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ABSTRACT The major difficulty of malware detection is the dramatic in-

Malware writers and detectors have been running an endless battle cr€@s€ In maI\_Nare. According to a Symantec re_port, malware sig-
atures have increased extremely over recent five years from 18K

Self-defense is the weapon most malware writers prepare againsf1 ; i ,
malware detectors. Malware writers have tried to evade the im- © 3M Of_ course, malware writers have improved Fhe_lr malwar_e
proved detection techniques of anti-virus(AV) products. Packing writing Sk'l.l' However, the main reason for the rapid Increase 1
and code obfuscation are two popular evasion techniques. Whenthat there is too much malware since the malware variants can be
these techniques are applied to malwares, they are able to Changgroduced easily using code obfuscation technl_ques. Mglware writ-
their instruction sequence while maintaining their intended func- 'S are able to create numerous malware variants, using code ob-
tion. We propose a detection mechanism defeating these self-defenéléscat_'on tools, from malware sample ?Ode' Obf_uscatlon refe_rs to
techniques to improve malware detection. Since an obfuscated mal-I€chniques that preserve the program’s semantics and functional-

ware is able to change the syntax of its code while preserving its ity, while simultaneously making it more difficult for the analyst to
semantics, the proposed mechanism uses the semantic invariantXtract and comprehend the program’s structure. The cost due to

We convert the API call sequence of the malware into a graph code obfuscation is inexpensive, since obfuscated malware is able
commonly known as a call graph, to extract the semantic of the to evade AV scanners, much malware is generated by code obfus-

malware. The call graph can be reduced to a code graph used forcation. According to the recent study, more than 80% of malware

semantic signatures of the proposed mechanism. We show that theS€S Packing to hide from malware detectors [16]. Although pack-
code graph can represent the characteristics of a program exactl))ng is a form of code obfuscation techniques, it is usually classified

and uniquely. Next, we evaluate the proposed mechanism by ex-SeParately due to its fame. In addition, recent research shows that
periment. The mechanism has an 91% detection ratio of real-world AV scanners have difficulty n detecting malware -applled bit ob-
malwares and detects 300 metamorphic malwares that can evadéuscatl.on,.the common technlque used by malware writers to evade
AV scanners. In this paper, we show how to analyze malwares by detection is program obfus_catlon [2(_)]. Moreoyer, there are numer-
extracting program semantics using static analysis. It is shown that OUS examples of obfuscation techniques designed to avoid detec-
the proposed mechanism provides a high possibility of detecting 1N [3:11,14,17,22].
malwares even when they attempt self-protection. Mal\_/vare de_tectlon using S|gne}tgres _has been used for malware
detection. It is known to be efficient in known malware detec-
tion. As compared with dynamic analysis using sandbox, signa-
K evwor ds ture based analysis has less scanning time because of small over-
ey head, has few false-positives and needs not to worry about system
Code graph, metamorphic malware, static analysis, code obfusca-nfection by malware. However, signature based analysis has a fa-

tion tal disadvantage. Unknown malware can easily evade detection.
Moreover, signature based analysis cannot deal with simple ob-
1. INTRODUCTION fuscation such as binary pattern modulation. Christodorescu and

Jha [6] pointed out that such detection methods can be easily de-
feated by the use of the principle of metamorphism. Metamorphism

malware include viruses, worms, Trojans and bots. Such malware uses code obfuscation techniques to transform the representation of

threatens computer security, because it exhausts system/network rebrograms. The number of malware signatures has increased explo-

sources or infringes on a person’s privacy. Although, there is much _srl;]/ely,fdue to.ﬂt‘.e raP'd |r:crea:)se oLtg\etan;ount of rr]nalllcmush COdE‘
effort to detect malware, malware writers achieve their intention by erelore, exisling signature based detection mechanisms have be-

thwarting the efforts of malware detectors. come inefficient in terms of time and space complexity. One way
to decrease the number of signatures is the use of normalization

techniques that have been actively studied recently [8,28]. How-

ever, this approach does not provide a complete solution to detect

Malware is software designed to infiltrate or damage a computer
system without the owner’s informed consent. Examples of such

