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Abstract

In this paper, we present the problem of allocat-
ing processors for matrix products. First, we
consider how many processors should be allo-
cated for computing one matrix product on a
parallel system. Then, we discuss how to allo-
cate processors for a number of independent ma-
trix products on the parallel system. In many
cases, it is shown that the performance of paral-
lel algorithms does not improve beyond a certain
point even though more processors are allocated
for more parallelism. The results from experi-
ments on the Fujitsu AP1000 parallel system for
a matrix product show that allocating more pro-
cessors is not always beneficial for overall system
performance. Also, when evaluating a number
of independent matrix products, the concurrent
execution of multiple matrix products by parti-
tioning the system is better than the indepen-
dent evaluation of matrix products sequentially
by parallelizing each matrix product. Finally,
we conclude that such kind of result can be ap-
plicable to many processor allocation problems
on a parallel system such as the processor allo-
cation problem for evaluating a chain of matrix
products.

Keywords — Processor allocation, matrix
product, parallel matrix multiplication, matrix
chain ordering problem.

1 Introduction

Matrix operations are commonly used in many
scientific computations such as linear algebra
and numerical analysis.
most commonly encountered and computation

Matrix products are

intensive part of the scientific computations. To
reduce the computation time of matrix products,
many parallel algorithms have been studied in
various parallel architectures [1].

Parallel algorithms for matrix product has the
scalability characteristic [2]. A matrix prod-
uct for multiplying two n X n matrices can uti-
lize from one processor to n3 processors. In
case of n® processors, the execution time can
be O(log(n)) time. However, we can expect low
processor utilization and increased communica-
tion overhead for calculating one element of the
result matrix by n processors. Then, how many
processors should be allocated for multiplying

two matrices to have a better efficiency?

One general problem in parallel processing is
that how many processors should be allocated
for a given task to have a better response time
or better system utilization. In many cases, it
is shown that the performance of parallel al-
gorithms does not improve beyond a certain
point even though more processors are allocated
for more parallelism.
the increased interprocessor communication be-

This is mainly due to

tween more parallelized subtasks. In some al-
gorithms, the execution time decreases by allo-
cating more processors, but some processors are
severely under-utilized. Matrix product shows
this kind of behavior. Therefore, only the num-
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ber of processors that guarantees the best effi-
ciency should be allocated.

Until now, even though many parallel algo-
rithms for a matrix product have been studied
on a parallel system under various conditions,
there are few works for finding the number of
processors which guarantees the best efficiency
of the system, and consequently the best overall
system performance.

One related problem we also have to consider
is how to schedule and allocate processors for
each product when evaluating a number of in-
dependent matrix products. One of simple ap-
proaches is just parallelizing each matrix prod-
uct one after the other. However, we can imag-
ine that the approach of parallelizing each prod-
uct and executing one after the other using the
whole system results in inefficient use of proces-
sors and poor performance. In this paper, we
show the effect of concurrent execution by parti-
tioning a parallel system using experiments, and
study the processor allocation method for inde-
pendent matrix products.

This paper is organized as follows. Section
2 presents the processor allocation problem for
one matrix product. In Section 3, we consider
the case of evaluating a number of independent
matrix products. In Section 4, we discuss how
to apply the results to other processor allocation
problems such as for evaluating a chain of ma-
trix products, which is known as matrix chain
ordering problem (MCOP). Finally, in Section
5, we summarize and conclude the paper.

2 Processor Allocation for
One Matrix Product

In this section, we consider the problem of allo-
cating the proper number of processors for a ma-
trix product. Among many parallel algorithms
for multiplying two matrices, the algorithms for
a mesh-connected system is simple and efficient
since the mesh structure is highly analogous to
the matrix so that one can find a quite efficient
parallel algorithm easily in the mesh structure.
The parallel algorithm for a matrix product used
in this section is a commonly used algorithm for
a parallel system connected by mesh.

Consider a multiplication C = AX B, where A
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and B are an n X n matrix, on a mesh-connected
multiprocessor system with P processors. If
P < n?, then one way of parallelizing the compu-
tation is dividing the computation needed for C
ixi m o n
matrix into each processor as much as \/ﬁnx Vi

In this case, each processor needs an Jm X n
sub-matrix from A, and an n X \/Lﬁ sub-matrix

from B. And, \’/1—; multiplications and % ad-
ditions are required to get a part of C matrix.
The number of operations for each processor is
proportional to ®(n?/+/P). For example, when
P = n?, at least ©(n) operations are assigned to
each processor.

