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ABSTRACT

Block-oriented sparse Cholesky factorization decomposes a
sparse matrix into rectangular sub-blocks; each block can
then be handled as a computational unit in order to in-
crease data reuse in a hierarchical memory system. Also,
the factorization method increases the degree of concurrency
with the reduction of communication volumes so that it per-
forms more efficiently on a distributed-memory multiproces-
sor system than the customary column-oriented factoriza-
tion method. But until now, mapping of blocks to processors
has been designed for load balance with restricted commu-
nication patterns. In this paper, we represent tasks using
a block dependency DAG that shows the execution behav-
ior of block sparse Cholesky factorization in a distributed-
memory system. Since the characteristics of tasks for the
block Cholesky factorization are different from those of the
conventional parallel task model, we propose a new task
scheduling algorithm using a block dependency DAG. The
proposed algorithm consists of two stages: early-start clus-
tering, and affined cluster mapping. The early-start cluster-
ing stage is used to cluster tasks with preserving the earliest
start time of a task without limiting parallelism. After task
clustering, the affined cluster mapping stage allocates clus-
ters to processors considering both communication cost and
load balance. Experimental results on the Fujitsu parallel
system show that the proposed task scheduling approach
outperforms other processor mapping methods.

1. INTRODUCTION

Sparse Cholesky factorization is a computation intensive
operation commonly encountered in scientific and engineer-
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ing applications including structural analysis, linear pro-
gramming, and circuit simulation. Much work has been
done on parallelizing sparse Cholesky factorization, which
is used for solving large sparse systems of linear equations.
The performance of parallel Cholesky factorization is greatly
influenced by the method used to map a sparse matrix onto
the processors of a parallel system. Based on the mapping
method, parallel sparse Cholesky factorizations are classified
into the column-oriented Cholesky, the supernodal Cholesky,
the amalgamated supernodal Cholesky, and the 2-D block
Cholesky. The earliest work is based on the column-oriented
Cholesky in which a single column is mapped to a sin-
gle processor [6; 13]. In the supernodal Cholesky, a su-
pernode, which is a group of consecutive columns with the
same row structure, is mapped to a single processor [3; 16].
The amalgamated supernodal Cholesky uses the supernode
amalgamation technique in which several small supernodes
are merged into a greater supernode, and an amalgamated
supernode is then mapped to a single processor [2; 19]. In
the 2-D block Cholesky, a matrix is decomposed into rectan-
gular blocks, and a block is mapped to a single processor [8;
20].

The recent advanced methods for sparse Cholesky fac-
torization are based on the use of the 2-D block Cholesky
to process non-zero blocks using Level 3 Basic Linear Al-
gebra Subprograms (BLAS) [5; 6]. Such a 2-D decompo-
sition is more scalable than a 1-D decomposition and has
an increased degree of concurrency [23; 24]. Also, the 2-D
decomposition allows us to use efficient computation ker-
nels such as Level 3 BLAS so that caching performance is
improved [19]. Even in a single processor system, block fac-
torizations are performed efficiently [15].

There are few works reported for the 2-D block Cholesky
in a distributed-memory system. Rothberg and Gupta in-
troduced the block fan-out algorithm [20]. Similarly, Du-
mitrescu et al. introduced the block fan-in algorithm [8].
Gupta, Karypis, and Kumar [12] also used 2-D mapping for
implementing a multifrontal method. In [18], Rothberg has
shown that a block fan-out algorithm using the 2-D decom-
position outperforms a panel multifrontal method using 1-D
decomposition. Even though the block fan-out algorithm
increases the concurrency with reduced communication vol-
umes, the performance achieved is not satisfactory due to
load imbalance among the processors. Therefore, several
load balance heuristics have been proposed in [21].

However, the load balance is not the sole key parame-



ter for improving the performance of parallel block sparse
Cholesky factorization. The load balancing mapping only
guarantees that the computation is well distributed among
processors; it does not guarantee that the computation is
well scheduled when considering the communication require-
ments. Thus, communication dependencies among blocks
may cause some processors to wait even with balanced loads.

