

How to divide a permission token in the delegation
process of blockchain-based access control for IoT

Jeonghwa Heo
Department of Computer Science and

Engineering
Korea University

Seoul, South Korea
kueun0418@korea.ac.kr

Heewoong Jang
Department of Computer Science and

Engineering
Korea University

Seoul, South Korea
jormal@korea.ac.kr

Heejo Lee
Department of Computer Science and

Engineering
Korea University

Seoul, South Korea
heeojo@korea.ac.kr

Abstract— There are several security problems arising from
the characteristics of IoT, and one of them is weak access control.
Traditional access control models require one centralized au-
thority that stores all the information for access control and val-
idates access rights. This single point of failure in IoT access con-
trol could lead to situations where a single breach can cause sen-
sitive information leakage across the entire system. Various
studies have been conducted to mitigate this security risk by in-
troducing a decentralized architecture based on blockchain
technology called BBAC. However, most BBAC models consider
only a simple access control situation, which can lead to a “the
Greatest privilege problem”. This study proposes a novel access
control model that enforces minimum privilege to an access to-
ken by the division and modification of access rights. As a result,
we contributed to enhancing the practicality of the BBAC and
mitigating risks that may arise in the delegation process.

Keywords—Blockchain, Access control model, IoT, BBAC

I. INTRODUCTION
With the rapid advances in Internet of Things (IoT) tech-

nologies, the use of IoT technologies has increased extensive-
ly across smart factories, smart cities, and healthcare, and Fig.
1 illustrates this phenomenon [1].

Fig. 1. Top 10 IoT Application areas 2020

IoT is currently one of the most preferred technologies. As
illustrated in Fig. 2, the number of global M2M connections is
expected to grow from 6.1 billion in 2018 to 14.7 billion by
2023 [2], owing to the increased use of IoT devices.

Fig. 2. The number of M2M connections 2018-2023 (Unit: Billion)

However, the continuity of IoT security incidents, such as
the Mirai botnet attack [3], indicate that the security of IoT is

a chronic problem. Access control is one of the major security
challenge of IoT, as it involves relaying sensitive information.
For example, an inadequate IoT access control model can
permit unauthorized users to access medical information [4].
Considering the massive number of IoT devices installed, a
well-defined IoT access control mechanism that manages
various complex access rights is essential.

Several methods have been suggested for IoT access
control, including role-based access control (RBAC) and
attribute-based access control (ABAC). These are centralized
models, in which all the access control is centralized . This
centralized nature can expose IoT devices to a single point of
failure. Capability-based access control (CapBAC) has
emerged as a solution for providing more flexible access
control through a capability token. However, CapBAC too
requires a centralized entity for validating the access rights.
Therefore, a single point of failure remains in trustworthy IoT
environments. As an alternative, distributed capability-based
access control (DCapBAC), which is a validation process
occurring inside IoT devices, was suggested. However,
validating access rights with limited resources of IoT devices
may hinder their performance and a malicious user may cause
unstable operation. Several commercial tools for IoT access
control are available. However, using these tools can be seen
as outsourcing IoT access control to a third party from the
user’s perspective, which can lead to a problem of trust.
Outsourcing for access control requires very strong trust
between the parties requiring the outsourcing company will
never tamper with the data. Access control methods using
blockchain technology have recently been proposed as an
alternative solution to solve this problem completely because
blockchain stores manage data in a decentralized manner.

Fig. 3. Number of published papers related with BBAC

Research addressing blockchain-based access control
(BBAC) models has been actively conducted since 2016. Fig.
3 illustrates the growing number of published papers related
to BBAC.

Based on the characteristics of BBAC, some studies have
suggested replacing existing access control methods with
blockchain-based methods [5]–[10].

Recent research addresses delegating access rights to
BBAC methods in IoT environments to achieve practicality.
The delegation process is performed by a decentralized entity
and allows an entity to use the access rights of another entity
for a period of time, not permanently. However, there remains
a risk of abuse of delegated rights by unauthorized users.
Several studies aim to restrict such abuses by utilizing the
characteristics of smart contracts [8], [10], [11]. Some re-
searchers have suggested a BBAC model tailored to a specific
area, such as smart grids and healthcare [13]–[15].

Limiting the rights already given to the requestor is
another question to be solved in the BBAC models. Existing
models [4], [16] focus only on a simple case consisting of a
single delegator and delegatee. There is a need for a situation
in which a subject that has permissions for several behaviors
delegates only one permission to the other subjects. Consider
an example case in which a subject has all permissions – create,
read, update, and execute on a printer. Another subject wants
to delegate the permission token to access the printer.
Following the principle of minimum privilege, subjects who
request access rights to the printer should only be granted to
read and execute, but not to create or update.Therefore, the
permission token should be broken down into two – one for
read and execute rights and the other for the rest. Existing
permissions must be divided into two different sub-
permissions. However, previous research has failed to
consider such a case that requires the division of a permission
token.

