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Abstract— There are several security problems arising from 
the characteristics of IoT, and one of them is weak access control. 
Traditional access control models require one centralized au-
thority that stores all the information for access control and val-
idates access rights. This single point of failure in IoT access con-
trol could lead to situations where a single breach can cause sen-
sitive information leakage across the entire system. Various 
studies have been conducted to mitigate this security risk by in-
troducing a decentralized architecture based on blockchain 
technology called BBAC. However, most BBAC models consider 
only a simple access control situation, which can lead to a “the 
Greatest privilege problem”. This study proposes a novel access 
control model that enforces minimum privilege to an access to-
ken by the division and modification of access rights. As a result, 
we contributed to enhancing the practicality of the BBAC and 
mitigating risks that may arise in the delegation process. 
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I. INTRODUCTION 
With the rapid advances in Internet of Things (IoT) tech-

nologies, the use of IoT technologies has increased extensive-
ly across smart factories, smart cities, and healthcare, and Fig. 
1 illustrates this phenomenon [1]. 

  
Fig. 1. Top 10 IoT Application areas 2020 

IoT is currently one of the most preferred technologies. As 
illustrated in Fig. 2, the number of global M2M connections is 
expected to grow from 6.1 billion in 2018 to 14.7 billion by 
2023 [2], owing to the increased use of IoT devices. 

 
Fig. 2. The number of M2M connections 2018-2023 (Unit: Billion) 

However, the continuity of IoT security incidents, such as 
the Mirai botnet attack [3], indicate that the security of IoT is 

a chronic problem. Access control is one of the major security 
challenge of IoT, as it involves relaying sensitive information. 
For example, an inadequate IoT access control model can 
permit unauthorized users to access medical information [4]. 
Considering the massive number of IoT devices installed, a 
well-defined IoT access control mechanism that manages 
various complex access rights is essential. 

Several methods have been suggested for IoT access 
control, including role-based access control (RBAC) and 
attribute-based access control (ABAC). These are centralized 
models, in which all the access control is centralized . This 
centralized nature can expose IoT devices to a single point of 
failure. Capability-based access control (CapBAC) has 
emerged as a solution for providing more flexible access 
control through a capability token. However, CapBAC too 
requires a centralized entity for validating the access rights. 
Therefore, a single point of failure remains in trustworthy IoT 
environments. As an alternative, distributed capability-based 
access control (DCapBAC), which is a validation process 
occurring inside IoT devices, was suggested. However, 
validating access rights with limited resources of IoT devices 
may hinder their performance and a malicious user may cause 
unstable operation. Several commercial tools for IoT access 
control are available. However, using these tools can be seen 
as outsourcing IoT access control to a third party from the 
user’s perspective, which can lead to a problem of trust. 
Outsourcing for access control requires very strong trust 
between the parties requiring the outsourcing company will 
never tamper with the data. Access control methods using 
blockchain technology have recently been proposed as an 
alternative solution to solve this problem completely because 
blockchain stores manage data in a decentralized manner. 

 
Fig. 3. Number of published papers related with BBAC 

Research addressing blockchain-based access control 
(BBAC) models has been actively conducted since 2016. Fig. 
3 illustrates the growing number of published papers related 
to BBAC. 

Based on the characteristics of BBAC, some studies have 
suggested replacing existing access control methods with 
blockchain-based methods [5]–[10].  



Recent research addresses delegating access rights to 
BBAC methods in IoT environments to achieve practicality. 
The delegation process is performed by a decentralized entity 
and allows an entity to use the access rights of another entity 
for a period of time, not permanently. However, there remains 
a risk of abuse of delegated rights by unauthorized users. 
Several studies aim to restrict such abuses by utilizing the 
characteristics of smart contracts  [8], [10], [11]. Some re-
searchers have suggested a BBAC model tailored to a specific 
area, such as smart grids and healthcare [13]–[15]. 

