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Abstract— The Internet plays an increasing role in content
dissemination as user-generated contents have explodeccently.
Cache servers have been deployed to bypass bottlenecks in
the network so that contents can be delivered to end users
more efficiently. With caches becoming more embedded in the
networks, emerging threats follow naturally. A cache polldion
attack is one of the most serious threats on caching networks
including the current Internet and emerging caching netwolks 0 : : : :
such as Content Centric Networking (CCN). In this paper, we 0 1 2 3 4 5
propose a detection approach against cache pollution attés Ratio of attack rate to legitimate-user ra
using randomness checks of a matrix. We apply an effective fil
tering approach and a statistical sequential analysis for dtecting Fig. 1. Hit ratio degrades under attack.
low-rate attacks. The results of our experiments show that or
approach can detect a cache pollution attack with attack ra¢ of
only a few percent of the overall rate.
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attack, the attackers continuously generate requestsear n
unpopular contents, thus disrupting the content localftya o
cache. In false-locality attack, the attackers repeatestjyest
. INTRODUCTION the same set of contents that are not requested by legitimate
Guaranteeing the integrity of cache servers against atacksers, thus creating a false locality in a cache. These two
is extremely important for today’s and future Internet assth attack types are intended to degrade the cache performance.
servers are expected to provide high service levels contirin false-locality attack, an attacker must know the distiitn
ously to end users. However, with proliferation of web caghi of popular contents by legitimate users. Inferring the Itota
and media caching, attacks on such systems will becomtfigtribution of popular contents by legitimate users isayally
increasingly more common. Recently, researchers havenbegt realistic as popular content distribution is changirsg a
to look at the robustness of Internet cache server underecaah function of time and location of a cache. In contrast,
pollution attacks [1], [2]. They show that the performanctor locality-disruption attack, an attacker needs onlyuest
of a cache server can be seriously degraded by a cadomtents with the uniform distribution to the cache seriter.
pollution attack. It is well known that many popular congntmeans that the attacker, even without knowledge of pogwlari
are usually requested by legitimate users and the diswitbutinformation, can severely damage the effectiveness of hecac
of their requests typically follows a Zipf-like distribatn [3]. server using locality-disruption attack.
To degrade caching service, the attackers can attemptlai&io |n this paper, we focus on the locality disruption attack. We
the locality of contents in the cache with unpopular corgsot propose a real-time scheme that can detect low-rate attacks
that popular contents requested by legitimate users aceeeVvi on caches. Previous works deal with high-rate attacks in the
Fig. 1 shows how the cache hit ratio can be degraded frqfternet without caching taken into consideration [5],. [6]
a cache pollution attack where the attackers request contgfis paper, we find that it is more effective for the detection
objects according to a uniform distribution. This degrémtat instrument the measurement inside the cache rather than at a
can be serious when caches are pervasive and adopted in ejgky We use the rank value of a matrix to check its randomness
network node. Indeed, a recent proposed network architgg a proxy of an attack. The rank value can be easily calcllate
ture, called Content-Centric Networking (CCN), implem®ntyy Gaussian elimination. The detection becomes effective
a cache in each router [4]. Therefore, it becomes more druGjghen filtering is done with certain XOR and AND operators on
in the future to have an effective approach to deal with cackfo or more matrices to remove requests from legitimatesuser
pollution attacks. so that requests from the attackers become more apparent.
A cache pollution attack may be classified into two typegjnger a very low attack rate, the rank value may only change
locality-disruption and false-locality [1]. In localitglisruption i, 3 small way. We adopt a statistical sequential analysis in
This work was partially supported by Seoul City R&BD program@Ul @pproach to deal with low-rate attacks. The results of ou
WR080951 experiments show that our approach can detect low-ratekatta



perfectly (i.e., with true positive ratio of 1 and false pgos —> fix—y
ratio of 0) even when the attack rate2% of the legitimate-

user rate. -
. . : . M = Myor(D) ® (Myog(t) ® M)
The rest of this paper is organized as follows. In section lI, Popular Objecfs
we present an overview of our approach. In section Ill, we
present the detail of our mechanism and the results of our Using Gaussian Elimination

experiments. In section IV, we evaluate the effectivenéssio

approach in detecting low-rate attacks. Finally, we codelu Checking
. . . itori k Val
this paper in Section V. count<k |__CUsSUM_ | Mentermg Ranicvalue

count=k

Il. OVERVIEW OF THE PROPOSEDAPPROACH
A. Randomness Checks

It is well known that objects requested by legitimate userFég' 2
follow Zipf-like distribution. In locality-disruption dack, the

