppens-Boulahia, “Aggregating and deploying network access
 control policies,” in proc. of Third International Conf. on Availability, Reliability and Security,
 2007

[17] S. Pozo, R. Ceballos, and R. M. Gasca, “Fast algorithms for consistency-based diagnosis of
firewall Rule Sets,” in proc. of Second International Conf. on Availability, Reliability and Security,
2006.

[18] S. Pozo, R. Ceballos, and R. M. Gasca, “CSP-based firewall rule set diagnosis using security
policies,” in proc. of Third International Conf. on Availability, Reliability and Security, 2007.

[19] M. Abedin, S. Nessa, L. Khan, and B. Thuraisingham, “Detection and resolution of anomalies in
 firewall policy rules,” in proc. of 20th Annual IFIP WG 11.3 Working Conf. on Data and
 Applications Security (DBSec), 2006.

[20] M. Yoon, S. Chen, and Z. Zhang, “Reducing the size of rule set in a Firewall,” in Proc. of
 IEEE International Conf. on Communications, 2007.

[21] Sunghyun Kim and Heejo Lee, “Reducing payload inspection cost using rule classification for fast
 attack signature matching,” IEICE Transactions on Information and Systems, Vol.E92-D, no.10,
 pp.1971-1978, 2009.

[22] Snort: Open source Network Intrusion Detection System, http://www.snort.org.

Sunghyun Kim received the B.S. degree in Computer Science from Pukyung University, Korea,
in 1994, and the M.S. degree in Computer Science from Yonsei University, Korea, in 2006.
Currently, he is a Ph.D. candidate in Computer Science and Engineering, Korea University. His
research interest includes network security and security policy.

Heejo Lee is an Associate Professor at the Division of Computer and Communication Engineering,
Korea University, Seoul, Korea. Before joining Korea University, he was at AhnLab, Inc. as a CTO
from 2001 to 2003. From 2000 to 2001, he was a Postdoctorate Researcher at the Department of
Computer Science and the security center CERIAS at Purdue University. Dr. Lee received his B.S.,
M.S., Ph.D. degree in Computer Science and Engineering from POSTECH, Pohang, Korea. Dr. Lee
serves as an editor of the Journal of Communications and Networks. He worked on constructing the
National CERT in the Philippines (2006) and consulted for the CERTs in Uzbekistan (2007) and
Vietnam (2009). He is a visiting professor at CyLab/CMU until December 2010.