Permission to make digital or hard copies of all or part of thikfor unknown malware. Theoretical studies on malware detection have
personal or classroom use is granted without fee providatidbpies are revealed that there is no algorithm that can detect all types of mal-
not made or distributed for profit or commercial advantage aatidbpies ware. [9, 10]

bear this notice and the full citation on the first page. Toymmiherwise, to There are two Problems for sighature based detection. First, sig-
Lzeumt?gz%:;ﬁg%;’ 2 fzeervers orto redistribute to listunes prior specific nature based systems cannot detect unknown malware. Second, as
SAC'10 March 22-26, 2010, Sierre, Switzerland. malware’s growth is exponential, the number of malware signatures
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increases alarmingly. To solve these problems, a malware detection contribution has great significance, since analysis time is an
mechanism is needed to detect unknown malware with few signa- important element in malware detection and the amount of
tures. To address this, we propose a malware detection mechanism malware has been increasing dramatically.

using the malware’s semantic rather than its syntax.

This is based on the assumption that a malware M contains the The remainder of paper is organized follows. In section 2, we
API call sequence S and its variant, M’ is generated from M, then discuss related work. System architecture is described in section
Sand S, derived from M’, have very high similarity. Thatis, when 3. The system is composed of code analyzer, code graph generator,
M is obfuscated to M’, the syntax of M’ looks different from the  and graph analyzer. We give a detailed explanation of each com-
syntax of M but the semantics of M’ cannot deviated from the se- ponent in this section. Section 4 evaluates our system. Finally, we
mantics of M. Programs (including malware) have to behave to per- conclude with future work in section 5.
form a certain function; code obfuscation cannot affect on program
behavior. Thus, we are to construct malware signatures with the 2, REL ATED WORKS
semantic characteristics of the malware. First, if the malware is

packed, an unpacking process is performed. Next, we I’epres’emfuscation has attracted recent attention since malware is able to

glhrz dingﬁ%i;eudsgzg’vgfriozse:;nﬂl %;aphhi.so-lr—:gr Cr?i”sn%rii,plbng\zi Fougéevade existing malware detector too easily using code obfusca-
R grap p -~ tion. Accordingly, researchers have focused on the issue of ob-
NP-complete. It is inefficient to use the call graph as the semantic

- fuscated malware using code obfuscation techniques to bypass sig-
signatures of malware. Therefore, we convert the call graph to an- nature based approaches. Since established signature based ap-
?ggegtfﬁém:n?gphr:aﬁ eg gg dtehe rfsart]ur_tla_hoef LZZeAP:;a#‘iSVYEg;ltIOproaches have obvious limits, work has been undertaken to improve

graph, grapn. grap signature based detection. There have also been a few attempts to
construct semantic signatures of known malware. We extract (:odeaploly data mining and machine learning techniques, such as Naive
graph; from malware. These code graphg are stored. The COdeBayes method [25], support vector machine (SVM) [5] and Deci-
graph is extracted from input program. This code graph is com-

are to previously stored code araphs to measure similarity. This sion Tree classifiers [15, 29], to detect new malicious executables.
pare to pr y ae grapns . Y. Malware detection falls into two categories, static analysis and
similarity is used to determine if the input program is benign or

malicious dynamic analysis. Static analysis analyzes malware without their
s oo . . xecution. Existing malware detectors commonly use static analy-
This paper is an extension of the previous work [13], where the © ° 9 erectors commonty S Y

concent of code aranh was pronosed for finding malwares CodeSiS' Binary pattern matching and data flow and code flow analysis
p grap prop . 9 : represent examples of static analysis. In contrast to static analy-
graphs are an effective graph structure which represents a complex_: d . hni | : imulated .
binary code into a single graph. In this paper, we apply code graphsS'S’ ynamic tec niques gxgcute malware In a simu ate environ-
; ; ) ' ment and analyze its malicious behavior. VM(Virtual machine)s
to find metamorphic malwares.

The proposed mechanism has been implemented and evaluateélre commonly used for dynamic analysis as a sand box.
prop . P Static analysis has some advantages. Static analysis enables fast
on malware variants. We collected 3270 malware programs ob-

tained fromof  ensi veConput i ng. net and VX heaven. We and safe analysis of malware. In addition, Static analysis can cover

. TN the entire malware code and achieves a low level of false posi-
L%ﬂgitlsogfﬁgafé%?/g?ig:ﬁsasme: dtdhi?ilc:nSIn\/?/iagl:;ziégv;cejte;?n%?dh?cltives' Commercial AV products use static analysis for these rea-
malwares. From 10 malwafe instancesl we generated 30 vergionssons' However, static analysis is flawed. Static analysis has diffi-

