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ABSTRACT
Malware writers and detectors have been running an endless battle.
Self-defense is the weapon most malware writers prepare against
malware detectors. Malware writers have tried to evade the im-
proved detection techniques of anti-virus(AV) products. Packing
and code obfuscation are two popular evasion techniques. When
these techniques are applied to malwares, they are able to change
their instruction sequence while maintaining their intended func-
tion. We propose a detection mechanism defeating these self-defense
techniques to improve malware detection. Since an obfuscated mal-
ware is able to change the syntax of its code while preserving its
semantics, the proposed mechanism uses the semantic invariant.
We convert the API call sequence of the malware into a graph,
commonly known as a call graph, to extract the semantic of the
malware. The call graph can be reduced to a code graph used for
semantic signatures of the proposed mechanism. We show that the
code graph can represent the characteristics of a program exactly
and uniquely. Next, we evaluate the proposed mechanism by ex-
periment. The mechanism has an 91% detection ratio of real-world
malwares and detects 300 metamorphic malwares that can evade
AV scanners. In this paper, we show how to analyze malwares by
extracting program semantics using static analysis. It is shown that
the proposed mechanism provides a high possibility of detecting
malwares even when they attempt self-protection.
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1. INTRODUCTION
Malware is software designed to infiltrate or damage a computer

system without the owner’s informed consent. Examples of such
malware include viruses, worms, Trojans and bots. Such malware
threatens computer security, because it exhausts system/network re-
sources or infringes on a person’s privacy. Although, there is much
effort to detect malware, malware writers achieve their intention by
thwarting the efforts of malware detectors.
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The major difficulty of malware detection is the dramatic in-
crease in malware. According to a Symantec report, malware sig-
natures have increased extremely over recent five years from 18K
to 3M. Of course, malware writers have improved their malware
writing skill. However, the main reason for the rapid increase is
that there is too much malware since the malware variants can be
produced easily using code obfuscation techniques. Malware writ-
ers are able to create numerous malware variants, using code ob-
fuscation tools, from malware sample code. Obfuscation refers to
techniques that preserve the program’s semantics and functional-
ity, while simultaneously making it more difficult for the analyst to
extract and comprehend the program’s structure. The cost due to
code obfuscation is inexpensive, since obfuscated malware is able
to evade AV scanners, much malware is generated by code obfus-
cation. According to the recent study, more than 80% of malware
uses packing to hide from malware detectors [16]. Although pack-
ing is a form of code obfuscation techniques, it is usually classified
separately due to its fame. In addition, recent research shows that
AV scanners have difficulty in detecting malware -applied bit ob-
fuscation, the common technique used by malware writers to evade
detection is program obfuscation [20]. Moreover, there are numer-
ous examples of obfuscation techniques designed to avoid detec-
tion [3,11,14,17,22].

Malware detection using signatures has been used for malware
detection. It is known to be efficient in known malware detec-
tion. As compared with dynamic analysis using sandbox, signa-
ture based analysis has less scanning time because of small over-
head, has few false-positives and needs not to worry about system
infection by malware. However, signature based analysis has a fa-
tal disadvantage. Unknown malware can easily evade detection.
Moreover, signature based analysis cannot deal with simple ob-
fuscation such as binary pattern modulation. Christodorescu and
Jha [6] pointed out that such detection methods can be easily de-
feated by the use of the principle of metamorphism. Metamorphism
uses code obfuscation techniques to transform the representation of
programs. The number of malware signatures has increased explo-
sively, due to the rapid increase of the amount of malicious code.
Therefore, existing signature based detection mechanisms have be-
come inefficient in terms of time and space complexity. One way
to decrease the number of signatures is the use of normalization
techniques that have been actively studied recently [8, 28]. How-
ever, this approach does not provide a complete solution to detect
unknown malware. Theoretical studies on malware detection have
revealed that there is no algorithm that can detect all types of mal-
ware. [9,10]

There are two Problems for signature based detection. First, sig-
nature based systems cannot detect unknown malware. Second, as
malware’s growth is exponential, the number of malware signatures



increases alarmingly. To solve these problems, a malware detection
mechanism is needed to detect unknown malware with few signa-
tures. To address this, we propose a malware detection mechanism
using the malware’s semantic rather than its syntax.