We propose an enhanced BBAC model for IoT networks.
Our architecture compensates for the lack of consideration in
situations that require the division of rights that are already
granted. Existing papers focus only on simple situations, such
as the transference or delegation of one right from one entity
to another. However, to increase practicality and at the same
time ensure that only the minimum level of access rights is
delegated, it is essential to consider the division and modifica-
tion of the rights that have already been generated. This study
assigns an index to sub-permission within the permission to-
ken and suggests an architecture that access right is requested
or delegated in whole or in part based on the index. The con-
tribution of this paper is as follows: We define "the Greatest
privilege problem" that can occur in the delegation process on
the BBAC and propose a new BBAC model that can not only
prevent it and but also apply to more complicated delegation
conditions. To the best of our knowledge, none of the previous
works related to BBAC for IoT have considered the access
right division issue.

The remainder of this paper is structured as follows: Sec-
tion II provides an overview of related works on access control
for the IoT domain. Section III presents the overall architec-
ture of a BBAC system. Section IV explains the representative
access right division scenario and suggestions regarding
addressing the situation by proposing a delegation algorithm
that is considered a complex delegation. Section V presents
evaluation to prove the effectiveness of the proposed model.
In Section VI, we discuss the proposed model and conclude
the study in Section VII.

II. BACKGROUND
In this section, we provide a brief background on tradi-

tional access control, blockchain and smart contracts, and the
delegation process. In addition, this paper explains related
studies.

A. Traditional Access Control
Access control has two basic principles that should be

followed [17].

• Least Privilege Policy: The least privileged policy is to
minimize damage caused by abuse of authority by
granting only the minimum rights to perform the
authorized work.

• Separate Duty Policy: This principle is to prevent the
occurrence of all processes in the development - task,
approval, modification, confirmation, and completion
- from being conducted by one person. In other words,
the separation between a person who oversees the
modification process and another for confirmation.

There are four major types of access control mechanisms
in IoT. Each mechanism has advantages and disadvantages in
an IoT environment.

• Role-based access control (RBAC): RBAC is a
mechanism that checks the role (e.g., administrator,
manager, guest) of a requestor when he wants to access
a right.

• Attribute-based access control (ABAC): Based on
ABAC, a centralized entity makes a decision based on
the special attributes of a requestor who wants to
access a resource. Therefore, ABAC facilitates the
management of access policies. However, both RBAC
and ABAC are highly centralized and can invoke a
single point-of-failure problem.

• Capability-based access control (CapBAC): In
CapBAC-based schemes, subjects can perform certain
activities on an object if they have appropriate
capabilities. However, a centralized entity is required
to validate the token.

• Distributed capability-based access control
(DCapBAC): DCapBAC model [18] was proposed to
provide more controlled access control. Subjects can
obtain access rights based on capability, and the
validation process is conducted by the requested IoT
devices themselves, not by a centralized entity.
Therefore, it enables flexible access control inside the
IoT devices. However, owing to the low computing
capability of IoT devices, they may be easily
compromised by adversaries; thus, they cannot
establish a fully trusted relationship between the
entities that validate the access rights. In conclusion,
DCapBAC is not a suitable access control method for
IoT environments.

B. Blockchain and Smart Contracts
Blockchain refers to distributed ledger architectures that

consist of nodes that do not trust each other. As its name
suggests, several timestamped blocks compose a blockchain
and the blocks contain a number of transactions between
nodes. Nodes validate any transactions they receive and
transactions can be appended after validation. The blockchain
is permanent, tamper-proof, and distributed. Any node with
the right to access the blockchain can view all the records in
the chain [19].

Smart contracts can be simply defined as a program that
resides on a blockchain and automatically runs when the
preset conditions are satisfied. Therefore, smart contracts do

not require any intermediaries or the loss of time. As smart
contracts are executed on a blockchain, all participants can
execute its instructions and see the history of each interaction
between smart contracts [20].

C. Delegation
Delegation refers to a temporal process in which a

resource owner transfers the right to permit access to its
resource to another entity.

Delegation in IoT is conducted in a distributed manner,
whereas most access rights administration operations are
central. Fig. 4 shows an example of a delegation process in an
IoT environment. If the delegation system has any blind points,
an attacker can obtain the access rights of a resource [4], [16].
Delegation continues to receive a lot of attention, as a
trustworthy delegation without a centralized third party is
essential in an IoT environment that has heterogeneous and
large-scale characteristics. Consequently, many delegation
models in IoT that use blockchain technology to solve a single
point of failure problem and improve the reliability of the
models have been proposed.