Limiting the rights already given to the requestor is 
another question to be solved in the BBAC models. Existing 
models [4], [16] focus only on a simple case consisting of a 
single delegator and delegatee. There is a need for a situation 
in which a subject that has permissions for several behaviors 
delegates only one permission to the other subjects. Consider 
an example case in which a subject has all permissions – create, 
read, update, and execute on a printer. Another subject wants 
to delegate the permission token to access the printer. 
Following the principle of minimum privilege, subjects who 
request access rights to the printer should only be granted to 
read and execute, but not to create or update.Therefore, the 
permission token should be broken down into two – one for 
read and execute rights and the other for the rest. Existing 
permissions must be divided into two different sub-
permissions. However, previous research has failed to 
consider such a case that requires the division of a permission 
token.  

We propose an enhanced BBAC model for IoT networks. 
Our architecture compensates for the lack of consideration in 
situations that require the division of rights that are already 
granted. Existing papers focus only on simple situations, such 
as the transference or delegation of one right from one entity 
to another. However, to increase practicality and at the same 
time ensure that only the minimum level of access rights is 
delegated, it is essential to consider the division and modifica-
tion of the rights that have already been generated. This study 
assigns an index to sub-permission within the permission to-
ken and suggests an architecture that access right is requested 
or delegated in whole or in part based on the index. The con-
tribution of this paper is as follows: We define "the Greatest 
privilege problem" that can occur in the delegation process on 
the BBAC and propose a new BBAC model that can not only 
prevent it and but also apply to more complicated delegation 
conditions. To the best of our knowledge, none of the previous 
works related to BBAC for IoT have considered the access 
right division issue.  

The remainder of this paper is structured as follows: Sec-
tion II provides an overview of related works on access control 
for the IoT domain. Section III presents the overall architec-
ture of a BBAC system. Section IV explains the representative 
access right division scenario and suggestions regarding 
addressing the situation by proposing a delegation algorithm 
that is considered a complex delegation. Section V presents 
evaluation to prove the effectiveness of the proposed model. 
In Section VI, we discuss the proposed model and conclude 
the study in Section VII. 

II. BACKGROUND  
In this section, we provide a brief background on tradi-

tional access control, blockchain and smart contracts, and the 
delegation process. In addition, this paper explains related 
studies. 

A. Traditional Access Control 
Access control has two basic principles that should be 

followed [17].  

• Least Privilege Policy: The least privileged policy is to 
minimize damage caused by abuse of authority by 
granting only the minimum rights to perform the 
authorized work. 

• Separate Duty Policy: This principle is to prevent the 
occurrence of all processes in the development - task, 
approval, modification, confirmation, and completion 
- from being conducted by one person. In other words, 
the separation between a person who oversees the 
modification process and another for confirmation.  

There are four major types of access control mechanisms 
in IoT. Each mechanism has advantages and disadvantages in 
an IoT environment.  

• Role-based access control (RBAC): RBAC is a 
mechanism that checks the role (e.g., administrator, 
manager, guest) of a requestor when he wants to access 
a right.  

• Attribute-based access control (ABAC): Based on 
ABAC, a centralized entity makes a decision based on 
the special attributes of a requestor who wants to 
access a resource. Therefore, ABAC facilitates the 
management of access policies. However, both RBAC 
and ABAC are highly centralized and can invoke a 
single point-of-failure problem.  

• Capability-based access control (CapBAC): In 
CapBAC-based schemes, subjects can perform certain 
activities on an object if they have appropriate 
capabilities. However, a centralized entity is required 
to validate the token.  

• Distributed capability-based access control 
(DCapBAC): DCapBAC model [18] was proposed to 
provide more controlled access control. Subjects can 
obtain access rights based on capability, and the 
validation process is conducted by the requested IoT 
devices themselves, not by a centralized entity. 
Therefore, it enables flexible access control inside the 
IoT devices. However, owing to the low computing 
capability of IoT devices, they may be easily 
compromised by adversaries; thus, they cannot 
establish a fully trusted relationship between the 
entities that validate the access rights. In conclusion, 
DCapBAC is not a suitable access control method for 
IoT environments.  