This is based on the assumption that a malware M contains the
API call sequence S and its variant, M’ is generated from M, then
S and S’, derived from M’, have very high similarity. That is, when
M is obfuscated to M’, the syntax of M’ looks different from the
syntax of M but the semantics of M’ cannot deviated from the se-
mantics of M. Programs (including malware) have to behave to per-
form a certain function; code obfuscation cannot affect on program
behavior. Thus, we are to construct malware signatures with the
semantic characteristics of the malware. First, if the malware is
packed, an unpacking process is performed. Next, we represent
the unpacked malware as a call graph. The call graph has hun-
dreds or thousands of nodes and graph isomorphism is known to be
NP-complete. It is inefficient to use the call graph as the semantic
signatures of malware. Therefore, we convert the call graph to an-
other form of graph based on the feature of the API call. We call
this other form of graph, a code graph. The code graph is used to
construct semantic signatures of known malware. We extract code
graphs from malware. These code graphs are stored. The code
graph is extracted from input program. This code graph is com-
pare to previously stored code graphs to measure similarity. This
similarity is used to determine if the input program is benign or
malicious.

This paper is an extension of the previous work [13], where the
concept of code graph was proposed for finding malwares. Code
graphs are an effective graph structure which represents a complex
binary code into a single graph. In this paper, we apply code graphs
to find metamorphic malwares.

The proposed mechanism has been implemented and evaluated
on malware variants. We collected 3270 malware programs ob-
tained fromoffensiveComputing.net and VX heaven. We
found 100 variants and measured their similarities. We detected 91
variants of the 100 variants. In addition, we created metamorphic
malwares. From 10 malware instances, we generated 30 versions
of malware per malware using code obfuscation. We develop some
obfuscation programs to generate metamorphic malware. The pro-
grams generate metamorphic malware using code insertion, code
reordering, and code replacement. We generated total 300 obfus-
cated malware programs using these code obfuscation tools. The
obfuscated malware generated by us can evade existing AV scan-
ners but our mechanism detected all of them.

The three main contributions of our paper are the following.

• In order to detect metamorphic malwares, we propose an
approach to define semantic signatures rather than syntactic
signatures. We tried to solve an existing malware detection
issue, by describing a program with its semantic signature.
This contribution makes it possible to detect malware even
though the malware uses self-defense.

• We demonstrate a method to make up for the weakness in
malware detection with static analysis. This gives us the
strength of static analysis, while complementing the draw-
backs of static analysis, which is poor for unknown malware.

• We reduce the number of malware signatures. With this con-
tribution, we need not worry about signatures for exponen-
tially increasing malware. In addition, this technology re-
quires smaller space and greatly reduces scanning time. This

contribution has great significance, since analysis time is an
important element in malware detection and the amount of
malware has been increasing dramatically.

The remainder of paper is organized follows. In section 2, we
discuss related work. System architecture is described in section
3. The system is composed of code analyzer, code graph generator,
and graph analyzer. We give a detailed explanation of each com-
ponent in this section. Section 4 evaluates our system. Finally, we
conclude with future work in section 5.

2. RELATED WORKS
While malware detection has been studied for decades, code ob-

fuscation has attracted recent attention since malware is able to
evade existing malware detector too easily using code obfusca-
tion. Accordingly, researchers have focused on the issue of ob-
fuscated malware using code obfuscation techniques to bypass sig-
nature based approaches. Since established signature based ap-
proaches have obvious limits, work has been undertaken to improve
signature based detection. There have also been a few attempts to
apply data mining and machine learning techniques, such as Naive
Bayes method [25], support vector machine (SVM) [5] and Deci-
sion Tree classifiers [15,29], to detect new malicious executables.

Malware detection falls into two categories, static analysis and
dynamic analysis. Static analysis analyzes malware without their
execution. Existing malware detectors commonly use static analy-
sis. Binary pattern matching and data flow and code flow analysis
represent examples of static analysis. In contrast to static analy-
sis, dynamic techniques execute malware in a simulated environ-
ment and analyze its malicious behavior. VM(Virtual machine)s
are commonly used for dynamic analysis as a sand box.