Fig. 4. Process of Delegation

D. Related Works
Considering the advantages of blockchain technology,

majority of the research has suggested a blockchain-based
access control (BBAC) model for IoT. For example, Pal et al.
[9] proposed a delegation access control rights architecture
using a public blockchain and a private chain to strengthen
privacy. Xu et al. [21] implemented BlendCAC, a capability
delegation mechanism based on a blockchain network. In this
structure, when an entity sends a request to obtain access
rights, the entity designated as a domain owner issues a
capability token. In addition, Gauhar. A et al. [11] presented a
decentralized architecture for permission delegation and
access control in the IoT, where the delegation process is
based on both queries and events. Zhang [22] suggested a
smart contract-based framework consisting of multiple-access
control contracts as a trustworthy and distributed access
control model in an IoT environment.

In some studies, a BBAC model has been customized for
a specific IoT area. For example, Feng [13] suggested a
consortium blockchain-based access control framework with
dynamic ordered node selection for 5G-enabled industrial IoT,
and compared the framework implementation based on the
Practical Byzantine Fault Tolerance (PBFT) consensus. In
addition, Bera et al. [14] designed a BBAC protocol for an
IoT-enabled smart-grid system called DBACP-IoTSG. Saha
et al. [15] proposed a BBAC mechanism for IoT-enabled
healthcare applications which emphasizes on supporting
various functionality features while providing better security

and maintaining a low level of communication and
computation costs.

A research has been conducted on addressing the issue of
delegation of arbitrary access rights to other subjects. Saha et
al. [16] suggested a flexible delegation model for IoT
environments using blockchain. Shi et al. [4] emphasized that,
for the delegation process, an unauthorized access
vulnerability exists, where an unauthorized user can obtain
rights by abusing this process. For example, a resource request
that obtains permission from the access control system can
delegate permission to another subject that is not verified by
the access control system. This situation is possible because
the object does not predefine all legitimate users. The object
only verifies whether the delegator and delegatee agree to the
permission. The author suggested a token-constrained
permission-delegation algorithm as a solution.

However, previous papers discussing BBAC models
mostly consider a single delegator and a single delegatee,
ignoring the possibility of access rights division, which exists
in several delegatees. This can cause “the greatest privilege
problem” that a subject can get more privileges than necessary.
To address this complex delegation situation, the ability to
divide access rights is a requirement for managing practical
cases in the real world.

III. BLOCKCHAIN-BASED ACCESS CONTROL SYSTEM
In this section, we present a blockchain-based access

control (BBAC) model and introduce the permission
delegation case. Based on this model, this paper suggests a
model for dividing access rights that have already been
generated.

A. Overall architecutre of BBAC

Fig. 5. Overall Architecture of BBAC

Fig. 5 shows the overall structure of the proposed
architecture. The BBAC system architecture consists of
subjects, objects, token lists, object permission lists, a policy
repository, and smart contracts, such as the policy decision
point (PDP) and permission management (PM). Smart
contracts are deployed in the blockchain. This blockchain is
based on a consortium blockchain architecture, which requires
permission to participate in the blockchain network. The PDP
validates the permission to access a resource based on the
policy repository with a preset policy list and conditions. In
addition, the PDP utilizes an object permission list containing
information on all object permissions that are already granted

by the PDP. Objects, actions, features, and constraints are
recorded in the list. With the object permission list, we can
determine the type of actions that can be conducted by the
object and each permission’s features, including whether it is
transferable, and if it is, how many times it can be moved.
Through these actions, the object permission list assigns
indexes that are useful for delegating a permission token. In
addition, based on the constraint, we can grant a permission
token considering the limited situation based on the policy that
all objects have already been set. Notably, this study does not
address the constraints and methods of how objects record
their policies in detail to focus on the delegation issue. The
token list is managed by the PM and includes all the
information of tokens that has been given to a requestor. In the
token list, the object, token id, and permission indexes are
stored, and based on this information, the PM manages what
sub-permissions are included in a permission token based on
the index.

In this case, the access requestor is a delegator that initiates
permission delegation. If the permission that the delegator
owns is transferable, it can send permission to other people.
Those who obtain permission from the delegator through the
delegation process are defined as delegatees.

In the access control system, the object owner has already
uploaded the object’s access control strategy, which he preset,
to the policy repository, and the resource requester sends a
request for permission to access the resource. The object
owner can set their access control policy based on various
methods, such as ABAC and RBAC.

If the PDP decides to grant access rights to the requestor,
it sends the requester a permission token. The permission
token has a transferability attribute that can be passed on to
the delegatee by the resource requester.

B. Permission Granting Process Model
When a subject requests rights to access a resource, the

PDP validates such a request based on the preset policy re-
pository, which is called the permission-granting process in
Fig. 6.