) . ! g culty analyzing unknown malware. Malware can evade detection
of malware per malware using code obfuscation. We develop some

X : easily using obfuscation techniques.
obfuscation programs to generate metamorphic malware. The pro- - :
. . . . Several dynamic analysis approaches have been proposed to over-
grams generate metamorphic malware using code insertion, code

: m flaw of ic analysis. T nknown malwar -
reordering, and code replacement. We generated total 300 obfus—CO e a flaw of static analysis. To detect unkno alware, dy

cated malware programs using these code obfuscation tools. Thenamic analysis executes malware samples in. a simulated environ-
obfuscated malware generated by us can evade existing AV scan-ment‘ m_omtqrs all system calls, and automatically generat_e; are-
ners but our mechanism detected all of them. port to simplify and automate the malware analyst’s .task.. Williams
The three main contributions of our paper are the following etal. presented automateq dynamic malware _analy3|s using CWSand-
' box [30]. TTAnalyze [27] is a tool for dynamically analyzing the
behavior of Windows executables. The binary is run in an emu-
lated operating system environment and its actions are monitored.

They recoded the Windows native system calls and Windows API

functions that the program invokes. However, Dynamic analysis

involves system infection. Moreover, malware writers have devel-
oped anti-VM (virtual machine) techniques. Malware with anti-

VM can recognize that they are in a simulated environment. In

addition, there is one observable difference between an emulated

e We demonstrate a method to make up for the weakness in @nd & real system, namely speed of execution. Dynamic analysis
malware detection with static analysis. This gives us the needs too much time. Detecting unknown malware before execu-
strength of static analysis, while complementing the draw- tion, where possible, offers the best solution. _
backs of static analysis, which is poor for unknown malware. ~ Much effort has been made to overcome the limitations of static

analysis. Some research presents several code normalization tech-
niques. Code normalization techniques normalize obfuscated mal-

e We reduce the number of malware signatures. With this con- ware to their original form. Christodoresetial. present malware
tribution, we need not worry about signatures for exponen- normalization [8], a system that takes an obfuscated executable, un-
tially increasing malware. In addition, this technology re- does the obfuscations, and outputs a normalized executable. There-
quires smaller space and greatly reduces scanning time. Thisfore, a malware normalizer can be used to improve the detection

While malware detection has been studied for decades, code ob-

e In order to detect metamorphic malwares, we propose an
approach to define semantic signatures rather than syntactic
signatures. We tried to solve an existing malware detection
issue, by describing a program with its semantic signature.
This contribution makes it possible to detect malware even
though the malware uses self-defense.
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Figure 1: Thearchitecture of the code graph system

rate of an existing malware detector. Walenstein et al. [28] present3. CODE GRAPH SYSTEM
a method for normalizing multiple variants of metamorphic pro- | this section, we describe how to construct the code graph of an
grams that perform their transformations using finite sets of instructifiecutable program, and explain how to determine malware vari-

sequence substitutions. Normalization is one solution to detect ob- gnts using code graphs. Existing malware detection mechanisms
fuscated malware before execution. However, normalization de- commonly detect malware using their syntactic signature. Mal-

pends on obfuscating techniques. They cannot cover all forms of \yare writers have tried to evade malware detectors, and evasion

code obfuscation. ) , . . techniques, such as code obfuscation, make it possible for malware
There has been a lot of work using semantic detection techniquesto pypass commercial malware detectors. Therefore, our mech-
to strengthen static analysis. Christodorestcal. [7] exploited se- ~ anjsm focuses on semantic characteristics of malware rather than

