
Software Vulnerability Detection using Backward Trace Analysis and Symbolic
Execution

Hongzhe Li, Taebeom Kim, Munkhbayar Bat-Erdene and Heejo Lee
Div. of Computer and Communication Engineering

Korea University
Seoul, South KOREA

(hongzhe, ktb88, munkhbayar, heejo)@korea.ac.kr

Abstract—Software vulnerability has long been considered
an important threat to the safety of software systems. When
source code is accessible, we can get much help from the
information of source code to detect vulnerabilities. Static
analysis has been used frequently to scan code for errors
that cause security problems when source code is available.
However, they often generate many false positives. Symbolic
execution has also been proposed to detect vulnerabilities and
has shown good performance in some researches. However,
they are either ineffective in path exploration or could not
scale well to large programs. During practical use, since most
of paths are actually not related to security problems and
software vulnerabilities are usually caused by the improper
use of security-sensitive functions, the number of paths
could be reduced by tracing sensitive data backwardly from
security-sensitive functions so as to consider paths related
to vulnerabilities only. What’s more, in order to leave
ourselves free from generating bug triggering test input,
formal reasoning could be used by solving certain program
conditions. In this research, we propose backward trace
analysis and symbolic execution to detect vulnerabilities from
source code. We first find out all the hot spot in source
code file. Based on each hot spot, we construct a data
flow tree so that we can get the possible execution traces.
Afterwards, we do symbolic execution to generate program
constraint(PC) and get security constraint(SC) from our
predefined security requirements along each execution trace.
A program constraint is a constraint imposed by program
logic on program variables. A security constraint(SC) is a
constraint on program variables that must be satisfied to
ensure system security. Finally, this hot spot will be reported
as a vulnerability if there is an assignment of values to
program inputs which could satisfy PC but violates SC, in
other words, satisfy PC ∧ SC. We have implemented our
approach and conducted experiments on test cases which
we randomly choose from Juliet Test Suites provided by
US National Security Agency(NSA). The results show that
our approach achieves Precision value of 83.33% , Recall
value of 90.90% and F1 V alue of 86.95% which gains the
best performance among competing tools. Moreover, our
approach can efficiently mitigate path explosion problem in
traditional symbolic execution.

Keywords-symbolic execution, program constraint, vulner-
ability detection, static analysis.

I. INTRODUCTION

Software security has long been considered an impor-
tant issue due to the increasing number of attacks. In
order to identifying software vulnerabilities effectively,
software security testing has gained significant attention
and become an active research area. In the past decade,

many approaches have been proposed to detect software
vulnerabilities [2] [3] [6] [9] [13].

Static analysis has been proposed to discover software
vulnerabilities by analyzing source code or software bina-
ry. The advantage of this approach is the large coverage of
code and the access to the internal structures or workings
of a software or application. However they often approxi-
mate or even ignore runtime conditions which makes them
suffer from high false positive rate.

Dynamic analysis monitors program execution to detect
security flaws [4] [5] [7] [8] [10]. These tools try to
trigger software vulnerabilities by giving test input data to
a program and monitor its runtime behavior. When there is
an abnormality detected during execution, there may be a
vulnerability existed. For example, the program accessed
a buffer outside its bounds. Although dynamic analysis
reduces false alarm rates, it requires the generation of ac-
tual bug triggering test inputs which often make us cannot
find critical security flaws in a reasonable time. What’s
more, the coverage of the whole huge test inputs space is
either too much time costly or just impractical to achieve
which will cause false negatives. Researchers recognized
the problems and use dynamic symbolic execution to cover
the test inputs space more efficiently.

Symbolic execution has been proposed to detect vul-
nerabilities and has shown good performance in some
researches. However, they often cannot solve the problem
of huge search space of program paths so that they are
either ineffective in path exploration or do not scale
well to large programs. What’s more, most of dynamic
symbolic execution works on binary level which means
that they cannot get useful information from source code.
SecTAC [1] works on source code level, however, they
can only detect vulnerabilities from the paths they get
from functional test cases which could make them to miss
vulnerabilities from the paths their test cases cannot cover.