Fig. 6. Permission Granting Process

The process is as follows. The subject sends a message
RequestAccess(s, r, o, {o.p1, o.p2,… o.pi}) to the access control
system. The message content is as follows: the subject s, the
object owner r, the object o, and the requested permissions
{o.p1, o.p2,… o.pi} such as create, read, update, and delete. If

the PDP decides to grant permission to the subject based on
the access control policy recorded in the policy repository, the
PDP generates and gives a permission token (pt) to the subject
and records the token information in the object permission list.
Permission token is denoted as 𝑝𝑡 = {𝑜, 𝑖𝑑, P}, indicating 𝑜 as
an object, 𝑖𝑑 as token ID, and P as a list of permission indexes.
Otherwise, the contracts just leave a reject message to the
requestor.

The PDP transfers the information of the token granted to
the PM to log the history in the token list. By receiving an
access right token, the requestor can transfer the access rights
specified in the token as whole or in part.

C. Permission Delegation Process Model

Fig. 7. Permission Delegation Process

The permission delegation process model shown in Fig. 7
is a method in which a delegatee obtains a permission token
from a delegator. The process is as follows. (1) A delegatee
sends a request to delegate the permission token that the
delegator owns. (2) The delegator then receives the request
from the delegatee to give permission. If the delegator decides
to delegate, the process continues until the next stage.

Note: ** The first and second steps of permission
delegation have no relationship with the access control system.

(3) A subject (delegator) who owns the permission token
asks the PM to transfer the token to another subject (delegatee)
who wants to obtain access rights included in the token of the
existing subject (delegator). (4) The PM delivers information-
checking features and constraints to the PDP. After receiving
the information, the PDP decides whether to accept the request
based on the object permission list. (5) Then PM records the
generated delegation information to the token list.

The difference between the permission granting and dele-
gation processes is that the receiver receives the subject’s re-
quest. In the delegation process, the PM is a receiver while the
subject sends a request to the PDP to obtain permission.

D. Permission Check Process Model
The permission check process is for when a subject who

has a token tries to access an object. This process is essential
for validating the permission-token.

First, the subjects should send a message requesting access
to the object GrantAccess (s, r, o, pt, {o.p1, o.p2,… o.pi}) to the
access control system in the blockchain. Then, the object
requests the PDP whether the subject’s token is valid to access
the object based on the token list and information based on the

object permission list. Through these check phrases, if the
token through which the subject tries to access the object is
valid, then the subject can access the object. Otherwise, access
to the object by the subject is denied.

IV. DIVISION OF ACCESS RIGHTS
In this section, we explain how access rights that have

already been granted to a subject are divided, which is the
main contribution of this study. The division of access rights
is the modification of the access token that has already been
generated, and is transferable to a part of the rights that a
delegator owns.

A. the Greatest Privilege Problem
There is a risk that more privileges will be moved than the

appropriate privilege level because the division of a
permission token is not possible in the previous models. This
paper refers to this limitation as “the Greatest privilege
problem in access control.” Consider the following sample
case, where Alice owns a permission token granted by object
A’s owner and includes a total of four rights: read, update,
execute, and delete. Bob wants to delegate a permission token
to Alice to read Object A’s material, and Alice agrees with
Bob. If dividing a permission token is impossible, Alice can
only delegate the token with all four access rights to Bob. This
situation is in contrast to the basic principles of access control.
In addition, many IoT devices address private personal
information such as health and location. Therefore, there is a
risk that the delegatee can exploit the permission token that
contains more privileges than required.

Therefore, the existing model, where dividing the
permission token is impossible, is not practical in real-life use
because the access control model cannot apply the minimal
right principle.

B. Delegation Algorithm
To address the greatest privilege vulnerability in access

control, we propose an enhanced delegation algorithm.

Fig. 8. Example Scenario of Permission Division

To clarify this explanation, we provide one specific
scenario, as shown in Fig. 8. Consider the following situation
where there are a total of three different entities involved. First,
PDP has been granted to a permission token that allows four
different functions for object A to Alice (the delegator in this
case), and the functions are create, read, update, and delete.
Each of the functions was assigned an index from 0 to 3 in
order and recorded in the permission token that Alice owns
and in the token list. Through the permission-granting process,
Alice can conduct all functions for object A. Alice wants to
delegate read and write permissions to Bob (delegatee1 in this
case) and the rest to Carlo (delegatee2 in this case), therefore,
requiring split of access rights.

Even though there exists only Bob as a delegatee, Alice
can delegate only a part of the rights within the permission
token, instead of all the rights. Consequently, Alice can

maintain the rest of their rights and prevent the delegatee from
delegating excessive rights.

C. Algorithm Design
 In this section, we explain the details of the delegation
algorithm considering the division of permission tokens.
When the delegator delegates the token to delegatees, the
delegator sends a new permission token to each delegatee,
modifying the indices that indicate the permission that the
delegatees want to obtain. The details are described in the
following algorithm.