A multiplication of two n X n matrices requires
at most n3 processors. In the best case, it takes
O(log(n)) time such that n processors are used
to get an element of C' matrix. Each of n proces-
sors multiplies in one step, and n elements are
summed within O(log(n)) steps if the architec-
ture supports it. However, in the case of using
n® processors, we can expect low utilization of
processors. Each processor spends log(n) time
on communication while summing n data. More-
over, these processors are not active all the time.
Then, how many processors should be allocated
for multiplying two matrices to have a better ef-
ficiency?

We measured the computation time of a
parallel matrix multiplication on the Fujitsu
AP1000 parallel system with 512 processors.
The AP1000 system supports three independent
network: B-net for broadcasting, T-net for Torus
interconnection, S-net for synchronization. The
processors are connected by two dimensional
Torus (T-net) with 25Mbyte/sec/port. The
host computer and the processors are con-
nected by the broadcasting network (B-net) with
50Mbyte/sec and by the S-net for synchroniza-
tion.

For the matrix multiplication C = A X B on a
P; X P, mesh, where A is an m; X m; matrix and
B is an m; X mj matrix, each processor requires
a part of A and B matrices. If m;xmy > Py X P,
then % X mj sub-matrix of A and m; X BE sub-
matrix of B are needed for each processor to
compute an % X B& sub-matrix of C' as shown
in Fig. 1. In case of m; X mp < P X Py <
m; X m; X mg, % processors are used to

compute one element of C' matrix.
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Figure 1: Multiplication of an m; X m; matrix and an m; X mj matrix on a P; X P, mesh.

The process of matrix multiplication can be
divided into three phases. The first phase is dis-
tributing parts of matrices A and B to each cor-
responding processor. The second phase is con-
current multiplications using parts of two matri-
ces on each processor. The third phase is col-
lecting partial results into one processor which
needs the result matrix. In our experiments, the
result matrix is returned to the host computer.
We measured the execution time of matrix multi-
plication in various ways on the Fujitsu AP1000
parallel system.

In the first experiment, the total running time,
i.e., the sum of three phases, is measured, which
includes the time for distributing sub-matrices of
A and B to corresponding processors, computing
sub-matrix multiplication, and collecting results
into the host computer. Fig. 2 shows the running
time of a matrix multiplication for various ma-
trices of different size on meshes of different size.
For example, 128 processors in the figure repre-
sents 8 X 16 mesh. The (m,;, m;, mg) notation
represents that A is an m; X m; matrix and B is
an m; X my matrix. From the result, we can see
that the running time decreases as the number of
processors increases until a certain point. Let us
call this point as summait point. However, when
the number of allocated processors is larger than
that point, e.g., 64 processors for (128,128,128)
in Fig. 2, the execution time increases as more
processors are allocated. This means that the
speedup obtained using parallel processing does
not exceed the linear speedup and for some cases,
the more execution time is needed as the number
of allocated processors increases.

In Fig. 3, the execution time of matrix prod-
ucts with small matrices is shown to measure
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Figure 2: Execution time with varying the num-
ber of processors.

the cases of allocating more than m; X myg pro-
cessors when multiplying an m; X m; matrix and
an m; X my matrix. From the result of this ex-
periment, we can see that allocating more than
m; X my processors also does not reduce the ex-
ecution time. The execution of (8,8,8) on 512
processors takes more time than the execution
on 64 processors.

In the next experiment, we have measured
only the computation time, which excludes
the communication time for distributing sub-
matrices of A and B, and collecting the results.
Le., each processor already contains its data of
A and B and does not need to send its result
to the collecting processor. The matrix compu-
tation in a multiprocessor system with shared
memory will show this kind of execution time.
The computation time of a product is the max-
imum computation time among processors. As
shown in Fig. 4, the computation time decreases
by increasing the number of allocated processors.
However, in Fig. 5, when allocating more than
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Figure 3: Execution time for small size matrices.
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Figure 4: Computation time only for large size
matrices.

