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Abstract— The Internet plays an increasing role in content
dissemination as user-generated contents have exploded recently.
Cache servers have been deployed to bypass bottlenecks in
the network so that contents can be delivered to end users
more efficiently. With caches becoming more embedded in the
networks, emerging threats follow naturally. A cache pollution
attack is one of the most serious threats on caching networks
including the current Internet and emerging caching networks
such as Content Centric Networking (CCN). In this paper, we
propose a detection approach against cache pollution attacks
using randomness checks of a matrix. We apply an effective fil-
tering approach and a statistical sequential analysis for detecting
low-rate attacks. The results of our experiments show that our
approach can detect a cache pollution attack with attack rate of
only a few percent of the overall rate.
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I. I NTRODUCTION

Guaranteeing the integrity of cache servers against attacks
is extremely important for today’s and future Internet as these
servers are expected to provide high service levels continu-
ously to end users. However, with proliferation of web caching
and media caching, attacks on such systems will become
increasingly more common. Recently, researchers have begun
to look at the robustness of Internet cache server under cache
pollution attacks [1], [2]. They show that the performance
of a cache server can be seriously degraded by a cache
pollution attack. It is well known that many popular contents
are usually requested by legitimate users and the distribution
of their requests typically follows a Zipf-like distribution [3].
To degrade caching service, the attackers can attempt to violate
the locality of contents in the cache with unpopular contents so
that popular contents requested by legitimate users are evicted.

Fig. 1 shows how the cache hit ratio can be degraded from
a cache pollution attack where the attackers request content
objects according to a uniform distribution. This degradation
can be serious when caches are pervasive and adopted in every
network node. Indeed, a recent proposed network architec-
ture, called Content-Centric Networking (CCN), implements
a cache in each router [4]. Therefore, it becomes more crucial
in the future to have an effective approach to deal with cache
pollution attacks.

A cache pollution attack may be classified into two types:
locality-disruption and false-locality [1]. In locality-disruption
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Fig. 1. Hit ratio degrades under attack.

attack, the attackers continuously generate requests for new
unpopular contents, thus disrupting the content locality of a
cache. In false-locality attack, the attackers repeatedlyrequest
the same set of contents that are not requested by legitimate
users, thus creating a false locality in a cache. These two
attack types are intended to degrade the cache performance.
In false-locality attack, an attacker must know the distribution
of popular contents by legitimate users. Inferring the total
distribution of popular contents by legitimate users is generally
not realistic as popular content distribution is changing as
a function of time and location of a cache. In contrast,
for locality-disruption attack, an attacker needs only request
contents with the uniform distribution to the cache server.It
means that the attacker, even without knowledge of popularity
information, can severely damage the effectiveness of a cache
server using locality-disruption attack.

In this paper, we focus on the locality disruption attack. We
propose a real-time scheme that can detect low-rate attacks
on caches. Previous works deal with high-rate attacks in the
Internet without caching taken into consideration [5], [6]. In
this paper, we find that it is more effective for the detectionto
instrument the measurement inside the cache rather than at a
link. We use the rank value of a matrix to check its randomness
as a proxy of an attack. The rank value can be easily calculated
by Gaussian elimination. The detection becomes effective
when filtering is done with certain XOR and AND operators on
two or more matrices to remove requests from legitimate users
so that requests from the attackers become more apparent.
Under a very low attack rate, the rank value may only change
in a small way. We adopt a statistical sequential analysis in
our approach to deal with low-rate attacks. The results of our
experiments show that our approach can detect low-rate attacks
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perfectly (i.e., with true positive ratio of 1 and false positive
ratio of 0) even when the attack rate is2% of the legitimate-
user rate.

The rest of this paper is organized as follows. In section II,
we present an overview of our approach. In section III, we
present the detail of our mechanism and the results of our
experiments. In section IV, we evaluate the effectiveness of our
approach in detecting low-rate attacks. Finally, we conclude
this paper in Section V.

II. OVERVIEW OF THE PROPOSEDAPPROACH

A. Randomness Checks

It is well known that objects requested by legitimate users
follow Zipf-like distribution. In locality-disruption attack, the
attackers continuously request unpopular objects, thus forming
a (near) uniform distribution. We propose to use a rank value
of a matrix to check the distribution of objects in a cache and
demonstrate its effectiveness.