Algorithm 1. Permission division

INPUT: the ID of permission 𝑝𝑖𝑑, index lists 𝑑𝑙𝑖𝑠𝑡 for del-
egation in permission token, and the addresses of subjects
𝑠𝑓𝑟𝑜𝑚, 𝑠𝑡𝑜 which indicate delegator and delegatee.

OUTPUT: the token delegation

if 𝑛𝑜𝑡 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐼𝑑𝑥𝐸𝑥𝑖𝑠𝑡𝑠	(𝑠𝑓𝑟𝑜𝑚, 𝑝𝑖𝑑, 𝑑𝑙𝑖𝑠𝑡)
then revert

𝑜𝑏𝑗 ←𝑡𝑜𝑘𝑒𝑛𝐿𝑖𝑠𝑡[𝑠𝑓𝑟𝑜𝑚][𝑝𝑖𝑑].𝑜𝑏𝑗𝑒𝑐𝑡	

if 𝑛𝑜𝑡 𝑐h𝑒𝑐𝑘𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑜𝑏𝑗.𝑖𝑑, 𝑝𝑖𝑑) then revert

𝑡𝑜𝑘𝑒𝑛𝐿𝑖𝑠𝑡[𝑠𝑓𝑟𝑜𝑚][𝑝𝑖𝑑] ← 𝑡𝑜𝑘𝑒𝑛𝐿𝑖𝑠𝑡[𝑠𝑓𝑟𝑜𝑚][𝑝𝑖𝑑] − 𝑑𝑙𝑖𝑠𝑡
𝑡𝑜𝑘𝑒𝑛𝐿𝑖𝑠𝑡[𝑠𝑡𝑜][𝑝𝑖𝑑] ← 𝑡𝑜𝑘𝑒𝑛𝐶𝑟𝑒𝑎𝑡𝑒(𝑜𝑏𝑗,𝑝𝑖𝑑,𝑑𝑙𝑖𝑠𝑡)

if 𝑡𝑜𝑘𝑒𝑛𝐿𝑖𝑠𝑡[𝑠𝑓𝑟𝑜𝑚][𝑝𝑖𝑑] = ∅ then del
𝑡𝑜𝑘𝑒𝑛𝐿𝑖𝑠𝑡[𝑠𝑓𝑟𝑜𝑚][𝑝𝑖𝑑]

Delegation done.

Fig. 9. Permission Division Algorithm

Fig. 9 shows an algorithm for the separation of permission-
s that have already been generated. The input for this algo-
rithm consists of the ID of permission pid, index list dlist for
delegation in the permission token, and the addresses of sub-
jects who send and receive the permission token sfrom sto. First,
the algorithm checks whether sfrom’s permission index exists
in the index list. If it does not exist, the algorithm simply re-
verts the input Otherwise, brings the object for which the per-
mission token is for. In addition, the algorithm checks feature
F of the object and permission. Based on F, if the permission
token cannot be delegated, the algorithm reverts to the input.
In the case that the permission token has transferability, all
permission ids that will be delegated are removed from the
dlist and the delegator’s permission token is updated, exclud-
ing the permission ids delegated to the delegatee. However,
for the delegatee, a new permission token is created, including
the permission ids delegated from the delegator. After the del-
egation process, if there does not exist any permission avail-
able to the delegator, the delegator’s permission token is de-
leted. Consequently, the permission token is separated and
delegated.

The sequence diagram of our model is shown in Fig. 10.
For ease of understanding, we compared the existing model
from [4], which is described in Fig. 11, which cannot partially
delegate a permission token. According to the previous model,
to separate a permission token generated, as modification of
the permission is impossible, the original permission should

be deactivated, and the regeneration of permission tokens
reflected in the modification should be conducted. This overall
permission modification process is time consuming.

In our model, the time required to modify the content of
the permission token during the delegation process was re-
duced. Our model is suitable for modifying permission token
content by managing permission lists and token lists sepa-
rately and allows partial delegation. It seems that the new
method is time consuming; however, our evaluation shows the
opposite results.

Fig. 10. The Diagram of Our Model

Fig. 11. The BBAC Exisiting Model

V. EVALUATION
In this section, we describe the evaluation method used to

demonstrate the effectiveness of the BBAC model and the
experimental results. We then verify that the model is
meaningful compared to the legacy model.

To prove the performance of our enhanced BBAC model,
we measured the time and gas cost to improve the effective-
ness of our model compared to that in [4]. We evaluated two
different scenarios: generation of a simple delegation and ac-
cess rights division. To explain this easily, we refer to [4] and
this paper as legacy and new, respectively. The implementa-
tion of legacy is based on [4].