Static analysis has some advantages. Static analysis enables fast
and safe analysis of malware. In addition, Static analysis can cover
the entire malware code and achieves a low level of false posi-
tives. Commercial AV products use static analysis for these rea-
sons. However, static analysis is flawed. Static analysis has diffi-
culty analyzing unknown malware. Malware can evade detection
easily using obfuscation techniques.

Several dynamic analysis approaches have been proposed to over-
come a flaw of static analysis. To detect unknown malware, dy-
namic analysis executes malware samples in a simulated environ-
ment, monitors all system calls, and automatically generates a re-
port to simplify and automate the malware analyst’s task. Williams
et al. presented automated dynamic malware analysis using CWSand-
box [30]. TTAnalyze [27] is a tool for dynamically analyzing the
behavior of Windows executables. The binary is run in an emu-
lated operating system environment and its actions are monitored.
They recoded the Windows native system calls and Windows API
functions that the program invokes. However, Dynamic analysis
involves system infection. Moreover, malware writers have devel-
oped anti-VM (virtual machine) techniques. Malware with anti-
VM can recognize that they are in a simulated environment. In
addition, there is one observable difference between an emulated
and a real system, namely speed of execution. Dynamic analysis
needs too much time. Detecting unknown malware before execu-
tion, where possible, offers the best solution.

Much effort has been made to overcome the limitations of static
analysis. Some research presents several code normalization tech-
niques. Code normalization techniques normalize obfuscated mal-
ware to their original form. Christodorescuet al. present malware
normalization [8], a system that takes an obfuscated executable, un-
does the obfuscations, and outputs a normalized executable. There-
fore, a malware normalizer can be used to improve the detection
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Figure 1: The architecture of the code graph system

rate of an existing malware detector. Walenstein et al. [28] present
a method for normalizing multiple variants of metamorphic pro-
grams that perform their transformations using finite sets of instruction-
sequence substitutions. Normalization is one solution to detect ob-
fuscated malware before execution. However, normalization de-
pends on obfuscating techniques. They cannot cover all forms of
code obfuscation.

There has been a lot of work using semantic detection techniques
to strengthen static analysis. Christodorescuet al. [7] exploited se-
mantic heuristics to detect obfuscated malware. Although, their
approach works well for obfuscated malicious programs, the time
taken by their approach makes it impractical for use in commer-
cial antivirus scanners. Predaet al. [21] use a trace semantics to
characterize the behaviors of the malware and the program being
analyzed. Sathyanarayanet al. [24] focus on critical API calls to
generate signatures of malware and detect them. Although they
observe the semantics of malware by critical API calls, their ap-
proach has a weakness to new type of code obfuscation techniques
such as red herring system calls because they use only a frequency
of critical API calls.

To summarize, static analysis has difficulty finding unknown mal-
ware; while, dynamic analysis can detect unknown malware, but
is inefficient. The best method to detect malware efficiently is to
detect malware with static analysis, while covering the existing de-
fects of static analysis. To this end, we try to abstract semantic
characteristics of malware rather than syntactic features, since the
program syntax can be changed easily, but the semantics cannot but
help be retained.

We now present a new method to detect obfuscated variants of
malware using semantic signatures. The method is introduced and
evaluated experimentally.

3. CODE GRAPH SYSTEM
In this section, we describe how to construct the code graph of an

executable program, and explain how to determine malware vari-
ants using code graphs. Existing malware detection mechanisms
commonly detect malware using their syntactic signature. Mal-
ware writers have tried to evade malware detectors, and evasion
techniques, such as code obfuscation, make it possible for malware
to bypass commercial malware detectors. Therefore, our mech-
anism focuses on semantic characteristics of malware rather than
syntactic characteristic. To this end, we describe a program as one
graph called code graph. The code graph is a directed graph that
represents the characteristics of a portable executable binary. The
code graph system is a preview system that enables the program
characteristics to be viewed before its execution by generating and
analyzing the code graph. Then, the system determines a program
whether malicious or not.

Figure 1 shows the architecture of the code graph system. Figure
1(a) is the process of updating code graph signatures of malware.
Figure 1(b) is the process of examining the input program. The
input program is compared to code graph signatures stored by the
update process. Our system consists of three parts, the code ana-
lyzer, code graph generator, and graph analyzer. The code analyzer
transforms a portable executable binary into a directed graph, the
call graph. The call graph is reduced to a simple form, termed code
graph by code graph generator. The code graph is saved and used
to measure similarity using the graph analyzer. Thereby, the graph
analyzer determines if the input program is a variant of a previously
stored malware.