In this paper, we introduce a task scheduling method us-
ing a DAG-based task graph, which represents the behavior
of block sparse Cholesky factorization with the exact amount
of computation and communication cost. As we will show in
Section 3, a task graph for sparse Cholesky factorization is
different from a conventional parallel task graph. Hence we
propose a new heuristic algorithm which attempts to mini-
mize the completion time while preserving the earliest start
time of each task in a graph. It has been reported that a
limitation on memory space can affect the performance [26].
But we do not consider the memory space limitations, since
we assume that the factorization is done on a distributed-
memory system with sufficient memory to handle the work
assigned to each processor. Even though there has been an
effort to use DAG-based scheduling for irregular computa-
tions on a parallel system with a low-overhead communica-
tion mechanism [9], this paper presents the first work that
deals with the entire framework of applying a scheduling ap-
proach for block-oriented sparse Cholesky factorization in a
distributed system.

The next section describes the block fan-out method for
parallel sparse Cholesky factorization. In Section 3, the
sparse Cholesky factorization is modeled as a DAG-based
task graph, and the characteristics of a task for this problem
are summarized. Since the characteristics of this type of task
are different from the conventional precedence-constrained
parallel task, a new task scheduling algorithm is proposed
in Section 4. The performance of the proposed scheduling
algorithm is compared with the previous processor mapping
methods using experiments on the Fujitsu AP1000+ paral-
lel system in Section 5. Finally, in Section 6, we summarize
and conclude the paper.

2. BLOCK-ORIENTED SPARSE CHOLESKY

FACTORIZATION

This section describes the block fan-out method for sparse
Cholesky factorization, which is an efficient method for dis-
tributed memory systems. The block Cholesky factorization
method decomposes a sparse matrix into rectangular blocks,
and then factorizes it with dense matrix operations.

2.1 Block Decomposition

The most important feature in sparse matrix factoriza-
tions is the use of supernodes [2; 3]. A supernode is a set
of adjacent columns in the sparse matrix, which consists of
a dense triangular block on the diagonal, and identical non-
zero structures in each column below the diagonal. Since
supernodes represent the sparsity structure of a sparse ma-
trix, block decomposition with supernodes makes non-zero
blocks as dense as possible, and easy to handle due to shared
common boundaries [20].

The performance of the factorization is improved by su-
pernode amalgamation, in which small supernodes are amal-
gamated into bigger ones in order to reduce the overhead for
managing small supernodes and to improve caching perfor-
mance [1; 2; 20]. Supernode amalgamation is a process of

fork=1to N do
Ly, = Factor(Lg)
fori =k +1to N with L;; # 0 do
Lir = Lix Ly,
fOrj:k+1t0NWith ij-#o
for i = j to N with L;; # 0 do
Lij = Lij — L Lj),

Nooks~wbH

Figure 1: Sequential block Cholesky factorization.

identifying locations of zero elements that would produce
larger supernodes if they were treated as non-zeros. In the
following, amalgamated supernodes will be assumed by de-
fault, and will be referred to simply as supernodes.

In a given n X n sparse matrix with NV supernodes, the su-
pernodes divide the columns of the matrix (1,..,n) into con-
tiguous subsets ({1, ..,p2 — 1}, {p2,..,p3—1}, .., {pn,..,n}).
The size of the i-th supernode is n;, i.e., n; = pit1 — ps
and Zivzl n; = n. A partitioning of rows and columns
using supernodes produces blocks such that a block L; ;
is the sub-matrix decomposed by supernode ¢ and supern-
ode j. Then, the row numbers of elements in L;; are in
{pi,..,pi+1 — 1}, and the column numbers of elements in
L;; are in {p;,..,pj+1 — 1}.