A. Experimental Environments
The experimental environment is presented in Table I. We

used Hardhat to evaluate the execution time of each smart
contract [23]. Hardhat is a development environment that

provides various features related to ethereum software, such
as compilation, deployment, testing, and debugging.

TABLE I. EXPERIMENTAL ENVIRONMENTS

Parameter Value

Solidity Version 0.8.4

Lines of Code 253

CPU Intel(R) Core(TM) i5-8279U CPU @ 2.40GHz

Memory 16GB 2133MHz LPDDR3

Web3js Version 1.3.6

Hardhat Version 2.3.3

B. Scenario 1 - Simple Delegation
The first case involved simple delegation. Resource

owners, objects, delegators, and delegatees exist. We assume
that Alice is a delegator and Bob is a delegatee, and that there
are two sub-permissions in a permission token that index 0 and
1 – list [0, 1]. We conducted an experiment divided into the
following two steps:

1) Permission Granting Process: The owner grants a
permission token created, which permits access to an object,
to Alice. In this step, a process confirming whether Alice has
successfully obtained the new permission token is included
by checking for the existence of the list [0,1].

2) Permission Delegation Process: Alice(𝑠𝑓𝑟𝑜𝑚) has a
permission token granted by the owner of the object by the
permission granting process. Then, Bob(𝑠t𝑜) requested Alice
to delegate the permission token with dlist [0, 1], which is a
whole list that is included in the permission token Alice owns,
and Alice agreed to the request.

This study checked the time and gas consumption of the
permission granting and delegation processes. The results are
presented in Table II. Cost comparison between legacy and
new scenarios for Scenario 1.

TABLE II. COST COMPARISION BETWEEN LEGACY AND NEW FOR
SCENARIO 1

 At the permission granting processes, each of the time
costs of legacy and new are 135ms and 75ms, respectively,
reduced by 45%. On the other hand, the gas consumption of
legacy and new is 267158 and 300475, respectively, which is
an increase of 12%.

Next, in the permission delegation processes, the time cost
of legacy and new is 166ms and 156ms, respectively, which
are reduced by 7%. In addition, the gas consumption of legacy
and new is 128831 and 127524, respectively, which is reduced
by 2% in our enhanced BBAC model.

In summary, there was a loss of approximately 3300 gases
in the permission granting process, while there was 6000 gas

Process Standard legacy new

Permission Granting
time 135ms 75ms
gas 267,158 300,475

Permission Delegation
time 166ms 156ms
gas 240,431 180,776

Total
time 301ms 231ms
gas 507,589 481,251

gains per permission delegation process. In other words, the
more frequently the permission token is modified, the better it
is in terms of the gas. As a result, through the evaluation, we
can prove that our model is good for environments that are
required to easily edit the contents of the permission token that
has already been generated.

C. Scenario 2 - Division of Permission
The second case pertains to the division of access rights.

The difference with simple delegation is that there exists more
than one delegatee to consider the split of the permission token.

For the experiment, we assume that there is a resource
owner, an object, and a delegator, similar to a simple division.
However, there was a significant difference from the former.
For this case, there are two delegatees (𝑠t𝑜) - Bob and Carrol,
who want to delegate the part of the permission token of
Alice(𝑠𝑓𝑟𝑜𝑚). The resource owner granted the permission
token to Alice, so Alice was able to conduct four different
rights - create, read, update, and delete. Each of the permission
rights indicated from 0 to 3 – list [0, 1, 2, 3]. Bob wants to get
permission including index 0 and 1 – dlist [0, 1] , while Carrol
wants to get permission for the remaining – dlist [2, 3]. As a
result, Bob is able to conduct action limited to create and read
on the object and Carrol has right to update and delete on the
object.

In this case, we applied both legacy and new, and checked
the time and gas consumption of each case. For the
comparison, we assume that Alice’s existing permission token
is deactivated; then, two permission tokens – one for creation
and reading, and the other for update and delete – are
regenerated. Each permission token was delegated to Bob and
Carrol in a legacy. However, according to our new algorithm,
a split of the permission tokens is conducted in the delegation
process. Therefore, simply sending different permission
indices between Bob and Carrol is required, and the process is
short compared to the former case.

As a result, when using legacy, it requires a total of
1428031 gases to deactivate the permission that has already
existed, two times the permission creation and delegation
process. However, the new passes only two delegation
processes for the permission division and requires only
1250272 gas, which is reduced by 13%. With respect to time,
the cost was reduced by 13%, from 339ms to 296ms. In other
words, our model has an advantage in terms of the division of
permissions compared to [4].

VI. DISCUSSION
In this section, we address several points related to the

enhanced BBAC model proposed in this study.

A. Comparison
First, we evaluated our model and compared it with only

[4]. This is because we motivated the study and improved the
existing mechanism to be more practical in the division of
permission tokens in the delegation process. Therefore, we
considered the most important and meaningful comparison
with [4] instead of including others.

