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Abstract

In this paper� we present the problem of allocat�
ing processors for matrix products� First� we
consider how many processors should be allo�
cated for computing one matrix product on a
parallel system� Then� we discuss how to allo�
cate processors for a number of independent ma�
trix products on the parallel system� In many
cases� it is shown that the performance of paral�
lel algorithms does not improve beyond a certain
point even though more processors are allocated
for more parallelism� The results from experi�
ments on the Fujitsu AP���� parallel system for
a matrix product show that allocating more pro�
cessors is not always bene�cial for overall system
performance� Also� when evaluating a number
of independent matrix products� the concurrent
execution of multiple matrix products by parti�
tioning the system is better than the indepen�
dent evaluation of matrix products sequentially
by parallelizing each matrix product� Finally�
we conclude that such kind of result can be ap�
plicable to many processor allocation problems
on a parallel system such as the processor allo�
cation problem for evaluating a chain of matrix
products�

Keywords � Processor allocation� matrix
product� parallel matrix multiplication� matrix
chain ordering problem�

� Introduction

Matrix operations are commonly used in many
scienti�c computations such as linear algebra
and numerical analysis� Matrix products are
most commonly encountered and computation
intensive part of the scienti�c computations� To
reduce the computation time of matrix products�
many parallel algorithms have been studied in
various parallel architectures ����

Parallel algorithms for matrix product has the
scalability characteristic �	�� A matrix prod�
uct for multiplying two n � n matrices can uti�
lize from one processor to n� processors� In
case of n� processors� the execution time can
be O
log
n�� time� However� we can expect low
processor utilization and increased communica�
tion overhead for calculating one element of the
result matrix by n processors� Then� how many
processors should be allocated for multiplying
two matrices to have a better e�ciency


One general problem in parallel processing is
that how many processors should be allocated
for a given task to have a better response time
or better system utilization� In many cases� it
is shown that the performance of parallel al�
gorithms does not improve beyond a certain
point even though more processors are allocated
for more parallelism� This is mainly due to
the increased interprocessor communication be�
tween more parallelized subtasks� In some al�
gorithms� the execution time decreases by allo�
cating more processors� but some processors are
severely under�utilized� Matrix product shows
this kind of behavior� Therefore� only the num�
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ber of processors that guarantees the best e��
ciency should be allocated�

Until now� even though many parallel algo�
rithms for a matrix product have been studied
on a parallel system under various conditions�
there are few works for �nding the number of
processors which guarantees the best e�ciency
of the system� and consequently the best overall
system performance�

One related problem we also have to consider
is how to schedule and allocate processors for
each product when evaluating a number of in�
dependent matrix products� One of simple ap�
proaches is just parallelizing each matrix prod�
uct one after the other� However� we can imag�
ine that the approach of parallelizing each prod�
uct and executing one after the other using the
whole system results in ine�cient use of proces�
sors and poor performance� In this paper� we
show the e�ect of concurrent execution by parti�
tioning a parallel system using experiments� and
study the processor allocation method for inde�
pendent matrix products�

This paper is organized as follows� Section
	 presents the processor allocation problem for
one matrix product� In Section �� we consider
the case of evaluating a number of independent
matrix products� In Section �� we discuss how
to apply the results to other processor allocation
problems such as for evaluating a chain of ma�
trix products� which is known as matrix chain
ordering problem 
MCOP�� Finally� in Section
�� we summarize and conclude the paper�

� Processor Allocation for

One Matrix Product

In this section� we consider the problem of allo�
cating the proper number of processors for a ma�
trix product� Among many parallel algorithms
for multiplying two matrices� the algorithms for
a mesh�connected system is simple and e�cient
since the mesh structure is highly analogous to
the matrix so that one can �nd a quite e�cient
parallel algorithm easily in the mesh structure�
The parallel algorithm for a matrix product used
in this section is a commonly used algorithm for
a parallel system connected by mesh�

Consider a multiplication C � A�B� where A

and B are an n�n matrix� on a mesh�connected
multiprocessor system with P processors� If
P � n�� then one way of parallelizing the compu�
tation is dividing the computation needed for C
matrix into each processor as much as np