Since a random binary matrix holds a high rank value [7],
the rank value of a matrix has been widely used for testing
the quality of a random number generator such as the Diehard
battery tests [8]. The rank value of a binary matrix is the count
of non-zero rows after applying Gaussian elimination. In the
case ofn ×m binary matrix, the probability that the matrix
has rankr is

2r(n+m−r)−nm

r−1
∏

i=0

(1− 2i−n)(1 − 2i−m)

(1− 2i−r)
(1)

where1 ≤ r ≤ min{n,m} [7]. In our approach, we use the
rank value of a matrix to detect a change of the distribution of
objects. To do this, we first use a function to map each object1

to an entry in a matrix,M = (mi,j), as follows:

f : X −→ Y (2)

whereX is the object name space andY = {(i, j), 1 ≤ i ≤
n, 1 ≤ j ≤ m}. The entrymi,j is then set to 1 if an object
name is mapped to(i, j) and 0 otherwise.

To deal with low-rate attack, we next device a matrix
operation with contiguous matrices,Mt−2, Mt−1 andMt, as
follows:

MXOR(t) = Mt−1 ⊕Mt (3)

Mt
′ = MXOR(t)⊕ (MXOR(t) •Mt−2) (4)

where t is the time instant when the matrix operation is
performed,⊕ is an exclusive-OR operation between each cor-
responding entry of two matrices and• is an AND operation.
The time interval between two time instances is onetime
unit. The motivation for using the matrix operation Eq. 3 and
Eq. 4 is that it offers a powerful technique to deal with low-
rate attack. In particular, popular objects that are repeatedly
requested by legitimate users are easily removed by the matrix
operation as they are likely to map to the same indices in
contiguous time units. On the other hand, the objects requested

1The mapping function uses an object name and we use the term object
and object name interchangeably for mapping.
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Fig. 2. Flowchart of our approach.

Cache Origin Server

End User

RequestRequest

ObjectObject

Outside Inside

Fig. 3. Locations where instruments are placed.

by the attackers are likely to map to different indices in
different time units.

After applying the matrix operation, we then obtain the rank
valuert of matrixMt

′ using Gaussian elimination. We can use
rt as an indicator of an attack.

B. Statistical Sequential Analysis

In order to detect an attack accurately and timely, we adopt
the cumulative sum (CUSUM) algorithm in our approach [9].
CUSUM has also been used for change point detection and
applied in anomaly detection [10]–[12]. Ifµt−1 is the mean of
the rank value estimated from measurements prior tot, µt can
be obtained using an exponentially weighted moving average
(EWMA) as follows:

µt = βµt−1 + (1− β)rt (5)

where β is the EMWA factor. CUSUM can detect a small
deviation of the mean effectively. It is generally defined as
follows:

{

gt = [rt + gt−1 − µt]
+

g0 = 0
(6)

where[x]+ = x, x > 0 and[x]+ = 0, otherwise, andrt is the
observed original rank value at timet. An alarm is signaled
whengt exceed a thresholdh for k consecutive time units.

C. Summary of the approach

Fig. 2 summarizes our overall approach for detecting a
cache pollution attack. The sequence of the operations in the
flowchart is executed at every time unit and is halted when an
attack is detected and an alarmed is signaled.
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III. D ETAILS OF THE MECHANISM

In this section, we describe the details of how the major
components in the flowchart are designed or dimensioned. We
also discuss our experiments and describe the results.

A. Location Issue

Object names to be mapped to a matrix can be done in
two ways. Object names in user requests can be measured
at the input to a cache proxy server (outside)during each
time unit. Alternatively, they can be measured from the cache
itself (inside) at the end of each time unit (see Fig. 3). We
evaluate how the rank values differ when object names are
measured from inside and outside of the cache proxy server.
Let SO denote the total number of objects andSC denote the
average number of objects in the cache. We use ann × n

matrix in the matrix operation. For illustration, we assume
that SO = 10, 000, 000, SC = 40, 000, n = 200, and that
one time unit corresponds to500 requests for objects. Fig. 4
plots the rank values as a function of time units.∆RI is the
difference of the rank values between a Zip-like distribution
and a uniform distribution where objects are measured from
inside a cache proxy server. By comparison,∆RO in Fig. 5
is the difference of the rank values measured outside of the
server.