After the block decomposition of the sparse factor matrix,
the total number of blocks is N(N + 1)/2. The number of
diagonal blocks is NN, and all diagonal blocks are non-zero
blocks. Each of the N(IN — 1)/2 rectangular blocks is either
a zero block or a non-zero block. A zero block refers to
a block whose elements are all zeros, and a non-zero block
refers to a block that has at least one non-zero element.

After block decomposition using supernodes, the resulting
structure is quite regular [20]. Each block has a very simple
non-zero structure in which all rows in a non-zero block are
dense and blocks share common boundaries. Therefore, the
factorization can be represented in a simple form.

2.2 Block Cholesky Factorization

The sequential algorithm for block Cholesky factorization,
as described in [20], is shown in Figure 1. The algorithm
works with the blocks decomposed by supernodes to re-
tain as much efficiency as possible in block computation.
The block computations can be done using efficient matrix-
matrix operation packages such as Level 3 BLAS [4]. Such
block computations require no indirect addressing, which
leads to enhanced caching performance and close to peak
performance on modern computer architectures [5].

2.3 Block Operations

Let us denote the dense Cholesky factorization of a diago-
nal block Ly (Step 2 in Figure 1) as bfact(k). Similarly, let
us denote the operation of Step 4 as bdiv(i, k), and the oper-
ation of Step 7 as bmod(%, j, k). These three block operations
are the primitive operations used in block factorization.

Even though a non-zero block has a sparse structure, we
handle it as a dense structure. Since the blocks decomposed
by supernodes are well-organized, such a sparse operation
for blocks are rarely required [18]. Therefore, we assume
that all block operations are handled with dense matrix op-
erations.



For bfact(k), an efficient dense Cholesky factorization can
be used, and bdiv(i, k) and bmod(i, j, k) are supported by the
level 3 BLAS routines such as . TRSM () and .GEMM().
Therefore, we can measure the total number of operations
required for each block operation as follows [5].

Whtact(k) ng(ng + 1)(2n, +1)/6
Widiv(ik)y = ninj,
Whmod(i,j, k) = 2mingng
2.4 Required Number of Block Update Oper-
ations

The most computation intensive parts of block factoriza-
tion are the block update operations. The block update op-
erations, bmod(i, j, k), are performed using a doubly nested
loop, and thus take most of the time required for block fac-
torization.

The number of required block updates for block L; ; can
be measured. We use the notation «; ; to denote whether
L; ; is a non-zero block or not.

0 ifLy=0
X5 =1 1 otherwise

Let nmod(L;,;) denote the number of required bmod() up-
dates for L; ;. When L; ; is a rectangular block,

j—1
nmod(L; ;) = JZai,k X Qg
k=1
For a diagonal block Lj ;,
j-1
nmod(L]-,]-) = Zaj,k.
k=1

Thus, the maximum number of updates for L;; is j — 1.

3. TASK MODEL WITH COMMUNICATION

COSTS

Since a non-zero block L; ; is assigned to a processor [20],
all block operations for a block can be treated as one task.
This means that a task is executed in one processor, and a
task consists of several subtasks for block operations. This
section describes the characteristics of tasks, and proposes
a task graph that represents the execution sequence of the
block factorization. The task graph, referred to as a block
dependency DAG, contains the costs of computations and
communications, and the precedence relationships among
tasks.

3.1 Task Characteristics

A task consists of multiple subtasks depending on the re-
quired block updates, and is represented using a tree of at
most 2 levels of subtasks. If a diagonal block L; ; requires m
block updates, i.e., nmod(L; ;) = m, its corresponding task
has m + 1 subtasks including a bfact(j) operation. Then,
the task has m parent tasks as shown in Figure 2. Let
us denote the m blocks of parent tasks as Lj kg, .., Ljk,, 1,
1<k; <j—1for0<i<m—1. If there is no block update
required for L; ;, i.e., nmod(Lj ;) = 0, then the task has no
parent task and only one subtask for bfact(j).