mantic heuristics to detect obfuscated malware. Although, their syntactic characteristic. To this end, we describe a program as one
approach works well for obfuscated malicious programs, the time graph called code graph. The code graph is a directed graph that
taken by their approach makes it impractical for use in commer- represents the characteristics of a portable executable binary. The
cial antivirus scanners. Predaal. [21] use a trace semantics 10 code graph system is a preview system that enables the program
characterize the behaviors of the malware and the program beingcharacteristics to be viewed before its execution by generating and
analyzed. Sathyanarayahal. [24] focus on critical API calls to  analyzing the code graph. Then, the system determines a program
generate signatures of malware and detect them. Although theynhether malicious or not.
observe the semantics of malware by critical API calls, their ap-  Figure 1 shows the architecture of the code graph system. Figure
proach has a weakness to new type of code obfuscation techniqueg (a) is the process of updating code graph signatures of malware.
such as red herring system calls because they use only a frequencyigure 1(b) is the process of examining the input program. The
of critical API calls. input program is compared to code graph signatures stored by the
To summarize, static analysis has difficulty finding unknown mal- \pdate process. Our system consists of three parts, the code ana-
ware; while, dynamic analysis can detect unknown malware, but |yzer, code graph generator, and graph analyzer. The code analyz
is inefficient. The best method to detect malware efficiently is to transforms a portable executable binary into a directed graph, the
detect malware with static analysis, while covering the existing de- ¢aj| graph. The call graph is reduced to a simple form, termed code
fects of static analysis. To this end, we try to abstract semantic graph by code graph generator. The code graph is saved and used
characteristics of malware rather than syntactic features, since theys measure similarity using the graph analyzer. Thereby, the graph
program syntax can be changed easily, but the semantics cannot bunalyzer determines if the input program is a variant of a previously

help be retained. stored malware.
We now present a new method to detect obfuscated variants of

malware using semantic signatures. The method is introduced and3 1 Code Analyzer

evaluated experimentally.
P y The code analyzer transforms a binary into a call graph using



the transformation algorithm. The call graph is a directed graph
that represents the characteristics of a portable executable binary

We use the system-call call sequence as the program characteris !:

tics. We extract only those instructions related to the system call
sequence in the binary executable program and represent the resul
in the form of a call graph. The call graph is a directed gré&ph
(V,E), whereV is a set of nodes anfl is a set of edges. A node is

2t

33

4

a system call selectively chosen among the system calls in a given
program. An edge is determined by the call sequence of the system

callsinV, eg. E={(vi,v;)|vi,v; € V}, wherev; denotes thealler
system-call, and; denotes theall-in system-call.

First the code analyzer builds the node ®eto transform a bi-
nary into a call graph. The code analyzer obtains the system-call set
through the IAT (Import Address Table) contained in a binary that
denotes the node skt Next, it builds up a node set by connecting
one node to one system-call.

The code analyzer generates the edgevf) of the call graph
G using the system-call sequence, wheyds the caller system-
call andv; is the call-in system-call. Algorithm 1 shows the entire
transformation algorithm. Figure 2 shows how to transform each
instruction into an edge.

Algorithm 1 Transform algorithm

Input : portable Executable Binary B
Output : Call graph G = (V,E)

Code instructions

Graph meterials |

=
[ CALL _Systencanl ]
| [cALL_SysemCaz |
o |

| ¢ Lable 1

CALL  SystemCalll

Instruction

CALL  SystemCall2

CALL  SystemCall3

CALL  SystemCall4

12 RETN

Instruction case 1 :'JMP'

| e Labies |

1

| Edge SystemCalll -> SystemCall3 |

Instruction case 2 : 'CIMP’

| e Labie |

Iu

Edge SystemCalll -> SystemCall3
Edge SystemCalll -> SystemCall2

Instruction case 3 : 'PCALL'

PCALL Procedure 2

Il

Edge SystemCalll -> SystemCall3
Edge SystemCall4 -> SystemCall2

Figure 2: An example of transform

we transform the call graph to the code graph for fast simple anal-
ysis. The code graph generator creates code graphs. Code graphs

are used for signatures of our code graph system.

The signature must satisfy the following two conditions to be
signature for detection.

1. V « BuildNode(); E «— ¢;
2: v; < 0;
3: r — EntryPoin{B);
4: whiler is not te end oB do
5.  /[The instruction at addressn B
6: . I[r];
7:  //The parameter of the instruction
8. P.— P[r];
9: if I. is System Calthen
10: if v; is equal to Ghen
11: v — Pe;
12: dse
13: vy — Pe;
14: E — E U Edge;,v;);
15: Vi < Vj,
16: end if
17:  dseif I. is IMPthen
18: v; «— GetFirstSCALL(r);
19: E — E U Edge@;,v;);
20: v; — 0;
21: eseif I. is CJMPthen
22: v; «— GetFirstSCALL(r);
23: E—~EU Edge@i,vj),‘
24: eseif I. is Procedure Cathen
25: v; «— GetFirstSCALL(r);
26: E—EU Edge@i,vj),‘
27: v; <« GetEndSCALL(r);
28: endif
29:  r« CurrentProgramCounteB);
30: end while