The number of paths could be reduced by tracing
sensitive data backwardly from security-sensitive functions
so that we only consider vulnerability related paths. Whats
more, formal reasoning such as solving PC ∧ SC of the
program conditions by doing symbolic execution could
leave us free from test inputs generation which makes the
whole detecting process more efficient. In this paper, we
propose a novel method to detect software vulnerabilities
from source code using backward trace analysis and sym-
bolic execution. Different from traditional one direction

analysis in symbolic execution, we backwardly analyze the
execution traces and then performing symbolic execution
forwardly. We first analyze the source code to find out all
the hot spot which could possibly generate a vulnerability
using pattern matching technique. A hot spot is defined as:
a security-sensitive function with sensitive data among its
arguments. Sensitive data is derived from untrusted input
sources like input files, or network messages, command
line options. Then, beginning with each hot spot, we
backwardly analyze the source code and build the data
flow tree of each hot spot. From the data flow tree, we
could get the possible execution paths that could reach
to this hot spot. Based on each execution trace, we do
symbolic execution to get the program constraints(PC)
and security constraints(SC). A program constraint is a
constraint imposed by program logic on program variables.
A security constraint(SC) is a constraint on program
variables that must be satisfied to ensure system security.
Finally, this hot spot will be reported as a vulnerability
if there is an assignment of values to program variables
which could satisfy PC but violates SC, in other words,
satisfy PC ∧ SC. We try to solve this constraint by
using a proper constraint solver such us SMT solver.
Our evaluation tells that our approach achieves Precision
value of 83.33% , Recall value of 90.90% and F1 V alue
of 86.95% which gains the best performance among
competing tools. Moreover, our approach can efficiently
mitigate path explosion problem in traditional symbolic
execution. Our contributions could be described like this:

• Different from other static analysis technique, we take
program trace execution conditions into consideration
to detect software vulnerabilities which could dramat-
ically decrease the false positive rate.

• We mitigate the path exploration problem in symbolic
execution by considering only vulnerability related
paths. Tracing the sensitive data used in hot spot
backwardly to recover the execution paths using data
flow tree makes us only focus on those branches
related to sensitive data. This makes the detection
process more efficient

• The PC ∧ SC constraint solving makes formal
reasoning applicable to accurately detect software
vulnerabilities. Meanwhile, it makes us free from
generating actual bug triggering test inputs

II. RELATED WORK

Our research has been conducted based on some pre-
vious knowledge about related works. There are several
works about dynamic symbolic execution and test cases
generation to find software flaws which take advantage
of the combination of concrete and symbolic execution.
CUTE [4] and DART [9] can automatically generate test
cases to traverse different execution paths by the use of
a combination of symbolic and concrete execution. They
improve the classical symbolic execution by making a
distinction between the concrete and the symbolic state of
a program. The code is basically run unchanged, and only

statements that related to the program input are treated
differently.

EXE [17] and KLEE [18] are developed to automatical-
ly generate high-coverage test cases and to discover deep
bugs and security vulnerabilities in a variety of complex
code. They provide the speed necessary to quickly solve
the constraints through a combination of low-level opti-
mizations and a series of higher-level ones such as caching
and irrelevant constraint elimination. However, the greatest
challenge for those mechanisms is the scalability problem.
We still cannot get a good answer to the question on how
to handle the exponential number of paths. Hence, if a
very tiny vulnerability exits in a program with millions of
code statements, it will be very time consuming to find
it out. Unlike these tools, our approach first identifies the
potential vulnerable points by pattern matching technique
and then uses backward program slicing to reduce the
irrelevant paths that we need to analyze. This helps us
to focus on vulnerability related paths only and quickly
verify the potential vulnerable points.

Automated whitebox fuzzing, implemented as a tool
named SAGE [16], is a recent method to do software
security testing which extends the scope of systematic
dynamic test generation from unit testing to whole appli-
cation testing. It is able to scale to large file programs with
millions of code lines and execution traces with billions
of machine instructions. However, SAGE works on binary
level so it cannot take advantage of useful information
from source code.