If a rectangular block L; ; requires m block updates, i.e.,
nmod(L; ;) = m, then the corresponding task consists of
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Figure 2: Task for a diagonal block L; ;.
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Figure 3: Task for a rectangular block L; ;.

m + 1 subtasks including the subtask for the bdiv(i, j) oper-
ation. The task has 2m+1 parents as shown in Figure 3. Let
us refer to the 2m+1 parent blocks as Li ko, Lj ko -+ Li k1)
Ljk. ., Ljj. A subtask for a block update bmod(i, j, k)
executes after the two parent tasks for L;; and L; have
completed and sent their blocks to L; ;. Also, for a diagonal
block Lj ;, only one parent for L; needs to be completed
before executing the bmod(7, j, k) operation.

3.2 Task Graph

We now present a task graph for block Cholesky factor-
ization. The task graph, referred to as the block dependency
DAG, contains the precedence relations of blocks and the
computation and the communication costs required for each
block.

Let us assume that there are v non-zero blocks in the
decomposed factor matrix. Each block is represented as a
single task, so that there are v tasks T1,..,T, and

N N
E E Qi = .

j=1i=j

We give a number to each block starting from the blocks in
column 1 and ending at column N. For blocks in the same
column, the block in the smallest row number is counted
first. Such a numbering method implies that the task with
the smallest number should be executed first among the
precedence-constrained tasks in a processor.

Block Cholesky factorization is represented as a DAG,
G =(V,E,W,C). Visaset of tasks {T1, .., T, } and |V| = v.
E is a set of communication edges among tasks, and |E| = e.
Wz, where W, € W, represents the computation cost of 1.
If T, is a task corresponding to a diagonal block L; ;, then

Jj—1

Wo = Whpaety + Zaj,kamod(j,j,k)-

k=1
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Figure 4: Sparse matrix decomposed using 5 supernodes.

Also, if T, corresponds to a rectangular block L; j,

Jj—1

W, = Wbdiv(i,j) + g Q) X aj,kamod(i,j,k)'
k=1

C'is a set of communication costs, and ¢,y denotes the com-
munication cost incurred along the edge e,y = (1%, Ty) € E.
If T, is the task for L;; and T, is the task for L;j, then
T, needs to send the block L; to T,. Therefore, we can
estimate the communication cost ¢, , in a message-passing
distributed system as follows:

Cey = ts +tcning.

In the above equation, ¢, is the startup cost for sending a
message and t. is the transfer cost for sending one floating
point number. For most current message-passing systems,
per-hop delay caused by the distance between two processors
is negligible due to the use of “wormhole” routing techniques
and the small diameter of the communication network [5].

We let parent(z) denote the set of immediate predecessors
of Ty, and child(x) denote the set of immediate successors
of T,.

parent(z) = {yley,. € E}

child(z) = {ylez,y € E}

Generally, the task graph G has multiple entry nodes and
a single exit node. When a task consists of multiple sub-
tasks, some of them can be executed as soon as the data
is ready from the parents of the task. Thus, the time from
start to finish for a task T3 is not a fixed value, e.g., W,
but rather depends on the time when the required blocks for
subtasks are ready from their parents. Therefore, scheduling
a task as a run-to-completion task would result in an inef-
ficient schedule. Most previous DAG-based task scheduling
algorithms assume that a task is started after all parent
tasks have been finished.

There are two approaches to resolve this situation. One
is designing a task model including subtasks. The other is
using a block dependency DAG. The former is a complicated
approach because the task model may have many subtasks
and some of them may already be clustered. This task model
is also difficult to handle by a scheduling algorithm. The lat-
ter uses a simple, precise task graph as a block dependency
DAG. But we can also extract relevant information on all
subtasks from the relations in a block dependency graph.
Therefore, we devise a task scheduling algorithm using a
block dependency DAG.
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Figure 5: Block dependency DAG for the example sparse
matrix.