3.2 Code Graph Generator

Call graphs are generated by the code analyzer. However, it istract code graphs from known malware and store it to detect un-
difficult to compare call graphs directly. Call graphs generated in known malware. The code graphs from known malware are used to
the code analyzer have usually hundreds or thousands of nodes andompare code graphs of suspicious programs. We use an adjacent
graph isomorphism is a well known NP-complete problem. Thus, matrix to store code graphs. An adjacent matrix is most proper data

e Condition 1: Signature should express characteristic of pro-
gram exactly and simply as possible.

e Condition 2 : To distinguish signatures of two programs,
signature is distributed uniformly in possible data structure
space.

As mentioned in the previous section, the call graph is a directed
graph that has nodes and directed edges. API calls can be nodes,
and directed edges represent the program calling relationship. We
have classified API calls to 128 groups(32 objectd behaviors),
to reduce this call graph. To obey the previous conditions, nodes of
the call graph are grouped by objects of a system call. The objects
are process, memory, socket, and so forth. There are 32 objects, w
reference to MSDN. At the first step, the system call is classified by
a related object. At the next step, each system call is classified by
the behavior of the related object. We define four basic behaviors
of system calls which are open, read, write, and close. In this way,
API calls are classified to one group of 128 groups. For example,
CloseSocket() becomes a member of the socket-close group and
RegSaveKey() becomes a member of the registry-write group.

After grouping, the nodes within the same group in the call graph
are unified. During node unification, edges represented call rela-
tionships are maintained.

When the nodes are unified, we have a problem. We cannot cover
all API calls. Therefore, some nodes do not belong in our grouping.
In this case, we ignore the node, and keep the link information of
the node.

This method transforms the call graph to a code graph. We ex-
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Figure 3: An Example of Similarity Measurement., which is used to determine metamorphic malware. First, we compute the
inter section and the union graph of two measured graphs. Next, we divide the number of the union graph’s edges by the number of
the intersection graph’s edges. In this example, an union graph has seven edges and an intersection graph has one edge. Thus, the
similarity of G; and G2 is0.1429.

structure to store code graph, because the code graph is a directeth our similarity measurement. That is, whether the program size
graph whose number of edges is fixed to 128. Thus, a code graphdn the comparison is huge or tiny, we conduct constant operations.
is represented by a 12828 adjacent matrix and saved. Amalware We compute only AND & OR operations of the 12828 matrix

code graph occupies 16KB. and a division operation. We use the number of edges of the inter-
h | section and union graphs instead of vertices. Since edges are able
3.3 Graph Analyzer to represent characteristics of a graph than vertices, in the example

Graph analyzer measures the similarity of two code graphs and depicted in figure 3, when we use a number of vertices, we get a
determines if the input program is malicious. In previous, we stored relatively high similarity, 0.8 although the two graphs look differ-
code graphs of known malware formed in a 128 by 128 adjacent ent. There are many cases where the vertex sets are the same but
matrix. When the input program is examined, the code graph is the edge sets are different in the two graphs, but there is no inverse
extracted by the code analyzer and the code graph generator. Thease. Therefore, we focus ob graph edges to measure similarity.
code graph is compared to code graphs of known malwares. The Since the intersection graph is always a sub-graph of the union
similarity can be measured in a simple way, which can be described graph, the number of edges is always less than that of union graph
as follows. and the similarity must range from 0 to 1. When code graphs are

GraphG: and G2 are to be compared. We compute an inter- identical, the similarity will be 1. If there is no common edge of the
section graph and an union graph®@f andG.. We can find the two graphs, the similarity is 0. As a code graph of input program
intersection graph off; and G, easily as AND operation of the P is compared to the code gragh, ¢(P,G;) is 1, we determine
adjacent matrix of¥; and adjacent matrix af’». In the same way, P is a variant of malware i. Wheta(P,G;) is greater than 0.9, we
we can find the union graph @¥; and G easily as the OR op-  decideP has a suspiciously high probability of being a variant of
eration of the adjacent matrix @¥; and adjacent matrix of7z. Gi. The value, 0.9 is obtained from the experimental result.