There are also some static analysis tools such as
CodeAuditor [15] implemented by Lei Wang which works
on source code level. It analyzes the program using
program slicing to extract the paths only relevant to
the potential vulnerable point. They mitigate the path
explosion problem in a smart way, however, they need
to instrument the original source code to get the range of
program variables which makes it time consuming. The
closest work to ours is SecTAC [1] proposed by Dazhi
Zhang. SecTAC works on source code level and it uses
the test cases from traditional functional software testing
to get the popular execution traces of the program.

By performing symbolic execution along each trace
with satisfiability analysis, it can quickly and correctly
detect vulnerabilities which locate on the traces covered
by the test cases. The reuse of the test cases generated from
previous functional software testing helps them to avoid
the problem of path exploration. However, this makes
it unable to discover the vulnerabilities which are not
covered by the traces. In other words, they may miss
serious vulnerabilities.

Our approach does not rely on any test cases. We take
advantage of the common feature of the software security
vulnerabilities to firstly identify all the potential vulnerable
points in the whole program and then verify each potential
vulnerable points known as hot spot to get the finally
vulnerability report which makes us avoid the problem
of false negatives.

III. OUR APPROACH

Discovery of vulnerabilities in a program is a key
process to the development and management of secure
systems. Nowadays, static analysis tools and methods
cannot get rid of high positive rate. Dynamic analysis
techniques such as Fuzzing depend on program input
significantly which probably make us miss critical vul-
nerabilities located in some traces which are not covered
by program input.

Another problem of these techniques is the coverage of
huge input space which is usually a time consuming work.
Some tools using dynamic symbolic execution are power-
ful to detect vulnerabilities.However, the path exploration
problem makes them ineffective and the process of finding
bug triggering test inputs usually puts a huge burden on
testers.

However, we found out that during practical use, most
of paths are actually not related to vulnerabilities and
software vulnerabilities are usually caused by the improper
use of security-sensitive functions.

As a remedy, we try to mitigate the path explo-
ration problem by tracing sensitive data backwardly from
security-sensitive functions so as to consider only paths
related to vulnerabilities. Afterwards, vulnerabilities are
reported by solving PC∧SC after doing symbolic execu-
tion on those paths without finding test inputs that actually
trigger vulnerabilities.

Generally, Figure 1 gives us a schematic overview of our
proposed approach. The process of our approach could be
described as the following 5 steps.

1) Hot spot detection: A hot spot(known as sink
in other related works)is defined as: a security-
sensitive function with sensitive data among its
arguments. Functions such as strcpy,memcpy,printf
are sensitive to cause security problems.
Sensitive data is derived from untrusted input
sources like input files, network messages or
command line options. We find all those hot
spot(potential vulnerable) by simply using pattern
matching strategy. This process could be finished in
a short time.

2) Data flow tree construction: In order to eliminate
the paths we need to analyze, we trace the sensitive
data used as argument in hot spot backwardly to
build a data flow tree. The tree is used for gen-
erating possible execution paths. Actually, during
the process of constructing the tree, paths which
are not related to hot spot or sensitive data have
automatically been eliminated.

3) Possible execution paths generation: After the
construction of data flow tree, possible execution
paths are generated automatically from the data flow
tree.

4) Program constraints(PCs) and security con-
straints(SCs) generation: Symbolic execution is
performed on generated traces to get program con-
straints and security constraints.

5) PC and SC verification: A satisfiability checker
is used to check if PC ∧ SC is satisfiable. We
have found a vulnerability if the condition could
be solved. The solution given by the satisfiability
checker is then used to generate test data to uncover
the vulnerability. In the following part, we discuss
these steps in more detail and provide examples for
better illustration.

A. Hot spot detection

A hot spot(known as sink in other related work-
s)is defined as: a security-sensitive function with sensi-
tive data among its arguments. Functions such as str-
cpy,memcpy,printf are sensitive to cause security problem-
s. Sensitive data is derived from untrusted input sources
like input files, or network messages, command line op-
tions.