3.1 Code Analyzer
The code analyzer transforms a binary into a call graph using



the transformation algorithm. The call graph is a directed graph
that represents the characteristics of a portable executable binary.
We use the system-call call sequence as the program characteris-
tics. We extract only those instructions related to the system call
sequence in the binary executable program and represent the result
in the form of a call graph. The call graph is a directed graphG =
(V,E), whereV is a set of nodes andE is a set of edges. A node is
a system call selectively chosen among the system calls in a given
program. An edge is determined by the call sequence of the system
calls inV, e.g. E= {(vi,vj)|vi,vj ∈ V }, wherevi denotes thecaller
system-call, andvj denotes thecall-in system-call.

First the code analyzer builds the node setV to transform a bi-
nary into a call graph. The code analyzer obtains the system-call set
through the IAT (Import Address Table) contained in a binary that
denotes the node setV. Next, it builds up a node set by connecting
one node to one system-call.

The code analyzer generates the edge (vi,vj) of the call graph
G using the system-call sequence, wherevi is the caller system-
call andvj is the call-in system-call. Algorithm 1 shows the entire
transformation algorithm. Figure 2 shows how to transform each
instruction into an edge.

Algorithm 1 Transform algorithm
Input : portable Executable Binary B
Output : Call graph G = (V ,E)

1: V ← BuildNode(); E← φ;
2: vi← 0;
3: r ← EntryPoint(B );
4: while r is not te end ofB do
5: //The instruction at addressr in B
6: Ic← I [ r];
7: //The parameter of the instruction
8: Pc← P[r];
9: if Ic is System Callthen

10: if vi is equal to 0then
11: vi← Pc;
12: else
13: vi← Pc;
14: E← E ∪ Edge(vi,vj);
15: vi← vj ;
16: end if
17: else if Ic is JMPthen
18: vj ← GetFirstSCALL(r);
19: E← E ∪ Edge(vi,vj);
20: vi← 0;
21: else if Ic is CJMPthen
22: vj ← GetFirstSCALL(r);
23: E← E ∪ Edge(vi,vj);
24: else if Ic is Procedure Callthen
25: vj ← GetFirstSCALL(r);
26: E← E ∪ Edge(vi,vj);
27: vj ← GetEndSCALL(r);
28: end if
29: r← CurrentProgramCounter(B);
30: end while

3.2 Code Graph Generator
Call graphs are generated by the code analyzer. However, it is

difficult to compare call graphs directly. Call graphs generated in
the code analyzer have usually hundreds or thousands of nodes and
graph isomorphism is a well known NP-complete problem. Thus,

Figure 2: An example of transform

we transform the call graph to the code graph for fast simple anal-
ysis. The code graph generator creates code graphs. Code graphs
are used for signatures of our code graph system.

The signature must satisfy the following two conditions to be
signature for detection.

• Condition 1 : Signature should express characteristic of pro-
gram exactly and simply as possible.

• Condition 2 : To distinguish signatures of two programs,
signature is distributed uniformly in possible data structure
space.

As mentioned in the previous section, the call graph is a directed
graph that has nodes and directed edges. API calls can be nodes,
and directed edges represent the program calling relationship. We
have classified API calls to 128 groups(32 objects× 4 behaviors),
to reduce this call graph. To obey the previous conditions, nodes of
the call graph are grouped by objects of a system call. The objects
are process, memory, socket, and so forth. There are 32 objects, we
reference to MSDN. At the first step, the system call is classified by
a related object. At the next step, each system call is classified by
the behavior of the related object. We define four basic behaviors
of system calls which are open, read, write, and close. In this way,
API calls are classified to one group of 128 groups. For example,
CloseSocket() becomes a member of the socket-close group and
RegSaveKey() becomes a member of the registry-write group.

After grouping, the nodes within the same group in the call graph
are unified. During node unification, edges represented call rela-
tionships are maintained.

When the nodes are unified, we have a problem. We cannot cover
all API calls. Therefore, some nodes do not belong in our grouping.
In this case, we ignore the node, and keep the link information of
the node.