B. Blockchain and Smart Contracts 
Blockchain refers to distributed ledger architectures that 

consist of nodes that do not trust each other. As its name 
suggests, several timestamped blocks compose a blockchain 
and the blocks contain a number of transactions between 
nodes. Nodes validate any transactions they receive and 
transactions can be appended after validation. The blockchain 
is permanent, tamper-proof, and distributed. Any node with 
the right to access the blockchain can view all the records in 
the chain [19].  

Smart contracts can be simply defined as a program that 
resides on a blockchain and automatically runs when the 
preset conditions are satisfied. Therefore, smart contracts do 



not require any intermediaries or the loss of time. As smart 
contracts are executed on a blockchain, all participants can 
execute its  instructions and see the history of each interaction 
between smart contracts [20]. 

C. Delegation 
Delegation refers to a temporal process in which a 

resource owner transfers the right to permit access to its 
resource to another entity.  

Delegation in IoT is conducted in a distributed manner, 
whereas most access rights administration operations are 
central. Fig. 4 shows an example of a delegation process in an 
IoT environment. If the delegation system has any blind points, 
an attacker can obtain the access rights of a resource [4], [16]. 
Delegation continues to receive a lot of attention, as a 
trustworthy delegation without a centralized third party is 
essential in an IoT environment that has heterogeneous and 
large-scale characteristics. Consequently, many delegation 
models in IoT that use blockchain technology to solve a single 
point of failure problem and improve the reliability of the 
models have been proposed. 

 
 

Fig. 4. Process of Delegation 

D. Related Works 
Considering the advantages of blockchain technology, 

majority of the research has suggested a blockchain-based 
access control (BBAC) model for IoT. For example, Pal et al. 
[9] proposed a delegation access control rights architecture 
using a public blockchain and a private chain to strengthen 
privacy. Xu et al. [21] implemented BlendCAC, a capability 
delegation mechanism based on a blockchain network. In this 
structure, when an entity sends a request to obtain access 
rights, the entity designated as a domain owner issues a 
capability token. In addition, Gauhar. A et al. [11] presented a 
decentralized architecture for permission delegation and 
access control in the IoT, where the delegation process is 
based on both queries and events. Zhang [22] suggested a 
smart contract-based framework consisting of multiple-access 
control contracts as a trustworthy and distributed access 
control model in an IoT environment.  

In some studies, a BBAC model has been customized for 
a specific IoT area. For example, Feng [13] suggested a 
consortium blockchain-based access control framework with 
dynamic ordered node selection for 5G-enabled industrial IoT, 
and compared the framework implementation based on the 
Practical Byzantine Fault Tolerance (PBFT) consensus. In 
addition, Bera et al. [14] designed a BBAC protocol for an 
IoT-enabled smart-grid system called DBACP-IoTSG. Saha 
et al. [15] proposed a BBAC mechanism for IoT-enabled 
healthcare applications which emphasizes on supporting 
various functionality features while providing better security 

and maintaining a low level of communication and 
computation costs.  

A research has been conducted on addressing the issue of 
delegation of arbitrary access rights to other subjects. Saha et 
al. [16] suggested a flexible delegation model for IoT 
environments using blockchain. Shi et al. [4] emphasized that, 
for the delegation process, an unauthorized access 
vulnerability exists, where an unauthorized user can obtain 
rights by abusing this process. For example, a resource request 
that obtains permission from the access control system can 
delegate permission to another subject that is not verified by 
the access control system. This situation is possible because 
the object does not predefine all legitimate users. The object 
only verifies whether the delegator and delegatee agree to the  
permission. The author suggested a token-constrained 
permission-delegation algorithm as a solution. 

However, previous papers discussing BBAC models 
mostly consider a single delegator and a single delegatee, 
ignoring the possibility of access rights division, which exists 
in several delegatees. This can cause “the greatest privilege 
problem” that a subject can get more privileges than necessary. 
To address this complex delegation situation, the ability to 
divide access rights is a requirement for managing  practical 
cases in the real world. 