When objects are measured from the outside (see Fig. 5),
we observe many unpopular objects that are requested by
legitimate users in one time unit even if there is no attack.
This weakens the detection since unpopular objects tend to
increase the rank value. Measured from inside (see Fig. 4), the
filtering effect by the cache can relieve this problem since the
cache replacement algorithm evicts unpopular objects fromthe
cache. This allows us to distinguish the rank values of objects
requested by the legitimate users and those requested by the

attackers more clearly; that is,∆RI > ∆RO. In the following,
the results are obtained from measurements inside the cache
server.

B. Mapping function

To map objects in the cache to a matrix, we need to obtain
an index value(i, j) of a matrix corresponding to each object
name. The function to obtain an index value of a matrix is
a ‘Mapping function’. In general, the name of an object is
composed of a string. A mapping function should have three
desirable properties as follows:

First, it should be easy to compute the index value for any
given object. If the computation of the mapping function is
complicated, it may cause cache server overload.

Second, it should be difficult to find an object that maps to
a given index value. If this property is violated, the attackers
that seemingly request many unpopular objects can end up
with the same index value.

Third, it should be difficult to modify the object name
without the index value being changed. If this property is
violated, the rank value will be reduced and this makes the
detection less effective.

To satisfy these three properties, we adopt a cryptographic
hash function to map an object name to an index value [13].
The mapping function is defined as follows:

{

i = Hash1(c) mod n

j = Hash2(c) mod m
(7)

where (i, j) is the index of the matrix corresponding to
object namec andHash1 andHash2 are cryptographic hash
functions. In our evaluations of this paper, we used SHA-1 as
a hash function.

C. Matrix size

Another important issue to consider is matrix size. LetM

be an×n binary matrix. It has been determined that ifn < 10,
then we cannot check the randomness of a matrix [7].

Since we map the objects in the cache to a matrix at each
time instant, the matrix size in our case depends on the average
number of objects stored in a cache,SC . If we choose a very
large value ofn such thatn2 � SC , many locations in the
matrix will have zero entries. On the contrary, ifn2 � SC ,
there will be considerable collisions in the matrix, where a
collision occurs when two or more distinct objects map to the
same entry in the matrix. We choose the matrix size

n ' [
√

SC ]. (8)

For example, if the average file size is 1M Byte and the size
of the cache server is 1T Byte, thenn will be roughly1, 000.
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(e) CUSUM values per 2,000 requests
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Fig. 7. Rank values and CUSUM values of various time units
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D. Time unit

We now describe how the time unit should be chosen. To
have the time unit decoupled from request arrival rate, we use
the number of requests to determine the time unit instead of
actual time duration. For example, a good time unit in Fig. 4
would be around 1500-2000 requests where the rank value is
(near) full when the requests are from attackers. If the time
unit is too large, the rank value will also be close to full even
if the requests are from legitimate users.

To explore the time unit, we perform an experiment to
determine the required number of distinct objects requested by
the attackers to achieve full rank with different matrix sizes.
The number of distinct objects requested can be measured
by the number of 1’s in the matrix when requests are from
attackers as collisions are rare. Fig. 6 plots the ratio of the
minimum number of 1’s ton versusn to achieve full rank
with an n × n matrix. From the figure, we conclude that a
reasonable choice for the number of requests, or the time unit,
should be about3n. We also need to make some additional
adjustment when objects are measured in a cache.

E. Detection

When a cache pollution attack is triggered on the cache
proxy server, the distribution of objects in a cache will change
and the rank value will increase as a result. We use the
CUSUM algorithm based on the rank value, as described in
Sec. II-B, to detect a cache pollution attack.

Previous work uses the rank value to detect attacks when
the rank value exceeds a threshold that is setn− 4 [5]. Under
high-rate attacks, such as worm or DDoS attacks, the rank
value will always go over the threshold even if we select a
short time period such as 10 sec. When a low-rate attack is
triggered toward the cache server, the rank value will not go
over the threshold, but instead changes from a low value to
some value higher depending on the rate of the attack. By
applying CUSUM, we can detect low-rate attacks.