This method transforms the call graph to a code graph. We ex-
tract code graphs from known malware and store it to detect un-
known malware. The code graphs from known malware are used to
compare code graphs of suspicious programs. We use an adjacent
matrix to store code graphs. An adjacent matrix is most proper data
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Figure 3: An Example of Similarity Measurement., which is used to determine metamorphic malware. First, we compute the
intersection and the union graph of two measured graphs. Next, we divide the number of the union graph’s edges by the number of
the intersection graph’s edges. In this example, an union graph has seven edges and an intersection graph has one edge. Thus, the
similarity of G1 and G2 is 0.1429.

structure to store code graph, because the code graph is a directed
graph whose number of edges is fixed to 128. Thus, a code graphs
is represented by a 128×128 adjacent matrix and saved. A malware
code graph occupies 16KB.

3.3 Graph Analyzer
Graph analyzer measures the similarity of two code graphs and

determines if the input program is malicious. In previous, we stored
code graphs of known malware formed in a 128 by 128 adjacent
matrix. When the input program is examined, the code graph is
extracted by the code analyzer and the code graph generator. The
code graph is compared to code graphs of known malwares. The
similarity can be measured in a simple way, which can be described
as follows.

GraphG1 andG2 are to be compared. We compute an inter-
section graph and an union graph ofG1 andG2. We can find the
intersection graph ofG1 andG2 easily as AND operation of the
adjacent matrix ofG1 and adjacent matrix ofG2. In the same way,
we can find the union graph ofG1 andG2 easily as the OR op-
eration of the adjacent matrix ofG1 and adjacent matrix ofG2.
Next, we evaluate the similarity of two graphs to divide edges of
the union graph by edges of the intersection graph. Then, we de-
fine the similarityφ of graphG1 andG2 as follows.

φ(G1, G2) = |E(G1∩G2)|
|E(G1∪G2)|

Figure 3 shows a simple example of our graph similarity mea-
surement.G1 has 4 vertices and 4 edges.G2 has 5 vertices and 4
edges. We compute the intersection graph and union graph of two
graphs to measure the similarity ofG1 andG2. The union graph of
G1 andG2 has 7 edges and the intersection of two graphs has only
an edge from nodeC to nodeD (Figure3). Thus, the similarity of
two graphs is 1/7, 0.1429.

There are many methods to measure the similarity of labeled
graphs. Rascal [23] used maximum common edge sub-graphs to
measure the similarity of graphs. Zelinka-distance [31] is based on
the principle that two graphs are more similar, the bigger the com-
mon induced sub-graph. The similarity measurement using cosine
distance of vector is another possible method. However, in mal-
ware detection, a fast operation is important. In addition, since the
number of labeled nodes is finite in our graph, we define a simple
operation to measure graph similarity. The time complexity isO(c)

in our similarity measurement. That is, whether the program size
in the comparison is huge or tiny, we conduct constant operations.
We compute only AND & OR operations of the 128×128 matrix
and a division operation. We use the number of edges of the inter-
section and union graphs instead of vertices. Since edges are able
to represent characteristics of a graph than vertices, in the example
depicted in figure 3, when we use a number of vertices, we get a
relatively high similarity, 0.8 although the two graphs look differ-
ent. There are many cases where the vertex sets are the same but
the edge sets are different in the two graphs, but there is no inverse
case. Therefore, we focus ob graph edges to measure similarity.

Since the intersection graph is always a sub-graph of the union
graph, the number of edges is always less than that of union graph
and the similarity must range from 0 to 1. When code graphs are
identical, the similarity will be 1. If there is no common edge of the
two graphs, the similarity is 0. As a code graph of input program
P is compared to the code graphGi, φ(P,Gi) is 1, we determine
P is a variant of malware i. Whenφ(P,Gi) is greater than 0.9, we
decideP has a suspiciously high probability of being a variant of
Gi. The value, 0.9 is obtained from the experimental result.

4. EVALUATION
We performed a series of experiments with the code graph sys-

tem to evaluate its efficiency. In the first experiment, we show how
uniquely our semantic signatures represent the program character-
istics. The second experiment shows the similarity of real-world
malware variants collected from wild environment. In the last ex-
periment, we create 300 metamorphic malwares using three code
obfuscation techniques. We evaluate the efficiency of our mech-
anism compared to existing AV scanners. All experiments were
performed on a machine running Windows XP, with a Pentium 4
CPU of 3GHz, and 2GB of RAM.