III. BLOCKCHAIN-BASED ACCESS CONTROL SYSTEM 
In this section, we present a blockchain-based access 

control (BBAC) model and introduce the permission 
delegation case. Based on this model, this paper suggests a 
model for dividing access rights that have already been 
generated. 

A. Overall architecutre of BBAC 
 

 
Fig. 5. Overall Architecture of BBAC 

Fig. 5 shows the overall structure of the proposed 
architecture. The BBAC system architecture consists of 
subjects, objects, token lists, object permission lists, a policy 
repository, and smart contracts, such as the policy decision 
point (PDP) and permission management (PM). Smart 
contracts are deployed in the blockchain. This blockchain is 
based on a consortium blockchain architecture, which requires 
permission to participate in the blockchain network. The PDP 
validates the permission to access a resource based on the 
policy repository with a preset policy list and conditions. In 
addition, the PDP utilizes an object permission list containing 
information on all object permissions that are already granted 



by the PDP. Objects, actions, features, and constraints are 
recorded in the list. With the object permission list, we can 
determine the type of actions that can be conducted by the 
object and each permission’s features, including whether it is 
transferable, and if it is, how many times it can be moved. 
Through these actions, the object permission list assigns 
indexes that are useful for delegating a permission token. In 
addition, based on the constraint, we can grant a permission 
token considering the limited situation based on the policy that 
all objects have already been set. Notably, this study does not 
address the constraints and methods of how objects record 
their policies in detail to focus on the delegation issue. The 
token list is managed by the PM and includes all the 
information of tokens that has been given to a requestor. In the 
token list, the object, token id, and permission indexes are 
stored, and based on this information, the PM manages what 
sub-permissions are included in a permission token based on 
the index.   

In this case, the access requestor is a delegator that initiates 
permission delegation. If the permission that the delegator 
owns is transferable, it can send permission to other people. 
Those who obtain permission from the delegator through the 
delegation process are defined as delegatees.  

In the access control system, the object owner has already 
uploaded the object’s access control strategy, which he preset, 
to the policy repository, and the resource requester sends a 
request for permission to access the resource.  The object 
owner can set their access control policy based on various 
methods, such as ABAC and RBAC. 

If the PDP decides to grant access rights to the requestor, 
it sends the requester a permission token. The permission 
token has a transferability attribute that can be passed on to 
the delegatee by the resource requester. 

B. Permission Granting Process Model 
When a subject requests rights to access a resource, the 

PDP validates such a request based on the preset policy re-
pository, which is called the permission-granting process in 
Fig. 6. 

 

 
Fig. 6. Permission Granting Process 

The process is as follows. The subject sends a message 
RequestAccess(s, r, o, {o.p1, o.p2,… o.pi}) to the access control 
system. The message content is as follows: the subject s, the 
object owner r, the object o, and the requested permissions 
{o.p1, o.p2,… o.pi} such as create, read, update, and delete. If 

the PDP decides to grant permission to the subject based on 
the access control policy recorded in the policy repository, the 
PDP generates and gives a permission token (pt) to the subject 
and records the token information in the object permission list. 
Permission token is denoted as 𝑝𝑡 = {𝑜, 𝑖𝑑, P}, indicating 𝑜 as 
an object, 𝑖𝑑 as token ID, and P as a list of permission indexes. 
Otherwise, the contracts just leave a reject message to the 
requestor. 

The PDP transfers the information of the token granted to 
the PM to log the history in the token list. By receiving an 
access right token, the requestor can transfer the access rights 
specified in the token as whole or in part. 

C. Permission Delegation Process Model 

 
Fig. 7. Permission Delegation Process 

The permission delegation process model shown in Fig. 7 
is a method in which a delegatee obtains a permission token 
from a delegator. The process is as follows. (1) A delegatee 
sends a request to delegate the permission token that the 
delegator owns. (2) The delegator then receives the request 
from the delegatee to give permission. If the delegator decides 
to delegate, the process continues until the next stage.  

Note: ** The first and second steps of permission 
delegation have no relationship with the access control system.  