4. TASK SCHEDULING USING A BLOCK
DEPENDENCY DAG

Finding the optimal solution for a weighted DAG is known
to be an NP-hard problem in the strong sense [22; 25]. When
a task of a block dependency graph consists of only one or
two subtasks, the scheduling problem using the block depen-
dency DAG is reduced to the NP-hard scheduling problem.
Thus, finding an optimal scheduling of a block dependency
DAG is an NP-hard problem, so that a heuristic algorithm
is presented in this section.

The proposed scheduling algorithm consists of two stages:
task clustering without considering the number of avail-
able processors and cluster-to-processor mapping on a given
number of processors. Most of the existing algorithms for a
weighted DAG also use such a framework [28]. The goal of
the proposed clustering algorithm, called early-start cluster-
ing, is to preserve the earliest possible start time of a task
without reducing the degree of concurrency in the block de-
pendency DAG. The proposed cluster mapping to proces-
sors, called affined cluster mapping, tries to reduce the com-
munication overhead and balance loads among processors.

4.1 Task Scheduling Parameters

Several parameters are used in our scheduling method.
The parameters, which are measured from a given block de-
pendency DAG, include the work required for subtasks, and
their parents, the earliest start time of a task, the earliest
completion time of a task, and the level of a task.

Work and Parents of Subtasks:

A task T; requiring m; block updates consists of m; + 1
subtasks. We refer the work for the m; + 1 subtasks as
Wi0, Wi, .., Wim,;. Then the following equation is satisfied:

W, = mZWJ
j=0

If T; is the task for a diagonal block, then there are m; par-
ents. The parent tasks are referred to as Tiy, Tk, .., Tk,,. ;-
If T; is the task for a rectangular block, there are 2m; l+ 1
parents, which are referred to as Tio, Ty, -y Thy,n, -
Earliest Start Time of a Task:

The earliest start time of a task is defined as the earliest
time when one of its subtasks is ready to run. Note that
the earliest start time of a task is not the time when all
required blocks for the task are received from the parent




tasks, although this time has been used by general DAG-
based task scheduling algorithms. The earliest start time of
T;, est(i), is defined recursively using the earliest completion
time of the parent tasks. If T; is the task for a diagonal block,
then
0 if parent(i) = 0,
est(i) = { min

(ect(k) + ck,;) otherwise.

k€parent(i)
Also, if T; is the task for a rectangular block, then
est(i) =

ect(ko) + Crg,i
. < max(ect(k2;) + Chy; i
m—1

min
0<i< ect(kaj+1) +Ck2j+1,i)

if parent(i) = {ko},
) otherwise.

When T; is clustered with a parent 7%, then we can omit
the communication cost from T} to T; by setting cx,; = 0.
Thus, the above equations can be used in all of the clustering
steps.

Earliest Completion Time of a Task:

The earliest completion time of T}, referred to as ect(7), is
the earliest possible completion time of all subtasks in T;. To
define ect(7), we use pest(, j), which represents the earliest
start time of j-th subtask (0 < j < m;). If T; is the task for
a diagonal block, then

ect(i) = pest(i,m;) + Wim,,
pest(i,0) = est(3),
pest(i,j) = max(pest(i,j— 1)+ Wi;-1,
ect(k];l) + ij—lai) y
pest(i,m;) = pest(i,m;—1)+ Wim;—1.
If T; is the task for a rectangular block,
ect(i) = pest(i,m;) + Wim,;,

pest(i,0) = est(i),
pest(i,j) = max(pest(i,j—1)+ Wi;-1,

max (ect(kaj) + Cho; i)

ect(kaj1) + Chajiai))
pest(i,m;) = max(pest(i,m; — 1)+ Wim,—1,
ect(kai) + Chom, ,i)~
Level of a Task:
The level of T; is the length of the longest path from T;
to the exit task, including the communication costs along
that path. The level of T; corresponds to the worst-case
remaining time of T;. The level is used for the priority of T}
in task clustering. Level is defined as follows.

W;
level(i) = max
k€child(i)

if child(i) = 0,

(level(k) + cir) + W;  otherwise.