Based on our study, vulnerabilities are usually caused
by overflowed value used in sensitive functions. These sen-
sitive points we called hot spot. We can classify hot spot
according to the different features of sensitive functions

• Memory copy: The sensitive data is used
as argument to be copied in a destination
buffer(strcpy,memcpy). When destination buffer
cannot hold the sensitive data, serious security
problems may occur like buffer overflow

• Memory access: The sensitive data is used as an
array index or a pointer offset, which may cause
arbitrary bytes memory overwritten or read(e.g, an
information leakage attack).

• Memory allocation: The sensitive data is used as
argument in memory allocation functions(e.g., mal-
loc, alloca) and it usually cause insufficient memory
allocation.

• Format string: The sensitive data is used improperly
as argument in format functions(e.g., printf, sprintf).
Attacker can take use of this vulnerability to take
control of the system.

We analyze the given source code to find all of potential
vulnerable points which we called hot spot by simply
using pattern matching strategy.

B. Data flow tree construction

In order to eliminate the paths we need to analyze,
we trace the sensitive data used in hot spot backwardly
to build a data flow tree. Actually, during the process of
constructing the tree, paths which are not related to hot
spot or sensitive data have automatically been eliminated.

Whats more, we can easily see the relationship between
user inputs and function arguments to check whether the
arguments in hot spot are tainted by user inputs. The tree
is used for finding possible execution paths.

Starting from each hot spot, we trace the arguments
until we reach the origin of the sensitive data. In order
to understand the process of data flow tree construction,
there are several terms that we need to know.

• Variable Source(S): the code statements where we
get the source of the variable.

Figure 1. A schematic overview of our mechanism

– The code statements where the value of the
variable is assigned; Va = expression.

– Function declaration statements where the vari-
able is used as argument. Va = void f(int Va,...,).

• Variable origin(O): the code statement where the
value of the variable does not rely on any other vari-
able. Variable origin is also variable source. Variable
source could be variable origin.

– The code statements where the variable is as-
signed by a constant value; Va = const.

– The code statements where the variable gets its
value from input files, network messages or com-
mand line options; Va = readfile(); scanf(”s%”,&
Va).

– The code statements where the variable is initi-
ated; char Va = ’C’.

We make the hot spot statement as the root of our
data flow tree. The critical part of building data flow
tree process is tracing variables. This process could be
explained as follows:

1) Find the variable need to be traced in a tree node.
2) For the variable need to be traced in tree node A, we

find its source and put it into As child node B. If the
sources of the variable are in n different exclusive
branches, we put the n sources into As n child nodes
respectively.

3) Repeat step 1 until the sources in a tree node become
origins.

4) After finding the origin, we continue to build the
child nodes by function definition-calling logic until
the reaching of program entry function such as main

Since this is a very important process during data flow tree

construction, we try to make this process more explicitly.
The tracing algorithm and process are shown in Figure 2.

Figure 2. Key process for constructing the data flow tree

Figure 3 shows the sample code for constructing the
data flow tree and Figure 4 shows the data flow tree which
comes from the source code sample.

C. The generation of possible execution paths

After the construction of data flow tree, we could simply
get possible execution paths from the data flow tree.
Figure 5 shows the possible execution paths generated
from the previous sample. Take a look at the data flow
tree we got from the sample code. Then, we could get 4
main execution paths from this tree. There are:(numbers
mean the code lines)

• 53 → 60 → 67 → 8 → 30 → 32
• 53 → 60 → 70 → 8 → 30 → 32
• 53 → 60 → 67 → 8 → 36 → 38
• 53 → 60 → 70 → 8 → 36 → 38

These execution paths are not complete execution paths.
They may have more branches. However, these are several

main paths. Because for those small branches, most of
them are not related to the sensitive data, so we had better
not consider them in order to mitigate the paths explosion
problem.

Figure 3. The sample code for constructing the data flow tree

Actually, this is how we solve path explosion problem
in our method. Along each possible execution path, we
symbolically execute the program to generate program
constraints which could be generated so far.