(3) A subject (delegator) who owns the permission token 
asks the PM to transfer the token to another subject (delegatee) 
who wants to obtain access rights included in the token of the 
existing subject (delegator). (4) The PM delivers information-
checking features and constraints to the PDP. After receiving 
the information, the PDP decides whether to accept the request 
based on the object permission list. (5) Then PM records the 
generated delegation information to the token list.  

The difference between the permission granting and dele-
gation processes is that the receiver receives the subject’s re-
quest. In the delegation process, the PM is a receiver while the 
subject sends a request to the PDP to obtain permission. 

D. Permission Check Process Model 
The permission check process is for when a subject who 

has a token tries to access an object. This process is essential 
for validating the permission-token. 

First, the subjects should send a message requesting access 
to the object GrantAccess (s, r, o, pt, {o.p1, o.p2,… o.pi}) to the 
access control system in the blockchain. Then, the object 
requests the PDP whether the subject’s token is valid to access 
the object based on the token list and information based on the 



object permission list. Through these check phrases, if the 
token through which the subject tries to access the object is 
valid, then the subject can access the object. Otherwise, access 
to the object by the subject is denied. 

IV. DIVISION OF ACCESS RIGHTS 
In this section, we explain how access rights that have 

already been granted to a subject are divided, which is the 
main contribution of this study. The division of access rights 
is the modification of the access token that has already been 
generated, and is transferable to a part of the rights that a 
delegator owns. 

A. the Greatest Privilege Problem 
There is a risk that more privileges will be moved than the 

appropriate privilege level because the division of a 
permission token is not possible in the previous models. This 
paper refers to this limitation as “the Greatest privilege 
problem in access control.” Consider the following sample 
case, where Alice owns a permission token granted by object 
A’s owner and includes a total of four rights: read, update, 
execute, and delete. Bob wants to delegate a permission token 
to Alice to read Object A’s material, and Alice agrees with 
Bob. If dividing a permission token is impossible, Alice can 
only delegate the token with all four access rights to Bob. This 
situation is in contrast to the basic principles of access control. 
In addition, many IoT devices address private personal 
information such as health and location. Therefore, there is a 
risk that the delegatee can exploit the permission token that 
contains more privileges than required.  

Therefore, the existing model, where dividing the 
permission token is impossible, is not practical in real-life use 
because the access control model cannot apply the minimal 
right principle. 

B. Delegation Algorithm 
To address the greatest privilege vulnerability in access 

control, we propose an enhanced delegation algorithm.  

 
Fig. 8. Example Scenario of Permission Division 

To clarify this explanation, we provide one specific 
scenario, as shown in Fig. 8. Consider the following situation 
where there are a total of three different entities involved. First, 
PDP has been granted to a permission token that allows four 
different functions for object A to Alice (the delegator in this 
case), and the functions are create, read, update, and delete. 
Each of the functions was assigned an index from 0 to 3 in 
order and recorded in the permission token that Alice owns 
and in the token list. Through the permission-granting process, 
Alice can conduct all functions for object A. Alice wants to 
delegate read and write permissions to Bob (delegatee1 in this 
case) and the rest to Carlo (delegatee2 in this case), therefore, 
requiring split of access rights. 

Even though there exists only Bob as a delegatee, Alice 
can delegate only a part of the rights within the permission 
token, instead of all the rights. Consequently, Alice can 

maintain the rest of their rights and prevent the delegatee from 
delegating excessive rights. 

C. Algorithm Design 
 In this section, we explain the details of the delegation 
algorithm considering the division of permission tokens. 
When the delegator delegates  the token to delegatees, the 
delegator sends a new permission token to each delegatee, 
modifying the indices that indicate the permission that the 
delegatees want to obtain. The details are described in the 
following algorithm. 

Algorithm 1. Permission division 

INPUT: the ID of permission 𝑝𝑖𝑑, index lists 𝑑𝑙𝑖𝑠𝑡 for del-
egation in permission token, and the addresses of subjects 
𝑠𝑓𝑟𝑜𝑚, 𝑠𝑡𝑜 which indicate delegator and delegatee. 
 