Next, we evaluate the similarity of two graphs to divide edges of
the union graph by edges of the intersection graph. Then, we de-4.  EVVALUATION

fine the similarity¢ of graph(:, and¢z as follows. We performed a series of experiments with the code graph sys-

tem to evaluate its efficiency. In the first experiment, we show how
uniquely our semantic signatures represent the program character-
¢(G G ) _ |E(GiNG»)| istics. The second experiment shows the similarity of real-world
1,2 |E(G1UG3)| malware variants collected from wild environment. In the last ex-
periment, we create 300 metamorphic malwares using three code
obfuscation techniques. We evaluate the efficiency of our mech-
Figure 3 shows a simple example of our graph similarity mea- anism compared to existing AV scanners. All experiments were
surement.G; has 4 vertices and 4 edgeS; has 5 verticesand 4  performed on a machine running Windows XP, with a Pentium 4
edges. We compute the intersection graph and union graph of twoCPU of 3GHz, and 2GB of RAM.
raphs to measure the similarity@f andG.. The union graph of . . .
?}1 Fa)deg has 7 edges and theyintersection of two grap?hsphas only4.1 Construction of Semantic Signatures
an edge from nod€ to nodeD(Figure3). Thus, the similarity of This section provides the process to form semantic signatures.
two graphs is 1/7, 0.1429. As mentioned in a previous section, we perform the following pro-
There are many methods to measure the similarity of labeled cess to create a signature. First, we extract the sequence of API
graphs. Rascal [23] used maximum common edge sub-graphs tocalls from the executable binary. With the sequence of API calls,
measure the similarity of graphs. Zelinka-distance [31] is based on we construct a call graph by relations of function calls. The call
the principle that two graphs are more similar, the bigger the com- graph is reduced to a code graph based on the object and the be-
mon induced sub-graph. The similarity measurement using cosinehavior of the API call. The code graph generated by this process is
distance of vector is another possible method. However, in mal- stored by form of 12& 128 adjacent matrix of the graph.
ware detection, a fast operation is important. In addition, since the Figure 4 shows the process to construct code graphs from the
number of labeled nodes is finite in our graph, we define a simple windows PE file. Figure 4(a) is an example of a malicious pro-
operation to measure graph similarity. The time complexi®9(is) gram, evilbot. Figure 4(b) is an example of a benign program,
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Figure 4: Construction of code graphs
mspaint. The evilbot is a kind of malware, its size is 15KB. We Size Timeto Timeto Similarity
extract a sequence of API calls with a debugger from evilbot code. call graph | codegraph
The sequence is represented as a call graph. Figure 4 shows the call  agobot 45KB 1.571s 0.110s 1.0
graph is too complex to be compared. We reduce the call graph to G-spot 439KB | 16.784s 0.235s 1.0
a code graph for comparison. The call graph takes 1.273 seconds  evilbot 15KB 1.273s 0.062s 1.0
to make and 62 milliseconds to construct the code graph. Mspaint backdoor.Bot| 87KB 2.393s 0.094s 0.8182
is a benign program provided by microsoft and its size is 66 KB. p2p-worm 48KB 1.714s 0.081s 1.0
As can be seen in figure 4, the call graph of mspaint is much more Trojan.mybot| 69KB 2.193s 0.068s 1.0
comlicated than that of evilbot. The number of nodes of the evilbot
and mspaint call graphs are 54 and 188 respectively. Generally, the Table 1. Detection of malware variants

greater the size, the more complex the code graph. It takes 2.547

seconds to make the call graph and 172 milliseconds to generate

the code graph for mspaint. In evilbot, the code graph has 11 nodesd"@ms. Next, we measured the similarities of all cases where we
icked two graphs. There apgoCz, 44850, combinations. The

and 15 edges. The code graph of mspaint has 29 nodes and 7% ( = R
figure 5 (a) shows the results in rank order of 44850 similarities.

edges. Two graphs have only one common edge. Therefore, in this . S - YT
example, the similarity of two graphs is the 0.01124. Th_en, with the 100 malicious programs, S|m|Iar|t!es_ were evaluated
using the same method. Last, we measured similarity of 300 be-
: C o nign programs and 100 malicious programs. If two graphs have
4.2 ] Unlqu.en%s of Semantic Sgnatur.es ) a similarity of 1, this is false-positive from our mechanism. Only
_Infirst experiment, we measure how our semantic signatures arep,003% percentage had a similarity greater than 0.9, representing
distributed uniquely in the possible data structure. We obtained a 3 Benign-Malicious case. Only one case in the 30000 cases had a

low similarity of the benign program and the malicious program in - similarity greater than 0.9 between malware and a benign program.
the previous section. However, we could not tell if our semantic

signatures are distributed indiscriminately in the possible space. To4.3  Detection of Real-world M alwareVariants

this end, we collect code graphs from various programs and mea- Malware writers have created many variants of common exploits,

sure their similarities. This experiment is hlgh'y related to false- in attempt to evade AV scanners. Such examp|es can be found at

positives of our system. The 128 by 128 binary matrix can repre- popular hackniig web sites. Such examples make use of a wide

sent2? " graphs. However, if the graphs are not distributed uni- range of obfuscation techniques. We can get many malware vari-

formly in this data structure space, different programs may have ants at such sites.