Figure 4. An example of data flow tree

D. Program constraints (PCs) and security constraints
(SCs)

Symbolic execution to generate program constraints
(PCs): Symbolic execution is a kind of program analysis
method that simulates program execution by replacing
concrete values with symbolic variables for inputs.

We use the symbolic executor to symbolically execute
the trace to capture program constraints and check the
pattern of each executed statement against the security

requirements. Especially, when there is a condition state-
ment along the execution paths, we could generate cor-
responding program constraints according to the current
execution path.

Along each possible execution path, we symbolical-
ly execute the program to generate program constraints
which could be generated so far. We take the 1st path
as an example. The following table shows the process of
generating the program constraints through path1.

Figure 5. The generation of possible vulnerable paths

• In the case of path: 53 → 60 → 67 → 8 → 30 → 32

Table I
PROGRAM CONSTRAINT GENERATION PROCESS

Path1 Constraints

53 → 60 !scanf(”%s”, strm) = true

!scanf(”%s”, strn) = true

60 → 67 sizeof(strm) < 10

67 → 8 None

8 → 30 !scanf(”%d”,&c) = true

sizeof(str1) < 5

30 → 32 None

32 → 45 b > 30

sizeof(src) < 50

Until now, we get a set of rough program constraints
from path1. We call it a rough set because there might be
more constraints on this path we haven’t found yet. So,
we need to find all of the program constraints in order to
make our detection result more precise.

• Generate program constraints furthermore.
To explain this part, lets understand what are traced

variable and un-traced variable.
Traced variable: variables we have already traced, we

know its origin.
Un-traced variable: variables we have not traced, we

do not know its origin.
The set of constraints we got from the previous table is

not enough because there might be some un-traced vari-
ables in the constraint set. So we will trace the un-traced

variables until we find their origins. In the process of
tracing un-traced variables, we might get more branches.

This will cause the previous rough path split into more
accurate paths. This process will be repeated until there is
no un-traced variable in a constraint set. In our example,
we can see that variable b in the constraint set is the un-
traced variable. So we trace the origin of variable b.

Figure 6 shows the branch caused by tracing the variable
b. In path11 and path22, there are already no un-traced
variables, so these constraints could be considered as final
path constraints. If there is still un-traced variable, then
we still have to trace those un-traced variables until there
are no un-traced variables in any path constraints.

Figure 6. Branches derivated from tracing un-traced variable

From this tree, we know they are 2 more branches.
Then we could split Path1 into Path11 and path12. Table II
shows the constraints in more detail.

Table II
MORE COMPLETE CONSTRAINT SET

Path11 constraints Path12 constraints

!scanf(”%s”, strm) = true !scanf(”%s”, strm) = true

!scanf(”%s”, strn) = true !scanf(”%s”, strn) = true

sizeof(strm) < 10 sizeof(strm) < 10

!scanf(%d,&c) = true !scanf(%d,&c) = true

sizeof(str1) < 5 sizeof(str1) < 5

sizeof(src) < 50 sizeof(src) < 50

C < 50 C > 50

C + 5 > 30 C − 5 > 30

• Security constraints(SCs) generation
Now, we talk about security constraints(SC). Security

constraints come from our predefined security require-
ments. The following table has shown the predefined secu-
rity requirements for some critical security functions. For
each security critical function, we define a corresponding
security constraint. In our example:

i f (b > 30) {
i f (s i z e o f (s r c)< 50)
{

s t r c p y (buf , s r c) ;
}

}

The security constraint is: buf.space > src.strlen

Table III
PREDEFINED SECURITY CONSTRAINTS

Security sensitive Security requirements
functions

strcpy(dst., src) Dst.spcace > src.strlen

strncpy(dst, src, n) (dst.space = n) ∧ (n = 0)

strcat(dst, src) Dst.space > dst.strlen+ src.strlen

getcwd(buf, size) (buf.space = size) ∧ (size = 0)

fgets(dst, size, f) (dst.space = size) ∧ (size = 0)

printf(format, ...) #offormats = #ofparameters− 1

E. PC and SC verification

We use a satisfiability checker to check if PC ∧ SC is
satisfiable. We have found a vulnerability if the condition
could be solved. The solution given by the satisfiability
checker is then used to generate test data to uncover
the vulnerability. We express both program and security
constraints using the SMT-LIB format and use the Yices
SMT-solver as the satisfiability checker. Figure 7 shows
how the checker works briefly.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, we will talk about the implementation
and our experimental results. We tested the effectiveness of
our vulnerability detection approach on sample programs
containing buffer overflows and format string bugs which
we chose from Juliet Test Suite v1.1 for C/C++ test cases.