OUTPUT: the token delegation 

 
if 𝑛𝑜𝑡 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐼𝑑𝑥𝐸𝑥𝑖𝑠𝑡𝑠	(𝑠𝑓𝑟𝑜𝑚, 𝑝𝑖𝑑, 𝑑𝑙𝑖𝑠𝑡)  
then revert 
 
𝑜𝑏𝑗 ←𝑡𝑜𝑘𝑒𝑛𝐿𝑖𝑠𝑡[𝑠𝑓𝑟𝑜𝑚][𝑝𝑖𝑑].𝑜𝑏𝑗𝑒𝑐𝑡	
 
if 𝑛𝑜𝑡 𝑐h𝑒𝑐𝑘𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑜𝑏𝑗.𝑖𝑑, 𝑝𝑖𝑑) then revert 
 
𝑡𝑜𝑘𝑒𝑛𝐿𝑖𝑠𝑡[𝑠𝑓𝑟𝑜𝑚][𝑝𝑖𝑑] ← 𝑡𝑜𝑘𝑒𝑛𝐿𝑖𝑠𝑡[𝑠𝑓𝑟𝑜𝑚][𝑝𝑖𝑑] − 𝑑𝑙𝑖𝑠𝑡 
𝑡𝑜𝑘𝑒𝑛𝐿𝑖𝑠𝑡[𝑠𝑡𝑜][𝑝𝑖𝑑] ← 𝑡𝑜𝑘𝑒𝑛𝐶𝑟𝑒𝑎𝑡𝑒(𝑜𝑏𝑗,𝑝𝑖𝑑,𝑑𝑙𝑖𝑠𝑡)  
 
if 𝑡𝑜𝑘𝑒𝑛𝐿𝑖𝑠𝑡[𝑠𝑓𝑟𝑜𝑚][𝑝𝑖𝑑] = ∅ then del 
𝑡𝑜𝑘𝑒𝑛𝐿𝑖𝑠𝑡[𝑠𝑓𝑟𝑜𝑚][𝑝𝑖𝑑]  
 

Delegation done. 

Fig. 9. Permission Division Algorithm 

Fig. 9 shows an algorithm for the separation of permission-
s that have already been generated. The input for this algo-
rithm consists of the ID of permission pid, index list dlist for 
delegation in the permission token, and the addresses of sub-
jects who send and receive the permission token sfrom sto. First, 
the algorithm checks whether sfrom’s permission index exists 
in the index list. If it does not exist, the algorithm simply re-
verts the input Otherwise, brings the object for which the per-
mission token is for. In addition, the algorithm checks feature 
F of the object and permission. Based on F, if the permission 
token cannot be delegated, the algorithm reverts to the input. 
In the case that the permission token has transferability, all 
permission ids that will be delegated are removed from the 
dlist and the delegator’s permission token is updated, exclud-
ing the permission ids delegated to the delegatee. However, 
for the delegatee, a new permission token is created, including 
the permission ids delegated from the delegator. After the del-
egation process, if there does not exist  any permission avail-
able to the delegator, the delegator’s permission token is de-
leted. Consequently, the permission token is separated and 
delegated. 

The sequence diagram of our model is shown in Fig. 10. 
For ease of understanding, we compared the existing model 
from [4], which is described in  Fig. 11, which cannot partially 
delegate a permission token. According to the previous model, 
to separate a permission token generated, as modification of 
the permission is impossible, the original permission should 



be deactivated, and the regeneration of permission tokens 
reflected in the modification should be conducted. This overall 
permission modification process is time consuming. 

In our model, the time required to modify the content of 
the permission token during the delegation process was re-
duced. Our model is suitable for modifying permission token 
content by managing permission lists and token lists sepa-
rately and allows partial delegation. It seems that the new 
method is time consuming; however, our evaluation shows the 
opposite results. 

 

 
Fig. 10. The Diagram of Our Model 

 
Fig. 11. The BBAC Exisiting Model 

V. EVALUATION 
In this section, we describe the evaluation method used to 

demonstrate the effectiveness of the BBAC model and the 
experimental results. We then verify that the model is 
meaningful compared to the legacy model.  