4.2 Early-Start Clustering

The proposed early-start clustering (ESC) algorithm re-
duces the total completion time of all tasks by preserving
the earliest start time of each task. ESC uses the level of a
task as its priority so that a task on the critical path of a
block dependency DAG can be examined earlier than other
tasks. Each task is allowed to be clustered with only one of
its children to preserve maximum parallelism.

1. EG=0, UEG=V, CL=.
2. compute level for each task.
3. add all free entry tasks to F'L.
4. setest(i) =0 forall T; € FL.
5. while UEG # 0 do
6. T; = head(FL).
7. find the parent T}, that satisfies
ect(k;) = kgparerrgi(?),kQCL (ect(k))-
8. if k; is found, then
9. CLUST (k;) = CLUST (k;) U {T;}.
10. CLUST(i) = 0.
11. CL =CLU{T}}.
12. Chj,i = 0.
13. else
14. T; remains in a unit cluster.
15. endif
16. sort m; subtasks of T}, and calculate ect (7).
17. EG =EGU{T;}, UEG =UEG — {T;}.
18. for each Ty, € child(7)
19. if Vieparent(eyIs € EG, then FL = FLU {T}}.
20. endwhile

Figure 6: The early-start clustering algorithm.

The ESC algorithm uses the lists EG, UEG, CL, and FL.
EG contains the examined tasks. UEG is for unexamined
tasks. CL is a list of the tasks clustered with one of its
children so that a task in CL cannot be clustered with other
children. FL is a list of all free tasks maintained by a priority
queue in UEG so that the highest level task can be examined
earlier than others. CLUST(T;) refers to the cluster for task
T;. The complete ESC algorithm is described in Figure 6.

PrROPERTY 1. The ESC algorithm guarantees the mazi-
mum degree of concurrency.

ProOOF. Given a block dependency graph G, let k be the
maximum degree of concurrency. This means that, at most,
k tasks can run independently and concurrently. Let us
denote these k tasks as vi,..,vr. Consider the case that a
node v; (1 <i < k) is clustered with any one of its parents.
If the parent is already clustered with v; (1 < j < k,i # j),
then the degree of concurrency becomes k — 1. Otherwise,
the degree of concurrency does not change. Since the ESC
algorithm does not allow two tasks to be clustered with the
same parent, the maximum degree of concurrency does not
decrease while all k£ tasks to be examined are clustered with
one of their parents.

Let us consider the situation when ESC examines each
child of the k tasks. Any one child can be clustered with
one of the k tasks, and none of the k tasks are allowed to
be clustered with two children. Therefore, the degree of
concurrency does not change after examining all children by
the ESC algorithm. Thus, the ESC algorithm guarantees
the maximum degree of concurrency. [

The time complexity of ESC is as follows. To calculate
the levels of tasks in Step 2, tasks are visited in post-order,
and all edges are examined. Hence, the complexity of Step
2 is O(e). In the while loop, the most time consuming part
is the calculation of ect(i) in Step 16, which sorts all sub-
tasks with respect to the ready time of each subtask. Since



the number of subtasks in a task is not larger than N, sort-
ing of subtasks takes O(N log(NN)) time. The complexity of
Step 16 is O(vN log(NV)) for v iterations. Thus, the overall
complexity of the ESC algorithm is O(e + vN log(NN)).

4.3 Affined Cluster Mapping

The most common cluster mapping method is based on a
work profiling method [10; 17; 27], which is designed only for
load balancing based on the work required for each cluster.
However, by considering the required communication costs
and preserving parallelism whenever possible, we can further
improve the performance of block Cholesky factorization.