P
� np

P
�

In this case� each processor needs an np
P
� n

sub�matrix from A� and an n � np
P
sub�matrix

from B� And� n�p
P
multiplications and �n���np

P
ad�

ditions are required to get a part of C matrix�
The number of operations for each processor is
proportional to �
n��

p
P �� For example� when

P � n�� at least �
n� operations are assigned to
each processor�

A multiplication of two n�n matrices requires
at most n� processors� In the best case� it takes
O
log
n�� time such that n processors are used
to get an element of C matrix� Each of n proces�
sors multiplies in one step� and n elements are
summed within O
log
n�� steps if the architec�
ture supports it� However� in the case of using
n� processors� we can expect low utilization of
processors� Each processor spends log
n� time
on communication while summing n data� More�
over� these processors are not active all the time�
Then� how many processors should be allocated
for multiplying two matrices to have a better ef�
�ciency


We measured the computation time of a
parallel matrix multiplication on the Fujitsu
AP���� parallel system with ��	 processors�
The AP���� system supports three independent
network� B�net for broadcasting� T�net for Torus
interconnection� S�net for synchronization� The
processors are connected by two dimensional
Torus 
T�net� with 	�Mbyte�sec�port� The
host computer and the processors are con�
nected by the broadcasting network 
B�net� with
��Mbyte�sec and by the S�net for synchroniza�
tion�

For the matrix multiplication C � A�B on a
P��P� mesh� where A is an mi�mj matrix and
B is an mj �mk matrix� each processor requires
a part ofA and B matrices� Ifmi�mk � P��P��
then mi

P�
�mj sub�matrix of A and mj� mk

P� sub�
matrix of B are needed for each processor to
compute an mi

P�
� mk

P� sub�matrix of C as shown
in Fig� �� In case of mi � mk � P� � P� �
mi � mj � mk �

P��P�
mi�mk

processors are used to
compute one element of C matrix�
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Figure �� Multiplication of an mi �mj matrix and an mj �mk matrix on a P� � P� mesh�

The process of matrix multiplication can be
divided into three phases� The �rst phase is dis�
tributing parts of matrices A and B to each cor�
responding processor� The second phase is con�
current multiplications using parts of two matri�
ces on each processor� The third phase is col�
lecting partial results into one processor which
needs the result matrix� In our experiments� the
result matrix is returned to the host computer�
We measured the execution time of matrix multi�
plication in various ways on the Fujitsu AP����
parallel system�

In the �rst experiment� the total running time�
i�e�� the sum of three phases� is measured� which
includes the time for distributing sub�matrices of
A and B to corresponding processors� computing
sub�matrix multiplication� and collecting results
into the host computer� Fig� 	 shows the running
time of a matrix multiplication for various ma�
trices of di�erent size on meshes of di�erent size�
For example� �	� processors in the �gure repre�
sents � � �� mesh� The 
mi� mj� mk� notation
represents that A is an mi�mj matrix and B is
an mj �mk matrix� From the result� we can see
that the running time decreases as the number of
processors increases until a certain point� Let us
call this point as summit point� However� when
the number of allocated processors is larger than
that point� e�g�� �� processors for 
�	�� �	�� �	��
in Fig� 	� the execution time increases as more
processors are allocated� This means that the
speedup obtained using parallel processing does
not exceed the linear speedup and for some cases�
the more execution time is needed as the number
of allocated processors increases�

In Fig� �� the execution time of matrix prod�
ucts with small matrices is shown to measure
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Figure 	� Execution time with varying the num�
ber of processors�

the cases of allocating more than mi �mk pro�
cessors when multiplying an mi�mj matrix and
an mj �mk matrix� From the result of this ex�
periment� we can see that allocating more than
mi �mk processors also does not reduce the ex�
ecution time� The execution of 
�� �� �� on ��	
processors takes more time than the execution
on �� processors�

In the next experiment� we have measured
only the computation time� which excludes
the communication time for distributing sub�
matrices of A and B� and collecting the results�
I�e�� each processor already contains its data of
A and B and does not need to send its result
to the collecting processor� The matrix compu�
tation in a multiprocessor system with shared
memory will show this kind of execution time�
The computation time of a product is the max�
imum computation time among processors� As
shown in Fig� �� the computation time decreases
by increasing the number of allocated processors�
However� in Fig� �� when allocating more than
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Figure �� Execution time for small size matrices�
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Figure �� Computation time only for large size
matrices�

�� processors for 
�� �� ��� the computation takes
more time than when �� processors are allocated�
That means the summit point of 
�� �� �� is ���
processor� In this experiment� the summit point
of 
mi� mj� mk� is mi �mk processors�

From the above experiments for multiplying
two matrices� an mi�mj matrix and an mj�mk

matrix� we can see that there is no bene�t when
more than mi � mk processors are allocated��

When the number of allocated processors be�
comes smaller and smaller� we have no need to
worry about overall performance degradation by
the communication overhead and ine�cient use
of processors�

�In general� if more than mi �mk processors are al�

located� the number of idle processors increases although

we can reduce the execution time�
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Figure �� Computation time only for small size
matrices�

� Evaluation of Multiple Inde�

pendent Matrix Products

Now� let us consider the case when a number of
independent matrix products are given for exe�
cution� There could be several approaches for
evaluating these matrix products� For example�
one can consider evaluating each matrix prod�
uct using the whole system one after the other by
parallelizing each product� Also� others can con�
sider the evaluation method by running multiple
matrix products concurrently by partitioning the
system� It is possible and easily implementable
due to the scalability of matrix products �	�� To
compare these approaches� let us estimate the
required evaluation time�
For a given set of matrix products C �

fC�� C�� ��� Cng� the evaluation time by sequen�
tial evaluation on a P processor system can be
estimated as follows�

Ts
C� �
nX

i��

T 
Ci� P �

T 
Ci� P � is the execution time of Ci using P

processors� The total evaluation time of this
method Ts
C� is the summation of each matrix
product execution time for all n products� If we
assume all products have the same dimension�
i�e�� C� � C� � �� � Cn� the evaluation time is
n � T 
C�� P ��
Now let us assume that the products which

can be executable on P processors are also can
be executable on P � 
� � P � � P � processors
using the same matrix product algorithm� and
each processor has enough memory capacity to
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execute it� The total execution time of n prod�
ucts when d matrix products run concurrently
by partitioning the system into d groups as like
P � P� � P� � ���� Pd� is as follows�

Tp �

n�dX

i��

max
j����d


T 
Cj� Pj��

By the speedup limitation of parallelized ma�
trix product� which is also shown using the ex�
perimental results in Section 	� the following re�
lation holds for any matrix product Cj and any
d 
	 � d � P ��

T 
Cj� P � � �

d
T 
Cj� P�d�

When we assume the system is partitioned
equally like Pi � P�d� the following equation
is derived�

Tp
C� �

n�dX

i��

max
j����d


T 
Cj� Pj��

�

n�dX

i��

max
j����d


T 
Cj� P�d��

�
nX

i��

T 
Ci� P � � Ts
C�

Therefore� the execution time Tp
C� by parti�
tioning the system into d groups is less than the
execution time Ts
C��
We have measured the total execution time

of given matrix products executed on the Fu�
jitsu AP���� parallel system with ��	 proces�
sors� It includes the time to distribute the sub�
matrices and to collect the results to the host
computer� Fig� � shows the results on various
number of partitions for evaluating identical �
matrix products� For example� 	 in the x�axis
represents the evaluation method that two ma�
trix products are executed concurrently on the
two�partitioned system and � repetitions are re�
quired for evaluating � matrix products� As the
results indicate� the method of running multi�
ple matrix products concurrently enhances the
performance than the method of running each
matrix product with the whole system� As the
concurrency level increases� the total execution
time decreases in this case�
Fig� � shows the results for �	 identical ma�

trix products� For the 
�	�� �	�� �	�� product�
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Figure �� Total execution time of � matrix prod�
ucts over various partitioning sizes�
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Figure �� Total execution time of �	 matrix
products over various partitioning size�

running on the two�partitioned system 
�� sec�
onds� gains almost 	�� times speedup than run�
ning on the whole system 
��� seconds�� Since
the speedup by doubling the allocated proces�
sors cannot exceed 	� the execution on the two�
partitioned system reinforces the performance
more than twice when there is enough parallel
tasks to run concurrently� This simple derivation
shows the e�ect� Speedup boundary for paral�
lelizing a product Cj �

�

	
T 
Cj � P � � T 
Cj� 	P ��

Reinforced speedup by reducing parallelism and
executing two Cj products concurrently�

T 
Cj� P�	� � 	T 
Cj� P �

However� only increasing the concurrency
level by partitioning a system does not guaran�
tee the performance enhancement� In case of
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�	�� �	�� �	�� product in Fig� �� more than �
partitioning does not gain performance enhance�
ment�

From the above experiments� we can conclude
that the overall system performance is enhanced
by executing multiple independent matrix prod�
ucts concurrently� The concurrent execution by
partitioning a parallel system compensates the
loss of the performance by parallelizing a task
and increases the overall system performance�
Notice that the performance signi�cantly im�
proves when a matrix product is running on less
than summit point of processor allocation�

� Applying to Matrix Chain

Products

The performance enhancement by reducing the
dependent parallelism and increasing the in�
dependent concurrency can be applicable to
many processor allocation problems with scal�
able tasks�

As one example� let us consider the evalua�
tion problem of a matrix chain product� which
is commonly used as an example of dynamic pro�
gramming� In the evaluation of a chain of matrix
products with n matricesM �M��M��� � ��
Mn whereMi is ami�mi��
mi � �� matrix� the
product sequence of matrices greatly a�ects the
total number of operations to evaluate M� even
though the �nal result is the same for all product
sequences by the associative law of the matrix
multiplication� An arbitrary product sequence
of matrices may be as bad as �
T �

opt� where Topt
is the minimum number of operations required to
evaluate a chain of matrix products ���� The ma�
trix chain ordering problem 
MCOP� is to �nd a
product sequence of matrices such that the num�
ber of operations is minimized�

There are many works reported for solving
MCOP and for reducing the ordering time� First
of all� MCOP was reported by Godbole ��� and
solved using dynamic programming in O
n��
time� The optimal sequential algorithm which
runs in O
n log
n�� time was given by Hu and
Shing ��� ��� This algorithm solves MCOP by
solving the equivalent problem� known as the
problem of �nding an optimal triangulation of
a convex polygon� Many parallel algorithms

to reduce the ordering time have been studied
using the dynamic programming method ��� ��
�� ��� or the triangulation of a convex poly�
gon ���� �	�� Bradford ��� proposed a parallel
algorithm based on the dynamic programming
which runs in O
log�
n�� time with n processors
on the EREW PRAM or O
log�
n� log log
n��
time with n� log log
n� processors on the CRCW
PRAM� Czumaj proposed a O
log�
n�� time al�
gorithm based on the triangulation of a convex
polygon� which runs with n�� log�
n� processors
on the CREW PRAM ����� Ramanan improved
the algorithm to run in O
log�
n�� time using n
processors ��	��
However� the evaluation of a matrix chain

product by the MCOP order cannot guarantee
the minimal time on a parallel system due to in�
e�cient use of processors� In the single proces�
sor system� the evaluation of a chain of matrix
products by the optimal product sequence guar�
antees the minimum evaluation time since the
optimal product sequence guarantees the mini�
mum number of operations� However� in par�
allel systems� parallel computation of each ma�
trix product with the product sequence found
for the minimum number of operations does not
guarantee the minimum evaluation time� This
is because that the evaluation time in parallel
systems is a�ected by various factors such as de�
pendency among tasks� communication delays�
and e�ciency of processors as we discussed in
Section 	� Hence� the evaluation time of a chain
of matrix products in parallel systems can be
reduced by executing two or more independent
matrix products concurrently even though do�
ing so may increase the number of operations�
Therefore� it is more important to �nd a set of
independent matrix products and to increase the
set by modifying the product sequence as long as
we can reduce the overall evaluation time�

� Conclusion

The processor allocation problem for matrix
products is considered in this paper� From the
experiments� allocating more processors does not
increase the speedup after a certain point � sum�

mit point� And the summit point of a product
to multiply an mi �mj matrix and an mj �mk

matrix is smaller than mi �mk in any kind of
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a parallel system� For evaluating a number of
independent matrix products� we can get the
performance enhancement by executing multiple
matrix products concurrently on a partitioned
system�

This kind of e�cient processor allocation con�
cept can be applicable to many processor alloca�
tion problems for parallel tasks with scalability
characteristics� We showed one example with
the evaluation problem for a matrix chain prod�
ucts which is known as matrix chain ordering
problem 
MCOP��We are currently studying the
evaluation method for a matrix chain product on
a parallel system� Also� the result of this work
can be applicable to many other processor allo�
cation problem with scalable tasks�
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