To prove the performance of our enhanced BBAC model, 
we measured the time and gas cost to improve the effective-
ness of our model compared to that in [4]. We evaluated two 
different scenarios: generation of a simple delegation and ac-
cess rights division. To explain this easily, we refer to [4] and 
this paper as legacy and new, respectively. The implementa-
tion of legacy is based on [4]. 

A. Experimental Environments 
The experimental environment is presented in Table I. We 

used Hardhat to evaluate the execution time of each smart 
contract [23]. Hardhat is a development environment that 

provides various features related to ethereum software, such 
as compilation, deployment, testing, and debugging. 

TABLE I.  EXPERIMENTAL ENVIRONMENTS 

Parameter Value 

Solidity Version  0.8.4 

Lines of Code 253 

CPU Intel(R) Core(TM) i5-8279U CPU @ 2.40GHz  

Memory 16GB 2133MHz LPDDR3 

Web3js Version 1.3.6 

Hardhat Version 2.3.3 
 

B. Scenario 1 - Simple Delegation 
The first case involved simple delegation. Resource 

owners, objects, delegators, and delegatees exist. We assume 
that Alice is a delegator and Bob is a delegatee, and that there 
are two sub-permissions in a permission token that index 0 and 
1 – list [0, 1]. We conducted an experiment divided into the 
following two steps:  

1) Permission Granting Process: The owner grants a 
permission token created, which permits access to an object, 
to Alice. In this step, a process confirming whether Alice has 
successfully obtained the new permission token is included 
by checking for the existence of the list [0,1].   

2)  Permission Delegation Process: Alice(𝑠𝑓𝑟𝑜𝑚) has a 
permission token granted by the owner of the object by the 
permission granting process. Then, Bob(𝑠t𝑜) requested Alice 
to delegate the permission token with dlist [0, 1], which is a 
whole list that is included in the permission token Alice owns, 
and Alice agreed to the request.  

This study checked the time and gas consumption of the 
permission granting and delegation processes. The results are 
presented in Table II. Cost comparison between legacy and 
new scenarios for Scenario 1. 

TABLE II.  COST COMPARISION BETWEEN LEGACY AND NEW FOR 
SCENARIO 1 

   

 At the permission granting processes, each of the time 
costs of legacy and new are 135ms and 75ms, respectively, 
reduced by 45%. On the other hand, the gas consumption of 
legacy and new is 267158 and 300475, respectively, which is 
an increase of 12%.  

Next, in the permission delegation processes, the time cost 
of legacy and new is 166ms and 156ms, respectively, which 
are reduced by 7%. In addition, the gas consumption of legacy 
and new is 128831 and 127524, respectively, which is reduced 
by 2% in our enhanced BBAC model.  

In summary, there was a loss of approximately 3300 gases 
in the permission granting process, while there was 6000 gas 

Process Standard legacy new 

Permission Granting 
time 135ms 75ms 
gas 267,158 300,475 

Permission Delegation 
time 166ms 156ms 
gas 240,431 180,776 

Total 
time 301ms 231ms 
gas 507,589 481,251 



gains per permission delegation process. In other words, the 
more frequently the permission token is modified, the better it 
is in terms of the gas. As a result, through the evaluation, we 
can prove that our model is good for environments that are 
required to easily edit the contents of the permission token that 
has already been generated. 

C. Scenario 2 - Division of Permission 
The second case pertains to the division of access rights. 

The difference with simple delegation is that there exists more 
than one delegatee to consider the split of the permission token.  

For the experiment, we assume that there is a resource 
owner, an object, and a delegator, similar to a simple division. 
However, there was a significant difference from the former. 
For this case, there are two delegatees (𝑠t𝑜) - Bob and Carrol, 
who want to delegate the part of the permission token of 
Alice(𝑠𝑓𝑟𝑜𝑚). The resource owner granted the permission 
token to Alice, so Alice was able to conduct four different 
rights - create, read, update, and delete. Each of the permission 
rights indicated from 0 to 3 – list [0, 1, 2, 3]. Bob wants to get 
permission including index 0 and 1 – dlist [0, 1] , while Carrol 
wants to get permission for the remaining – dlist [2, 3]. As a 
result, Bob is able to conduct action limited to create and read 
on the object and Carrol has right to update and delete on the 
object. 