We introduce the affined cluster mapping (ACM) algo-
rithm, which uses the affinity as well as the work required
for a cluster. The affinity of a cluster to a processor is de-
fined as the sum of the communication costs required when
the cluster is mapped to other processors. We classify the
types of unmapped clusters into affined clusters, free clus-
ters, and the heaviest cluster.

e Affined cluster: If any task in a cluster needs to
communicate with the tasks allocated to processor p,
then the cluster is an affined cluster of processor p.
The affinity of the cluster is the sum of communication
costs between the tasks in the cluster and the tasks
allocated to processor p.

e Free cluster: If a cluster has an entry task, the clus-
ter is a free cluster. Such a free cluster allows a pro-
cessor to execute the entry task without waiting. Note
that an affined cluster can be a free cluster.

o Heaviest cluster: If the sum of the computation
costs of tasks in a cluster is the largest among all
unmapped clusters, then that cluster is the heaviest
cluster.

ACM finds the processor with the minimum amount of
work, and allocates a cluster found by the search sequence.
(The cluster with the highest affinity among affined clusters
to the processor, or the heaviest cluster among free clusters,
or the heaviest cluster among all unmapped clusters.) Ini-
tially, all processors have no tasks. Therefore, the heaviest
free cluster is allocated first. If the processor with the min-
imum work has some clusters already allocated, then ACM
checks whether there are affined clusters with the proces-
sor. If not, ACM checks free clusters. If there are no affined
or free clusters, then the heaviest cluster among unmapped
clusters is allocated to the processor.

The ACM algorithm uses the lists CLUST, MC, UMC,
and FC. CLUST means the entire set of clusters, and
CLUST(T;) represents the cluster containing task T7;. MC
is a list of the mapped clusters, and UMC' is a list of the
unmapped clusters. Thus MC UUMC = CLUST. FC' is
a list of the free clusters. UMC and FC are maintained as
priority queues with the heaviest cluster first. Each cluster
has a list of affinity values for all processors. The complete
ACM algorithm is described in Figure 7.

The time complexity of ACM is analyzed as follows. Let P
denote the number of processors. Since the number of clus-
ter is less than the number of tasks, the number of cluster is
bounded by O(v). In Steps 3~5, O(vP) time is required for
initialization. In the while loop, Step 7 takes O(P) time and
Step 8 takes O(v) time; since the loop iterates for each clus-
ter, these two steps take O(v? +vP) time. Steps 14 ~ 20 are

1. MC =0, UMC =CLUST, FC = .

2. add free clusters in UMC to FC.

3. for each C; e UMC do

4. forp=0to P—1do

5. set C;'s affinity[p] = 0.

6. while UMC # 0 do

7. find the processor p with the smallest work.
8. find the cluster C; that has the highest affinity[p].
9. if C; = NULL and FC # 0 then

10. C; = head(FC), FC = FC — {C;}.
11. elseC; = head(UMC).

12. allocate C; to processor p.

13. MC=MCU{Ci}, UMC =UMC - {C;}
14. for each T; € C; do

15. for each T} € child(j) do

16. if CLUST(T},) € UMC then

17. CLUST(T)'s affinity[p] = affinity[p] + ¢; k.
18. for each T}, € parent(j) do

19. if CLUST(T},) € UMC then

20. CLUST(Ty)’s affinitylp] = affinity[p] + ck,;.
21. endwhile

Figure 7: The affined cluster mapping algorithm.

for updating the affinity values for each unmapped cluster
communicating with the current cluster. In the worst case,
all edges are traced twice during the whole loop, for checking
parents and for checking children. Therefore, the complex-
ity for updating affinities is O(2e). The overall complexity
of the ACM algorithm is thus O(vP + v* + e).

5. PERFORMANCE COMPARISON

The performance of the proposed scheduling method is
compared with various mapping methods. The methods
used for comparison are as follows.

e wrap: 1-D wrap mapping [11] simply allocates all
blocks in column j, i.e., Ly j, to the processor (j mod P).

e cyclic: 2-D cyclic mapping [20] allocates L;; to the
processor (i mod P, j mod P.).

e balance: Balance mapping [21] attempts to balance
the workload among processors. For ordering in row
and column mapping, we use the decreasing number
heuristic.

e dag: A general DAG-based task scheduling method is
applied to block dependency graphs. The scheduling
method uses the dominant sequence clustering algo-
rithm [28] for task clustering, and the work profiling
method [10; 17; 27] is used for load-balanced cluster

mapping.

e schedule: The task scheduling method proposed in
this paper.