Flowchart of our approach.

attackers continuously request unpopular objects, thunsifg Request Cache Request Origin Serve
a (near) uniform distribution. We propose to use a rank value End User @;\» ,,,,,,,,,,,,, >
of a matrix to check the distribution of objects in a cache and Object O Object
demonstrate its effectiveness. ] e) )

Outsid Inside

Since a random binary matrix holds a high rank value [7],
the rank value of a matrix has been widely used for testingy. 3. Locations where instruments are placed.
the quality of a random number generator such as the Diehard
battery tests [8]. The rank value of a binary matrix is therdou
of non-zero rows after applying Gaussian elimination. la thoy the attackers are likely to map to different indices in
case ofn x m binary matrix, the probability that the matrixdifferent time units.

has rankr is After applying the matrix operation, we then obtain the rank
r=1 1 _ gi—ny({ — gi-m valuer; of matrix M/;" using Gaussian elimination. We can use
or(ntm—r)—nm H - ) - ) (1) r¢ as an indicator of an attack.
i=0 (1—277)

wherel < < min{n,m} [7]. In our approach, we use theg ggtigtical Sequential Analysis
rank value of a matrix to detect a change of the distributibn o

objects. To do this, we first use a function to map each object In order to detect an attack accurately and timely, we adopt
to an entry in a matrix/ = (m; ;), as follows: the cumulative sum (CUSUM) algorithm in our approach [9].

CUSUM has also been used for change point detection and
applied in anomaly detection [10]-[12].jf,_, is the mean of

f: X —Y (2)  the rank value estimated from measurements pridr g can

be obtained using an exponentially weighted moving average

i ' ={(i,§),1<i<
where X is the object name space abd= {(i,j),1 < i < (EWMA) as follows:

n,1 < j < m}. The entrym, ; is then set to 1 if an object
name is mapped t¢i, j) and O otherwise.
To deal with low-rate attack, we next device a matrix — —
- . . . = 1+ =08)r 5
operation with contiguous matriced{; o, M;_1 and M,, as i = Py £ ( Bire ®)
follows: where 5 is the EMWA factor. CUSUM can detect a small
Mxog(t) = Mi—1 © M, (3) deviation of the mean effectively. It is generally defined as

foll :
M, = Mxor(t) ® (Mxor(t) ® My_s) (@) 'Oows

where t is the time instant when the matrix operation is {
performed® is an exclusive-OR operation between each cor-

responding entry of two matrices amds an AND operation. where[z]" =z, « > 0 and[z]" = 0, otherwise, and is the
The time interval between two time instances is GMee  ,pserved original rank value at tinte An alarm is signaled

unit. The motivation for using the matrix operation Eq. 3 an%hengt exceed a threshold for k consecutive time units.
Eqg. 4 is that it offers a powerful technique to deal with low-

rate attack. In particular, popular objects that are reguwat
requested by legitimate users are easily removed by théxmat€. Summary of the approach
operation as they are likely to map to the same indices in
contiguous time units. On the other hand, the objects relee|de:sC

ge=[re+ g1 — 7"

90 =0 ©)

Fig. 2 summarizes our overall approach for detecting a
ache pollution attack. The sequence of the operationsen th

1The mapping function uses an object name and we use the tq-mtobﬂowchgrt is executed at every time unit and is halted when an
and object name interchangeably for mapping. attack is detected and an alarmed is signaled.



200 attackers more clearly; that i8Ry > ARo. In the following,
150 the results are obtained from measurements inside the cache
= server.
< 100
o 60 AR,
< g i
0 | | Z" rfifcl,”r(r% —¥— B. Mapping function
1 2 3 4 5 (

Time unit . . . .
ime unt To map objects in the cache to a matrix, we need to obtain

Fig. 4. Rank values estimated from the inside of a cache. an index valu€i, j) of a matrix corresponding to each object
name. The function to obtain an index value of a matrix is
a ‘Mapping function’. In general, the name of an object is

200 X composed of a string. A mapping function should have three
o 1507 A ] desirable properties as follows:

S 100+ Ro i First, it should be easy to compute the index value for any

o given object. If the computation of the mapping function is

307 Zinf-like —<— complicated, it may cause cache server overload.
0 ‘ ‘ Jniform —— Second, it should be difficult to find an object that maps to
1 2 3 4 5 { a given index value. If this property is violated, the atesk

Time unit that seemingly request many unpopular objects can end up

with the same index value.