the same code graph. In this case, false-positives is increased. 100 malware pairs are used for experiment. We collected mal-
300 benign programs and 100 malicious programs were ana-ware variants from VX Heavens [2], VX Chaos [1] and offensive-

lyzed. First, we extracted code graphs from the 300 benign pro- Computing.net. The malware programs tested had sizes ranging
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Figure 6: Detection of obfuscated malwares

from 15KB to 1MB bytes. Table 1 shows the result for some wares, using three commercial scanners and our mechanism. Most
cases. Of the 100 cases, 91% of malware varinats had a similar-AV scanner using syntactic signatures cannot detect metamorphic
ity of 1. 3% of variants had a similarity of greater than 0.9 but not malware made by code obfuscation. It is shown that Self-defense
1 and our system determines these cases to be suspicious. Lasts a serious menace to malware detector. We achieved 100% detec-
it shows 6% false-negative ratio. One example of false-negative tion of the metamorphic malware instances using semantic charac-
was backdoor.bof(= 0.8182) in Table 1. The 0.8182 is the lowest teristics of malware. The code graph system has another advantage
similarity of 100 pairs. that the number of malware signatures is reduced significantly. In
Average time of 200 malware variants(1802) from binary to syntactic signature based system, a linear relationship is existed
code graphis 2.183s. In case of most malware variants, it takes usu between malware and a signature. That is, whenever malware is
ally from one second to three seconds to construct the code graphgenerated, one signature is needed for malware. Since many vari-
The bigger the size of malware is, the longer exponetially it takes. ants of malware are generated from malware, signatures are made
We construct a code graph only one time per a malware because weas many as the number of variants. By contrast, the code graph
stored signatures of malware in malware signature pool. Therefore,system needs only one sighature. The code graph system can de-
few seconds is negligible levels. Similarity measurement calculates tect all of malware variants with a signature of original malware. It
constant operations, AND and OR operation of two 128 by 128 ma- is pertinent to note that 50% new malware are obfuscated versions

trix and one division. The consumed time is also very low cost. of existing known malware [26]. This situation will be accelerated.
Therefore, keeping down malware signature is an important issue.
4.4 Detection of Obfuscated M alwares In addition, small number of signatures provides malware detectors

to save signature matching time.

There are many other code obfuscation techniques in addition
to three techniques. The register reassignment transformation re-
places usage of one register with another in a specific live range.

icnatlo;ns dfgcr);:l?g rlgig\rﬁl;,t 'f?gmdllgg (zgdl%g;/serct:lggé ?::;tirgr?fgé;Code integration used to merge two separate code sections without
9 P 0 o the need to obscure or recompile the existing code sections. En-

gzggenszgxd; gt;’régfaﬁogéﬁ]rg'ugggs dzgg;‘;?g?gnrgﬁ ?::i::?iirfse try p0|.nt obscuring tr|e§ to hide its entry point in order to avoid
Code replacement replace a given instruction block with anothér o_letectlon._Our mechanism can defend these type of code obfusca-
instruction block while keeping the same code semantics. Malware tion techniques because we use AP c_aII sequence. However, our
is divided into basic blocks. The basic block describes a.sequenceapproaCh may suffer the code obfusca_lthn techniques such as nser-

- . ; " X ) h tion of meaningless system calls. This is related to false-negative
of instructions without any jumps or jump targets in the middle.

Then, we apply each code obfuscation techniques according to ob-Of proposed mechanlsm. In future work, we expand to defend these
fuscation level types of obfuscation.

Figure 6 shows the results of our investigation of obfuscated mal-

We sample 10 malicious programs in this experiment. The ma-
licious programs are composed of two backdoors, two worm, two
trojans, two virus and two bot codes. We applied three code obfus-
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