4.1 Construction of Semantic Signatures
This section provides the process to form semantic signatures.

As mentioned in a previous section, we perform the following pro-
cess to create a signature. First, we extract the sequence of API
calls from the executable binary. With the sequence of API calls,
we construct a call graph by relations of function calls. The call
graph is reduced to a code graph based on the object and the be-
havior of the API call. The code graph generated by this process is
stored by form of 128×128 adjacent matrix of the graph.

Figure 4 shows the process to construct code graphs from the
windows PE file. Figure 4(a) is an example of a malicious pro-
gram, evilbot. Figure 4(b) is an example of a benign program,
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Figure 4: Construction of code graphs

mspaint. The evilbot is a kind of malware, its size is 15KB. We
extract a sequence of API calls with a debugger from evilbot code.
The sequence is represented as a call graph. Figure 4 shows the call
graph is too complex to be compared. We reduce the call graph to
a code graph for comparison. The call graph takes 1.273 seconds
to make and 62 milliseconds to construct the code graph. Mspaint
is a benign program provided by microsoft and its size is 66 KB.
As can be seen in figure 4, the call graph of mspaint is much more
comlicated than that of evilbot. The number of nodes of the evilbot
and mspaint call graphs are 54 and 188 respectively. Generally, the
greater the size, the more complex the code graph. It takes 2.547
seconds to make the call graph and 172 milliseconds to generate
the code graph for mspaint. In evilbot, the code graph has 11 nodes
and 15 edges. The code graph of mspaint has 29 nodes and 75
edges. Two graphs have only one common edge. Therefore, in this
example, the similarity of two graphs is the 0.01124.

4.2 Uniqueness of Semantic Signatures
In first experiment, we measure how our semantic signatures are

distributed uniquely in the possible data structure. We obtained a
low similarity of the benign program and the malicious program in
the previous section. However, we could not tell if our semantic
signatures are distributed indiscriminately in the possible space. To
this end, we collect code graphs from various programs and mea-
sure their similarities. This experiment is highly related to false-
positives of our system. The 128 by 128 binary matrix can repre-
sent22

14

graphs. However, if the graphs are not distributed uni-
formly in this data structure space, different programs may have
the same code graph. In this case, false-positives is increased.

300 benign programs and 100 malicious programs were ana-
lyzed. First, we extracted code graphs from the 300 benign pro-

Size Time to Time to Similarity
call graph code graph

agobot 45KB 1.571s 0.110s 1.0
G-spot 439KB 16.784s 0.235s 1.0
evilbot 15KB 1.273s 0.062s 1.0

backdoor.Bot 87KB 2.393s 0.094s 0.8182
p2p-worm 48KB 1.714s 0.081s 1.0

Trojan.mybot 69KB 2.193s 0.068s 1.0

Table 1: Detection of malware variants

grams. Next, we measured the similarities of all cases where we
picked two graphs. There are300C2, 44850, combinations. The
figure 5 (a) shows the results in rank order of 44850 similarities.
Then, with the 100 malicious programs, similarities were evaluated
using the same method. Last, we measured similarity of 300 be-
nign programs and 100 malicious programs. If two graphs have
a similarity of 1, this is false-positive from our mechanism. Only
0.003% percentage had a similarity greater than 0.9, representing
a Benign-Malicious case. Only one case in the 30000 cases had a
similarity greater than 0.9 between malware and a benign program.

4.3 Detection of Real-world Malware Variants
Malware writers have created many variants of common exploits,

in attempt to evade AV scanners. Such examples can be found at
popular hackniig web sites. Such examples make use of a wide
range of obfuscation techniques. We can get many malware vari-
ants at such sites.

100 malware pairs are used for experiment. We collected mal-
ware variants from VX Heavens [2], VX Chaos [1] and offensive-
Computing.net. The malware programs tested had sizes ranging
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Figure 6: Detection of obfuscated malwares

from 15KB to 1MB bytes. Table 1 shows the result for some
cases. Of the 100 cases, 91% of malware varinats had a similar-
ity of 1. 3% of variants had a similarity of greater than 0.9 but not
1 and our system determines these cases to be suspicious. Last,
it shows 6% false-negative ratio. One example of false-negative
was backdoor.bot(φ = 0.8182) in Table 1. The 0.8182 is the lowest
similarity of 100 pairs.