Third, it should be difficult to modify the object name
without the index value being changed. If this property is
violated, the rank value will be reduced and this makes the
detection less effective.

In this section, we describe the details of how the major To satisfy these three properties, we adopt a cryptographic
components in the flowchart are designed or dimensioned. Wash function to map an object name to an index value [13].
also discuss our experiments and describe the results. The mapping function is defined as follows:

Fig. 5. Rank values estimated from the outside of a cache.

I11. DETAILS OF THE MECHANISM

()

A. Location Issue i = Hashi(c) mod n
Object names to be mapped to a matrix can be done in { j = Hasha(c) mod m

two ways. Object names in user requests can be measured

at the input to a cache proxy server (outsidiefing each where (i,j) is the index of the matrix corresponding to

time unit. Alternatively, they can be measured from the cachabject name: and Hash, and Hashs are cryptographic hash

itself (inside)at the end of each time unit (see Fig. 3). We functions. In our evaluations of this paper, we used SHA-1 as

evaluate how the rank values differ when object names aeéhash function.

measured from inside and outside of the cache proxy server.

Let Spo denote the total number of objects afid denote the

average number of objects in the cache. We userann C. Matrix size

matrix in the matrix operation. For illustration, we assume

that So = 10,000,000, Sc¢ = 40,000, n = 200, and that

one time unit corresponds @0 requests for objects. Fig. 4 Another important issue to consider is matrix size. Nét

plots the rank values as a function of time unifsR; is the be an xn binary matrix. It has been determined thatik 10,

difference of the rank values between a Zip-like distribnti then we cannot check the randomness of a matrix [7].

and a uniform distribution where objects are measured fromSince we map the objects in the cache to a matrix at each

inside a cache proxy server. By comparisdnRo in Fig. 5 time instant, the matrix size in our case depends on the geera

is the difference of the rank values measured outside of thember of objects stored in a caclg;. If we choose a very

server. large value ofn such thatn? > Sc, many locations in the
When objects are measured from the outside (see Fig. Blgtrix will have zero entries. On the contrary,iif < Sc,

we observe many unpopular objects that are requested thgre will be considerable collisions in the matrix, where a

legitimate users in one time unit even if there is no attackollision occurs when two or more distinct objects map to the

This weakens the detection since unpopular objects tendseme entry in the matrix. We choose the matrix size

increase the rank value. Measured from inside (see Fighd), t

filtering effect by the cache can relieve this problem sirree t n o~ [\/S_]. (8)

cache replacement algorithm evicts unpopular objects fhem

cache. This allows us to distinguish the rank values of dbjec For example, if the average file size is 1M Byte and the size

requested by the legitimate users and those requested bydhthe cache server is 1T Byte, thenwill be roughly 1, 000.
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Fig. 7. Rank values and CUSUM values of various time units

E. Detection

When a cache pollution attack is triggered on the cache
proxy server, the distribution of objects in a cache will cha
and the rank value will increase as a result. We use the
CUSUM algorithm based on the rank value, as described in
‘ Sec. II-B, to detect a cache pollution attack.

1000 1000C Previous work uses the rank value to detect attacks when
n the rank value exceeds a threshold that isnset4 [5]. Under
high-rate attacks, such as worm or DDoS attacks, the rank
value will always go over the threshold even if we select a
short time period such as 10 sec. When a low-rate attack is
triggered toward the cache server, the rank value will not go
over the threshold, but instead changes from a low value to
some value higher depending on the rate of the attack. By
applying CUSUM, we can detect low-rate attacks.

We now describe how the time unit should be chosen. To|n Fig. 7, we explore the results obtained via the rank
have the time unit decoupled from request arrival rate, vée Ugajye and CUSUM. We also compare the effectiveness of the
the number of requests to determine the time unit instead @itection mechanisms with different time units. We assume
actual time duration. For example, a good time unit in Fig. ¢, — 10,000,000, Sc = 40,000 and n 200. Let ~
would be around 1500-2000 requests where the rank valugyishote the ratio of the attack rate to the legitimate-ust. ra
(near) full when the requests are from attackers. If the timecache pollution attack is triggered on the cache server wit
unit is too large, the rank value will also be close to full BVe, — 0.1,0.5,1,2,3 after 10,000 requests (in 7(a) and 7(d)),
if the requests are from legitimate users. 40,000 requests (in 7(b) and 7(e))60, 000 requests (in 7(c)