B. Increased Gas
In our model, the permission-granting gas consumption is

increased compared to that in [4]. Additionally, the delegation
process requires less gas. However, our enhanced model is
optimized for cases in which delegation requests occur
frequently.

C. Permission Check Process
Compared with the existing token-constrained BBAC,

such as [4], [21], [24], the permission check process is more
complex. Most token-constrained BBAC check the request of
a subject to an object based on the existence of a permission
token. However, in our model, the permission check process
adds the permission index list to divide the permission token.
Therefore, the gas cost required for the permission-check
process increases. However, this is an inevitable consequence;
it is a trade-off relationship with the implementation of the
access rights division, which is required to modify the
parameter structure.

D. Time Complexity
The time complexity problem of BBAC remains.

According to [4], the time complexity of the BBAC algorithm
is high. However, there is room for improvement, such as
using miners of high quality or choosing a consensus
algorithm called RAFT to accelerate the block speed [13], [25].

E. Single Point of Failure Problem
Because this model is based on a consortium blockchain,

the single point of failure problem cannot be totally ignored.
This is because being based on a consortium blockchain
implies that there is a separate entity that determines which
subjects or objects will participate in the corresponding
blockchain. Additionally, it is difficult to completely rule out
the possibility that an entity may act as a single point of failure.
However, when BBAC is introduced, the possibility of a
single point of failure is significantly lowered, and the
transparency of access control can be increased
simultaneously. Therefore, the introduction of BBAC is
meaningful for resolving a single point of failure problem.

F. Improvement for BBAC
As BBAC has recently been discussed actively, except for

the division of permission, there are various parts of BBAC
that must be improved, including the time complexity problem.
However, this study focuses on permission division to
improve feasibility. Other challenges for BBAC will be
addressed in future work.

VII. CONCLUSION
In this study, we propose a blockchain-based access

control (BBAC) model for IoT and emphasize the risk caused
by the greatest privilege vulnerability. To address this risk, we
propose a new delegation algorithm that redefines the
structures to facilitate permission division with reference to
[4]. This study proves the possibility and effectiveness of our
enhanced BBAC model. In effect, although even after adding
more parameters to implement the division of access rights,
the gas cost for the overall process has reduced. In particular,
our model is appropriate for cases that require addressing
many delegation requests.

VIII. ACKNOWLEDGMENTS
This work was supported by the Institute of Information

& Communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT) (No.
2019-0-01697 Development of Automated Vulnerability Dis-
covery Technologies for Blockchain Platform Security, No.
2019-0-01343 Regional Strategic Industry Convergence Se-
curity Core Talent Training Business, and No. IITP-2021-
2020-0-01819 ICT Creative Consilience program).

REFERENCES

[1] P. Scully, “Top 10 IoT applications in 2020 - Which are the
hottest areas right now?,” IoT Analytics. 2020, [Online].
Available: https://iot-analytics.com/top-10-iot-applications-in-
2020/.

[2] CISCO, “Cisco Annual Internet Report (2018–2023)”, CISCO,
2018.

[3] Z. K. Zhang, M. C. Y. Cho, C. W. Wang, C. W. Hsu, C. K. Chen,
and S. Shieh, “IoT security: Ongoing challenges and research
opportunities,” Proc. - IEEE 7th Int. Conf. Serv. Comput. Appl.
SOCA 2014, pp. 230–234, 2014, doi: 10.1109/SOCA.2014.58.

[4] J. Shi, R. Li, and W. Hou, “A Mechanism to Resolve the
Unauthorized Access Vulnerability Caused by Permission
Delegation in Blockchain-Based Access Control,” IEEE Access,
vol. 8, pp. 156027–156042, 2020, doi:
10.1109/ACCESS.2020.3018783.

[5] S. Ding, J. Cao, C. Li, K. Fan, and H. Li, “A Novel Attribute-
Based Access Control Scheme Using Blockchain for IoT,” IEEE
Access, vol. 7, pp. 38431–38441, 2019, doi:
10.1109/ACCESS.2019.2905846.

[6] H. Liu, D. Han, and D. Li, “Fabric-iot: A Blockchain-Based
Access Control System in IoT,” IEEE Access, vol. 8, pp. 18207–
18218, 2020, doi: 10.1109/ACCESS.2020.2968492.

[7] O. Novo, “Blockchain Meets IoT: An Architecture for Scalable
Access Management in IoT,” IEEE Internet Things J., vol. 5, no.
2, pp. 1184–1195, Apr. 2018, doi: 10.1109/JIOT.2018.2812239.

[8] A. Outchakoucht and J. P. Leroy, “Dynamic Access Control
Policy based on Blockchain and Machine Learning for the
Internet of Things,” International Journal of Advanced Computer
Science and Applications, 2017. [Online]. Available:
www.ijacsa.thesai.org.