In Fig. 7, we explore the results obtained via the rank
value and CUSUM. We also compare the effectiveness of the
detection mechanisms with different time units. We assume
SO = 10, 000, 000, SC = 40, 000 and n = 200. Let γ

denote the ratio of the attack rate to the legitimate-user rate.
A cache pollution attack is triggered on the cache server with
γ = 0.1, 0.5, 1, 2, 3 after 10, 000 requests (in 7(a) and 7(d)),
40, 000 requests (in 7(b) and 7(e)),160, 000 requests (in 7(c)
and 7(f)). In the CUSUM algorithm the value of EWMA
factor, β is set 0.25. We also seth = 0 and k = 5. The
value of h may be set in practice based on observation of
average CUSUM value under normal situation (no attack).

Using 2000 requests per time unit, observe that we can
detect attacks with attack ratio (γ = 1, 2, 3) when the threshold
is set ton − 4 in Fig. 7(b), and we can detect all attacks in
Fig. 7(e). If the time unit is too short, both rank value and
CUSUM will become ineffective since the rank value cannot
detect any attack (as depicted in Fig. 7(a)) while CUSUM
misdetects in the normal situation (as depicted in Fig. 7(d)).
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Fig. 8. True positive (TP) ratio of a locality disruption attack detection

Detection
Attack No attack

Truth
No attack

False positive True negative
α (0) 1− α (1)

attack True positive False negative
β (1 if γ > 0.02) 1− β (0 if γ > 0.02)

TABLE I

DISTRIBUTION OF THE TYPES BY RANK

If the time unit is too long, both rank value and CUSUM will
also become ineffective as both will misdetect in the normal
situation (as depicted in Fig. 7(c) and Fig. 7(f)). When the time
unit is chosen properly, CUSUM can detect low-rate attacks
while the rank value can only deal with high-rate attacks.

IV. EFFECTIVENESS OF OUR APPROACH

In this section, we evaluate the effectiveness of our detection
approach under locality-disruption attack. In [1], the authors
measure the average life-time of all cached files to detect
locality-disruption attack. To do that, they record the entry
time of each cached files and compute the average duration for
all files in the cache periodically. When the average duration
is very low, their approach warns a presence of locality-
disruption attack.

Since their approach checks the average life-time of all
cached files, the average life-time will only change insignif-
icantly if the attack ratio is too small. In addition, their
approach is based on the assumption that the number of
attackers is much smaller than the number of legitimate users,
but the number of requests per attacker is much larger than
the number of requests per legitimate user. Clearly their
assumption will be violated when an attacker spoofs his/her
own IP address or uses Botnet since their approach will not be
able to detect the attackers. By comparison, since our approach
utilizes the distribution of objects in the cache and further
filters the objects requested by legitimate users by means a
matrix operation, our approach can effectively detect low-rate
attacks. Additionally, our approach can detect an attack even
if an attacker spoofs his/her IP address or uses Botnet.

When the ratio of the attack rate to the legitimate-user rate
is γ = 0.3, their approach correctly detects around60 percent
of the attacks; that is, the true positive ratio (TP ratio) is0.6.
By comparison, our approach can correctly detect all attacks
(TP ratio is 1) whenγ = 0.3. Fig. 8 plots the TP ratio versus
attack ratio,γ, in our approach. We useSO = 10, 000, 000,

SC = 40, 000, n = 200, a time unit of2, 000 requests andk =
5. The results of the TP ratio is obtained with10, 000 times
of repeated evaluations. As shown in Fig. 8, our approach can
correctly detect all attacks when the attack ratio isγ ≈ 0.02.
We observed that the false negative (FN) ratio is 0. Note that
our approach only fails to detect an attack whenγ ≈ 0.01.
When we changek to 1, the FN ratio of our result is0.007
(falsely detect an attack when there is no attack). In addtion to
the FN ratio, as shown table I, we also observed that the false
positive (FP) ratio,α, is always 0 if we choose a good time
unit (see Sec. III-D). Furthermore, since our approach usesthe
number of requests as a time unit, the rank of normal requests
does not change even when the cache is under the flash event
(FE). Under FE, the number of requests from normal users are
suddenly increased.

V. CONCLUSION

In this paper, we have proposed a mechanism to detect
a cache pollution attack using randomness checks of the
distribution of content objects requested by legitimate users as
well as by the attackers. To detect low-rate attack, we adopted
the CUSUM technique in our approach. Our experiments
have shown that the proposed mechanism can detect a cache
pollution attack even when the attack rate is very low. Our
method significantly improved the previous approach as it can
still effectively detect cache pollution attack while the attack
rate is an order of magnitude less than that in the previous
approach.
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