The test sparse matrices are taken from the Harwell-Boeing
matrix collection [7], which is widely used for evaluating
sparse matrix algorithms. All matrices are ordered using
the multiple minimum degree ordering [14], which is the best
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Figure 8: Completion time comparison for BCSSTK14 (n =
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Figure 9: Load balance comparison for BCSSTK14.

ordering method for general or unstructured problems. Su-
pernode amalgamation [2] is applied to the ordered matrices
to improve the efficiency of block operations.

The parallel block fan-out method [20] is implemented on
the Fujitsu AP1000+ multicomputer. The AP1000+ system
is a distributed-memory MIMD machine with 64 cells. Each
cell is a SuperSPARC processor with 64MB of main mem-
ory. The processors are inter-connected by a torus network
with 26MB/sec/port. For the block operations, we used the
single processor implementation of BLAS primitives taken
from NETLIB. In order to measure communication costs,
we use ts = 500 and t. = 20, which are estimated from the
theoretical peak performance and benchmark tests.

The completion times of BCSSTK14 using various meth-
ods are shown in Figure 8. As P increases, the proposed
method, schedule, performs well compared with the other
methods. The completion time of dag does not decrease
even though P increases. This is mainly due to the fact
that one cluster includes all the tasks in the critical path of
a block dependency DAG, and the huge cluster limits the
completion time.

Figure 9 shows the load balance for all methods. The
metric of load balance is

total work

load bal = —
006 DGYNCE = B mar work’

662_BUS
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK18

Figure 10: Performance comparison of mapping methods
(MFLOPS).

where total work is the total work of all tasks and maz work
is the maximum amount of work assigned to any proces-
sor. As P increases, load balance decreases in all methods.
Among them, balance and schedule keep the load well bal-
anced. However, as shown in Figure 8, the completion time
of schedule is shorter than that of balance. This shows that
the best load balance does not guarantee the highest perfor-
mance.

The performance comparison of wrap, cyclic, balance, sched-
ule are shown in Figure 10. In the average case, cyclicis 1.9
times faster than wrap. Also, balance and schedule are 2.5
and 2.8 times faster than wrap, respectively. This means
that balance takes 31.6% less time than cyclic, and sched-
ule takes 12.0% less time than balance. In the best case,
schedule takes 30% less time than balance. Since the ex-
periments have been conducted on a 2-D mesh topology,
cyclic and balance can take the full advantage of their algo-
rithmic properties. If experiments were conducted on other
topologies, the gap between the performance of the proposed
schedule algorithm and that of cyclic and balance would be
larger. From the overall comparison, it can be seen that the
proposed scheduling algorithm has the best performance.

6. CONCLUSION

We introduced a task scheduling approach for block-oriented
sparse Cholesky factorization on a distributed-memory sys-
tem. The block Cholesky factorization problem is modeled
as a block dependency DAG, which represents the execution
behavior of 2-D decomposed blocks. Using a block depen-
dency DAG, we proposed a task scheduling algorithm con-
sisting of early-start clustering and affined cluster mapping.
Based on experimental results using the Fujitsu AP1000+
multicomputer, we have shown that the proposed scheduling
algorithm outperforms previous processor mapping meth-
ods. Also, when we applied a previous DAG-based task
scheduling algorithm to a block dependency DAG, all tasks
in a critical path were clustered into a huge cluster. Thus,
the completion time is always bounded by the huge cluster
even when the number of processors is increased. However,
the proposed scheduling algorithm has good scalability, so
that its performance improves progressively as the number
of processors increases. The main contribution of this work



is the introduction of a task scheduling approach with a re-
fined task graph for sparse block Cholesky factorizations.
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