[9] S. Pal, T. Rabehaja, A. Hill, M. Hitchens, and V. Varadharajan,
“On the Integration of Blockchain to the Internet of Things for
Enabling Access Right Delegation,” IEEE Internet Things J., vol.
7, no. 4, pp. 2630–2639, Apr. 2020, doi:
10.1109/JIOT.2019.2952141.

[10] O. J. A. Pinno, A. R. A. Grégio, and L. C. E. De Bona,
“ControlChain: A new stage on the IoT access control
authorization,” in Concurrency Computation , Jun. 2020, vol. 32,
no. 12, doi: 10.1002/cpe.5238.

[11] G. Ali, N. Ahmad, Y. Cao, M. Asif, H. Cruickshank, and Q. E.
Ali, “Blockchain based permission delegation and access control
in Internet of Things (BACI),” Comput. Secur., vol. 86, pp. 318–
334, Sep. 2019, doi: 10.1016/j.cose.2019.06.010.

[12] Q. Wang, N. Li, and H. Chen, “On the Security of Delegation in
Access Control Systems,” Eur. Symp. Res. Comput. Secur., vol.
5283, pp. 317–332, 2008.

[13] Y. Feng, W. Zhang, X. Luo, and B. Zhang, “A Consortium
Blockchain-based Access Control Framework with Dynamic
Orderer Node Selection for 5G-enabled Industrial IoT,” IEEE
Trans. Ind. Informatics, vol. 3203, no. c, pp. 1–9, 2021, doi:
10.1109/TII.2021.3078183.

[14] B. Bera, S. Saha, A. K. Das, and A. V. Vasilakos, “Designing
blockchain-based access control protocol in iot-enabled smart-
grid system,” IEEE Internet Things J., vol. 8, no. 7, pp. 5744–
5761, 2021, doi: 10.1109/JIOT.2020.3030308.

[15] S. Saha, A. K. Sutrala, A. K. Das, N. Kumar, and J. J. P. C.
Rodrigues, “On the Design of Blockchain-Based Access Control
Protocol for IoT-Enabled Healthcare Applications,” IEEE Int.
Conf. Commun., vol. 2020-June, pp. 1–6, 2020, doi:
10.1109/ICC40277.2020.9148915.

[16] S. Pal, T. Rabehaja, M. Hitchens, V. Varadharajan, and A. Hill,
“On the Design of a Flexible Delegation Model for the Internet of
Things Using Blockchain,” IEEE Trans. Ind. Informatics, vol. 16,
no. 5, pp. 3521–3530, 2020, doi: 10.1109/TII.2019.2925898.

[17] R. S. Sandhu and P. Samarati, “Access control: Principles and
Practice,” IEEE Commun. Mag., vol. 32, no. September, pp. 40–
48, 1994.

[18] J. L. Hernández-Ramos, A. J. Jara, L. Marín, and A. F. Skarmeta
Gómez, “DCapBAC: embedding authorization logic into smart
things through ECC optimizations,” Int. J. Comput. Math., vol.
93, no. 2, pp. 345–366, 2016, doi:
10.1080/00207160.2014.915316.

[19] G. Das D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos,
“Everything You Wanted to Know About the Blockchain: Its
Promise, Components, Processes, and Problems,” IEEE Consum.
Electron. Mag., vol. 7, no. 4, pp. 6–14, 2018, doi:
10.1109/MCE.2018.2816299.

[20] V. Buterin, “A next-generation smart contract and decentralized
application platform,” white paper, 2014.

[21] R. Xu, Y. Chen, E. Blasch, and G. Chen, “BlendCAC: A
BLockchain-ENabled Decentralized Capability-based Access
Control for IoTs,” 2018 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData),
2018, pp. 1027-1034, doi:
10.1109/Cybermatics_2018.2018.00191.

[22] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart
contract-based access control for the internet of things,” IEEE
Internet Things J., vol. 6, no. 2, pp. 1594–1605, 2019, doi:
10.1109/JIOT.2018.2847705.

[23] Nomic Labs LLC, “No Title.” https://hardhat.org/.
[24] Y. E. Oktian and S. G. Lee, “BorderChain: Blockchain-Based

Access Control Framework for the Internet of Things Endpoint,”
IEEE Access, vol. 9, pp. 3592–3615, 2021, doi:
10.1109/ACCESS.2020.3047413.

[25] D. Kim, I. Doh and K. Chae, "Improved Raft Algorithm
exploiting Federated Learning for Private Blockchain
performance enhancement," 2021 International Conference on
Information Networking (ICOIN), 2021, pp. 828-832, doi:
10.1109/ICOIN50884.2021.9333932.