Juliet Test Suite is created by US National Security
Agency’s(NSA) Center for Assured Software. They were
made especially for testing the effectiveness of software
static analysis tools.

We measured the number of correctly identified vulner-
abilities, as well as the number of false positives and false
negatives in the results. Ideally, a static analysis tool would
be able to find all vulnerabilities in a program without
missing any or reporting safe code as vulnerable.

The imprecise nature of static analysis makes this im-
possible. We can expect a certain number of false positives
and false negatives from all vulnerability detection tools.
False negatives indicate a failure of the analysis, because
a real vulnerability was not detected.

A tool which detects more vulnerabilities is better than
a tool reporting false negatives instead. The number of
false positives is also important, because they increase the
effort required to verify the results of the analysis.

When comparing different vulnerability detection ap-
proaches, the number of false positives and false negatives
is a good indicator of their effectiveness.

A less important factor in vulnerability detection is the
speed of the analysis. However, the speed can be only mea-
sured when we test on more complex programs(usually
over 1000 code of lines).

We could not measure this aspect since we only did
experiments on sample programs. Juliet Test Suite v1.1 for
C/C++ test cases shown in figure 7 were created by the
US NSAs Center for Assured Software (CAS) specifically
for use in testing static analysis methods and tools.

It is intended for anyone who wishes to use the test
cases for their own testing purposes. We chose Juliet Test
Suite to test our approach over natural code due to the
following reasons.

Figure 7. Workflow of a satisfiability checker

1) Evaluating tool results to determine their correctness
When a static analysis tool is run on natural code,
each result needs to be reviewed to determine if the
code in fact has the specified type of flaw at the
specified location (i.e. if the result is correct or a
false positive). This review is non-trivial for most
results on natural code and often the correctness of a
given result cannot be determined with a high degree
of certainty in a reasonable amount of time.

2) Comparing results from different tools
Comparing static analysis tool results on natural
code is complicated because different tools report
results in different manners.

3) Identifying flaws in the code that no tools find
When evaluating static analysis tools, a standard
list of all flaws in the code is needed in order to
identify which flaws each tool failed to report. On
natural code, creating this ”standard” is difficult,
especially identifying flaws that are not reported by
any automated tool.

Figure 8. Test cases from Juliet Test Suites

4) Evaluating tool performance on constructs that do
not appear in the code
Natural code has the limitation that even a combi-
nation of different projects will likely not contain
all flawed and non-flawed constructs that the CAS
wants to test.

Based on these experiences and challenges, we decided
to use Juliet test cases to test and analyze our vulnera-
bility detection approach to control, identify, and locate

the vulnerabilities and non-vulnerabilities included in the
code.

A. The results of our approach

For testing purposes, we randomly selected 20 test cases
out of 854 in the Juliet Test Suite of the buffer overflow
type. The results of our sample programs are presented
below. We measure the effectiveness of our approach by
Precision, Recall and F1 V alue.

• Precision: It is an indicator to measure the precise-
ness of a certain detection tool. It is calculated by

Precision =
TP

(TP + FP)
. (1)

TP means True Positive and FP means False Posi-
tive

• Recall : It is an indicator to measure the complete-
ness of a certain detection tool. It is calculated by

Recall =
TP

(TP + FN)
. (2)

TP means True Positive and FN means False Neg-
ative.

• F1 V alue : It is a comprehensive indicator to mea-
sure the combine results of Precision and Recall. It
is calculated by

F1 V alue =
2 ∗ P ∗R
(P +R)

. (3)

P means Precision and R means Recall
Figure 9 shows one of the vulnerability reports generat-

ed by our approach and Table 4 shows the testing results
of our approach.