In this case, we applied both legacy and new, and checked 
the time and gas consumption of each case. For the 
comparison, we assume that Alice’s existing permission token 
is deactivated; then, two permission tokens – one for creation 
and reading, and the other for update and delete – are 
regenerated. Each permission token was delegated to Bob and 
Carrol in a legacy. However, according to our new algorithm, 
a split of the permission tokens is conducted in the delegation 
process. Therefore, simply sending different permission 
indices between Bob and Carrol is required, and the process is 
short compared to the former case.  

As a result, when using legacy, it requires a total of 
1428031 gases to deactivate the permission that has already 
existed, two times the permission creation and delegation 
process. However, the new passes only two delegation 
processes for the permission division and requires only 
1250272 gas, which is reduced by 13%. With respect to time, 
the cost was reduced by 13%, from 339ms to 296ms. In other 
words, our model has an advantage in terms of the division of 
permissions compared to [4]. 

VI. DISCUSSION 
In this section, we address several points related to the 

enhanced BBAC model proposed in this study.  

A. Comparison 
First, we evaluated our model and compared it with only 

[4]. This is because we motivated the study and improved the 
existing mechanism to be more practical in the division of 
permission tokens in the delegation process. Therefore, we 
considered the most important and meaningful comparison 
with [4] instead of including others. 

B. Increased Gas 
In our model, the permission-granting gas consumption is 

increased compared to that in [4]. Additionally, the delegation 
process requires less gas. However, our enhanced model is 
optimized for cases in which delegation requests occur 
frequently.  

C. Permission Check Process 
Compared with the existing token-constrained BBAC, 

such as [4], [21], [24], the permission check process is more 
complex. Most token-constrained BBAC check the request of 
a subject to an object based on the existence of a permission 
token. However, in our model, the permission check process 
adds the permission index list to divide the permission token. 
Therefore, the gas cost required for the permission-check 
process increases. However, this is an inevitable consequence; 
it is a trade-off relationship with the implementation of the 
access rights division, which is required to modify the 
parameter structure.  

D. Time Complexity 
The time complexity problem of BBAC remains. 

According to [4], the time complexity of the BBAC algorithm 
is high. However, there is room for improvement, such as 
using miners of high quality or choosing a consensus 
algorithm called RAFT to accelerate the block speed [13], [25]. 

E. Single Point of Failure Problem 
Because this model is based on a consortium blockchain, 

the single point of failure problem cannot be totally ignored. 
This is because being based on a consortium blockchain 
implies that there is a separate entity that determines which 
subjects or objects will participate in the corresponding 
blockchain. Additionally, it is difficult to completely rule out 
the possibility that an entity may act as a single point of failure. 
However, when BBAC is introduced, the possibility of a 
single point of failure is significantly lowered, and the 
transparency of access control can be increased 
simultaneously. Therefore, the introduction of BBAC is 
meaningful for resolving a single point of failure problem. 

F. Improvement for BBAC 
As BBAC has recently been discussed actively, except for 

the division of permission, there are various parts of BBAC 
that must be improved, including the time complexity problem. 
However, this study focuses on permission division to 
improve feasibility. Other challenges for BBAC will be 
addressed in future work. 

VII. CONCLUSION 
In this study, we propose a blockchain-based access 

control (BBAC) model for IoT and emphasize the risk caused 
by the greatest privilege vulnerability. To address this risk, we 
propose a new delegation algorithm that redefines the 
structures to facilitate permission division with reference to 
[4]. This study proves the possibility and effectiveness of our 
enhanced BBAC model. In effect, although even after adding 
more parameters to implement the division of access rights, 
the gas cost for the overall process has reduced. In particular, 
our model is appropriate for cases that require addressing 
many delegation requests.  
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