Average time of 200 malware variants(100× 2) from binary to
code graph is 2.183s. In case of most malware variants, it takes usu-
ally from one second to three seconds to construct the code graph.
The bigger the size of malware is, the longer exponetially it takes.
We construct a code graph only one time per a malware because we
stored signatures of malware in malware signature pool. Therefore,
few seconds is negligible levels. Similarity measurement calculates
constant operations, AND and OR operation of two 128 by 128 ma-
trix and one division. The consumed time is also very low cost.

4.4 Detection of Obfuscated Malwares
We sample 10 malicious programs in this experiment. The ma-

licious programs are composed of two backdoors, two worm, two
trojans, two virus and two bot codes. We applied three code obfus-
cations for each malware, including code insertion, code reorder-
ing, and code replacement from 10% to 100%. Code insertion adds
useless code into the program. Code reordering modifies the exe-
cution flow of a program using unconditional branch instructions.
Code replacement replace a given instruction block with another
instruction block while keeping the same code semantics. Malware
is divided into basic blocks. The basic block describes a sequence
of instructions without any jumps or jump targets in the middle.
Then, we apply each code obfuscation techniques according to ob-
fuscation level.

Figure 6 shows the results of our investigation of obfuscated mal-

wares, using three commercial scanners and our mechanism. Most
AV scanner using syntactic signatures cannot detect metamorphic
malware made by code obfuscation. It is shown that Self-defense
is a serious menace to malware detector. We achieved 100% detec-
tion of the metamorphic malware instances using semantic charac-
teristics of malware. The code graph system has another advantage
that the number of malware signatures is reduced significantly. In
syntactic signature based system, a linear relationship is existed
between malware and a signature. That is, whenever malware is
generated, one signature is needed for malware. Since many vari-
ants of malware are generated from malware, signatures are made
as many as the number of variants. By contrast, the code graph
system needs only one signature. The code graph system can de-
tect all of malware variants with a signature of original malware. It
is pertinent to note that 50% new malware are obfuscated versions
of existing known malware [26]. This situation will be accelerated.
Therefore, keeping down malware signature is an important issue.
In addition, small number of signatures provides malware detectors
to save signature matching time.

There are many other code obfuscation techniques in addition
to three techniques. The register reassignment transformation re-
places usage of one register with another in a specific live range.
Code integration used to merge two separate code sections without
the need to obscure or recompile the existing code sections. En-
try point obscuring tries to hide its entry point in order to avoid
detection. Our mechanism can defend these type of code obfusca-
tion techniques because we use API call sequence. However, our
approach may suffer the code obfuscation techniques such as inser-
tion of meaningless system calls. This is related to false-negative
of proposed mechanism. In future work, we expand to defend these
types of obfuscation.



5. CONCLUSION
In this paper, we provided a new approach to generate seman-

tic signatures from programs to detect metamorphic malware. The
key idea is that the sequence of API call is preserved during the
obfuscation process. Obfuscation techniques change the malware
syntax, but cannot affect its behavior. We describe API call se-
quence of malware as directed graphs called code graphs. The code
graphs are used for the semantic signature. The semantic signature
makes us possible to detect malwares using obfuscation that would
otherwise easily evade commercial AV products using obfuscation.
Evaluations show that our semantic signature represents character-
istic of program uniquely and correctly. In addition, we show that
our code graph system can detect real-world malware variants and
metamorphic malware that can evade AV scanners.

In the future work, we plan to extract semantic signatures from
various kinds of malware. We will consider more accurate and
more sophisticated analysis in static analysis. We will try to deduce
common features each type of malware using improved analysis.
Reducing false-positive and false-negative is also one part of our
future work. White list for benign program is one possible solution
to reduce false-positive. New type of code obfuscation techniques
can lead to false-negative. We will find the method to deal with
the code obfuscation techniques. In addition, since most malware
is packed, a generic unpacking technique will optimize our code
graph system. Eventually, we will expand our work to vulnerabil-
ity and abnormality analysis.
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