Figure 9. Vulnerability report

From figure 10, our approach can get the Precision
value of 83.33% , Recall value of 90.90% and F1 V alue
of 86.95% which are all relatively high in terms of static
analysis tools. We check the 4 False Positives in the
results marked by the red circle and we found that all
of these 4 test cases have strongly used C-structures in
their codes. The FPs are produced due to the inability of
our approach to handle struct in C codes. When it comes
to the 2 False Negatives we found in this table, these
2 vulnerabilities are not caused by the improper use of

security sensitive function which is beyond the detection
scope of our approach.

B. Testing competing tools

To evaluate the effectiveness of our system, we tested
two competing vulnerability detection tools and com-
pared their results with those of our approach. We chose
Flawfinder [14] and SPLINT [15], two programs widely
used in the security community.

Figure 10. Testing results of our approach

Flawfinder is an example of the pattern matching ap-
proach to vulnerability detection, while SPLINT uses
annotation based data-flow analysis. We performed the
tests using the same vulnerable programs from Juliet
Test Suite presented earlier in this chapter. We compare
our approach, Flawfinder and SPLINT by comparing the
number of detected vulnerabilities, false positives and false
negatives and F1 V alue reported by each program.

Figure 11. The comparison of 3 approaches testing on the test cases

As we can see from the above figure, when testing
on the same group of test cases, our approach has the
highest precision compare to the other two. In terms of
recall, FlawFinder has the best performance, however,
at the cost of being the lowest in precision. When it
comes to F1 V alue, a more comprehensive indicator, our
approach exceeds the FlawFinder by 35% while SPLINT
being the lowest. Generally, our approach achieves the best
performance among these three tools.

C. Path reduction rate

Since the analyzing time is closely related to the total
number of paths we need to analyze, we evaluate the
efficiency of our approach by the path reduction ratio. The
table 4 gives the definition of parameters that measure the
path reduction ratio.

Table IV
PARAMETER EXPLANATION

Parameter Description

Nα The total number of bifurcations
in the program

Nβ The total number of branches
in the program

Nγ The total number of paths
in the program

θ The percentage of the branches which are
related to the hot spot over the total

number of branches

ρ The percentage of the number of eliminated
paths over the total number of paths

Figure 12 describes the theoretical path reduction ratio
in both best and worst cases. Given that the branches are
uniformly distributed in bifurcations, the minimum and
maximum of eliminated paths number which we called
the worst case and the best case respectively are shown in
figure 12.

The result shows that even program paths are exponen-
tially increased, we can efficiently eliminate the number of
paths. when the taint ratio is less than 0.4, path reduction
ratio ranges from 93.6% in the worst case to 99% in the
best case. Normally, taint ratio of most programs is not
over 0.4 since taint variables related to hot spot consist
only a small portion of the codes in real-world programs.

Figure 12. The path reduction ratio by taint variable ratio

In our test cases, we computed the average taint ratio
whose value is about 0.38. As a consequence, our method
can efficiently mitigate path explosion problem in tradi-
tional symbolic execution.

V. CONCLUSION AND LIMITATIONS
In conclusion, we proposed a mechanism to detect

software vulnerabilities by using source code analysis and

symbolic execution. Different from other static analysis,
our approach takes program execution conditions into
consideration so that we could dramatically the false
positives.

We mitigate the path exploration problem in convention-
al symbolic execution by considering only vulnerability
related paths. Tracing the sensitive data used in hot spot
backwardly to recover the execution paths using data flow
tree makes us only focus on branches related to sensitive
data.

This makes the detection process more efficient. What’s
more, the PC ∧ SC constraint solving makes formal
reasoning applicable to accurately detect software vulner-
abilities which make us free from bug triggering input
generation. To verify our approach, we implemented our
mechanism and have it test with source code test cases
from Juliet Test Suites.