To explore the time unit, we perform an experiment tand 7(f)). In the CUSUM algorithm the value of EWMA
determine the required number of distinct objects reqddsye factor, 8 is set0.25. We also seth = 0 and £k = 5. The
the attackers to achieve full rank with different matrixesiz value of L may be set in practice based on observation of
The number of distinct objects requested can be measussgrage CUSUM value under normal situation (no attack).
by the number of 1's in the matrix when requests are from Using 2000 requests per time unit, observe that we can
attackers as collisions are rare. Fig. 6 plots the ratio ef tlletect attacks with attack ratig & 1, 2, 3) when the threshold
minimum number of 1's ton versusn to achieve full rank is set ton — 4 in Fig. 7(b), and we can detect all attacks in
with an n x n matrix. From the figure, we conclude that &ig. 7(e). If the time unit is too short, both rank value and
reasonable choice for the number of requests, or the tinte udUSUM will become ineffective since the rank value cannot
should be abou8n. We also need to make some additionaletect any attack (as depicted in Fig. 7(a)) while CUSUM
adjustment when objects are measured in a cache. misdetects in the normal situation (as depicted in Fig.)7(d)

The number of 1's h

10 100

Fig. 6. Ratio of average number of 1's toversusn.

D. Time unit



Sc = 40,000, n = 200, a time unit of2, 000 requests ané =
0.8t . 5. The results of the TP ratio is obtained with, 000 times
2 06 | of repeated evaluations. As shown in Fig. 8, our approach can
g = correctly detect all attacks when the attack ratioyis: 0.02.
= 04 ) We observed that the false negative (FN) ratio is 0. Note that
0.2F i our approach only fails to detect an attack whemrs 0.01.
‘ ‘ ‘ When we changé to 1, the FN ratio of our result i9.007
0 0 0.01 0.02 0.03 (falsely detect an attack when there is no attack). In addto

the FN ratio, as shown table |, we also observed that the false
positive (FP) ratio, is always 0 if we choose a good time
unit (see Sec. 11I-D). Furthermore, since our approach tiees
number of requests as a time unit, the rank of normal requests

Attack ratio

Fig. 8. True positive (TP) ratio of a locality disruptionak detection

p— DetectlonN . does not change even when the cache is under the flash event
frack _ 0 attack (FE). Under FE, the number of requests from normal users are
No attack False positive True negative )
0 aftac o (0 l—a(l suddenly increased.
Truth ©) 1)
attack True positive False negative
B (Lifv>0.02) | 1-p8(0if v>0.02) V. CONCLUSION

TABLE |
DISTRIBUTION OF THE TYPES BY RANK

In this paper, we have proposed a mechanism to detect
a cache pollution attack using randomness checks of the
distribution of content objects requested by legitimatersigs
well as by the attackers. To detect low-rate attack, we astbpt
) o _the CUSUM technique in our approach. Our experiments
If the time unit is too long, both rank value and CUSUM WI||h ve shown that the proposed mechanism can detect a cache
also become ineffective as both will misdetect in the normB llution attack even when the attack rate is very low. Our
situation (as depicted in Fig. 7(c) and Fig. 7(f)). When ilveet 4,4 significantly improved the previous approach asrit ca
unit is chosen properly, CUSUM can detect low-rate attacks| effectively detect cache pollution attack while theaak
while the rank value can only deal with high-rate attacks. 46 js an order of magnitude less than that in the previous

approach.
IV. EFFECTIVENESS OF OUR APPROACH

In this section, we evaluate the effectiveness of our dietect
approach under locality-disruption attack. In [1], the e
measure the average life-time of all cached files to detect
locality-disruption attack. To do that, they record thergnt [2]
time of each cached files and compute the average duration for
all files in the cache periodically. When the average dumatio
is very low, their approach warns a presence of localityf3]
disruption attack.

Since their approach checks the average life-time of a[h]
cached files, the average life-time will only change indigni
icantly if the attack ratio is too small. In addition, their
approach is based on the assumption that the number
attackers is much smaller than the number of legitimatesyser
but the number of requests per attacker is much larger thafl
the number of requests per legitimate user. Clearly thej
assumption will be violated when an attacker spoofs his/her Number Sequenceslinear Algebra and its Applications, vol. 67,
own IP address or uses Botnet since their approach will not he Pp- 147-156, 1985.

. . 8] G. Marsaglia, “Diehard: A Battery of Tests of Randomnes96.
able to detect the attackers. By comparison, since our appro
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