The results show that our approach achieves relatively
high precision and recall. Moreover, practically speaking,
our approach can detect vulnerabilities in a reasonable
time. However, there are also several aspects we need to
consider more.

First, our approach cannot cover some types of vulner-
abilities due to the incapability of handling vulnerabilities
unrelated to security-sensitive functions.

Then, since we haven’t made our program to handle
complex data types such as structures in c code, the
improvement is needed to make it applicable to complex
real world programs.

Finally, since some programs have puzzle functions
such as decryption functions and checksum functions
which become obstacles when we solve constraints during
symbolic execution, we will also need to devote our effort
into this in the future.

VI. ACKNOWLEDGEMENTS

This research was supported by the MKE(The Min-
istry of Knowledge Economy), Korea and Microsoft un-
der IT/SW Creative research program supervised by the
NIPA(National IT Industry Promotion Agency) (H0503-
12-1034). Additionally, this research was funded by the
MSIP(Ministry of Science, ICT & Future Planning), Korea
in the ICT R&D Program 2013.

REFERENCES

[1] Dazhi Zhang, Detecting Vulnerabilities in C Programs Using
Trace-Based Testing. Proceedings of the IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks
(DSN), 2010.

[2] D. Wagner, J. Foster, E. Brewer and A. Aiken, A first step to-
wards automated detection of buffer overrun vulnerabilities.
Proceedings of Network and Distributed System Security
Symposium (NDSS), 2000.

[3] C. Cadar and D. Engler, Execution generated test cases
:How to make systems code crash itself. Proceedings of
the International SPIN Workshop on Model Checking of
Software, 2005.

[4] K. Sen, D. Marinov and G. Agha, CUTE: a concolic unit
testing engine for C. Proceedings of the joint Meeting of
the European Software Engineering Conference and the
ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2005.

[5] E. Haugh and M. Bishop, Testing C programs for buffer
overflow vulnerabilities. Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2003.

[6] R. Hastings and B. Joyce, Purify: Fast detection of memory
leaks and access errors. Proceedings of the Winter USENIX
Conference, 1992.

[7] G. Fink, C. Ko, M. Archer and K. Levitt, Towards a
property-based testing environment with applications to
security-critical software. Proceedings of the 4th Irvine
Software Symposium, 1994.

[8] A. Ghosh, T. O’Connor and G. McGraw, An automated
approach for identifying potential vulnerabilities in software.
Proceedings of the IEEE Symposium on Security and Priva-
cy, 1998.

[9] P. Godefroid, N. Klarlund and K. Sen, DART : directed
automated random testing. Proceedings of the ACM SIG-
PLAN conference on Programming Language Design and
Implementation, 2005.

[10] M. Ringenburg and D. Grossman, Preventing format-
string attacks via automatic and efficient dynamic checking.
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2005.

[11] J. Viega, J. T.Bloch, Y. Kohno and G. McGraw, ITS4:
A static vulnerability scanner for C and C++ code. Pro-
ceedings of the Annual Computer Security Applications
Conference(ACSAC), 2000.

[12] E. C.Sezer, P. Ning, C. Kil and J. Xu, Memsherlock:
an automated debugger for unknown memory corruption
vulnerabilities. Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2007.

[13] Wheeler and David, Flawfinder. http://www.dwheeler.com/
flawfinder/

[14] Evans and David, SPLINT. http://www.splint.org/,

[15] E. C.Sezer, P. Ning, C. Kil and J. Xu, Automated Detection
of Code Vulnerabilities Based on Program Analysis and
Model Checking. Eighth IEEE International Working Con-
ference on Source Code Analysis and Manipulation, 2008.

[16] P. Godefroid, M. Y.Levin and D. Molnar, Automated white-
box fuzz testing. Proceedings of the Network and Distributed
Systems Security (NDSS), 2008.

[17] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill and D. Engler,
EXE: Automatically generating inputs of death. Proceedings
of the ACM Conference on Computer and Communications,
2006.

[18] C. Cadar, D. Dunbar and D. Engler, Automatically gener-
ating inputs of death. Proceedings of the ACM Conference
on Computer and Communications, 2008.