16 processors for (4,4, 4), the computation takes
more time than when 16 processors are allocated.
That means the summit point of (4,4,4) is 16-
processor. In this experiment, the summit point
of (m;, m;, mg) is m; X my processors.

From the above experiments for multiplying
two matrices, an m; X m; matrix and an m; X mg,
matrix, we can see that there is no benefit when
more than m; X my processors are allocated.!
When the number of allocated processors be-
comes smaller and smaller, we have no need to
worry about overall performance degradation by
the communication overhead and inefficient use
of processors.

Tn general, if more than m; X mj processors are al-
located, the number of idle processors increases although
we can reduce the execution time.
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Figure 5: Computation time only for small size
matrices.

3 Evaluation of Multiple Inde-
pendent Matrix Products

Now, let us consider the case when a number of
independent matrix products are given for exe-
cution. There could be several approaches for
evaluating these matrix products. For example,
one can consider evaluating each matrix prod-
uct using the whole system one after the other by
parallelizing each product. Also, others can con-
sider the evaluation method by running multiple
matrix products concurrently by partitioning the
system. It is possible and easily implementable
due to the scalability of matrix products [2]. To
compare these approaches, let us estimate the
required evaluation time.

For a given set of matrix products C =
{C1,Cy,..,Cy}, the evaluation time by sequen-
tial evaluation on a P processor system can be
estimated as follows.

n

T,(C)=>_T(C;,P)

=1

T(C;, P) is the execution time of C; using P
processors. The total evaluation time of this
method T,(C) is the summation of each matrix
product execution time for all n products. If we
assume all products have the same dimension,
ie., C; = Cy = .. = C,, the evaluation time is
n- T(Cl, P)

Now let us assume that the products which
can be executable on P processors are also can
be executable on P’ (1 < P’ < P) processors
using the same matrix product algorithm, and
each processor has enough memory capacity to
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execute it. The total execution time of n prod-
ucts when d matrix products run concurrently
by partitioning the system into d groups as like
P =P + P, + ..+ Py, is as follows.

n/d

By the speedup limitation of parallelized ma-
trix product, which is also shown using the ex-
perimental results in Section 2, the following re-
lation holds for any matrix product C; and any
d(2<d<P).

T(C;, P) > ~T(C;, P/d)

=

When we assume the system is partitioned
equally like P, = P/d, the following equation
is derived.

n/d

max (T(C;, P;))

TP(C) = Joid
! .

n/d

< Y T(Ci, P) = T,(C)

Therefore, the execution time T,(C) by parti-
tioning the system into d groups is less than the
execution time T4(C).

We have measured the total execution time
of given matrix products executed on the Fu-
jitsu AP1000 parallel system with 512 proces-
sors. It includes the time to distribute the sub-
matrices and to collect the results to the host
computer. Fig. 6 shows the results on various
number of partitions for evaluating identical 8
matrix products. For example, 2 in the z-axis
represents the evaluation method that two ma-
trix products are executed concurrently on the
two-partitioned system and 4 repetitions are re-
quired for evaluating 8 matrix products. As the
results indicate, the method of running multi-
ple matrix products concurrently enhances the
performance than the method of running each
matrix product with the whole system. As the
concurrency level increases, the total execution
time decreases in this case.

Fig. 7 shows the results for 32 identical ma-
trix products. For the (320,320, 320) product,
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Figure 6: Total execution time of 8 matrix prod-
ucts over various partitioning sizes.
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Figure 7: Total execution time of 32 matrix
products over various partitioning size.

running on the two-partitioned system (60 sec-
onds) gains almost 2.5 times speedup than run-
ning on the whole system (150 seconds). Since
the speedup by doubling the allocated proces-
sors cannot exceed 2, the execution on the two-
partitioned system reinforces the performance
more than twice when there is enough parallel
tasks to run concurrently. This simple derivation
shows the effect. Speedup boundary for paral-
lelizing a product C;:

%T(cj, P) < T(C;,2P).

Reinforced speedup by reducing parallelism and
executing two C; products concurrently:

T(C,,P/2)<2T(C,,P)

However, only increasing the concurrency
level by partitioning a system does not guaran-
tee the performance enhancement. In case of
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(320, 320, 320) product in Fig. 7, more than 8
partitioning does not gain performance enhance-
ment.

From the above experiments, we can conclude
that the overall system performance is enhanced
by executing multiple independent matrix prod-
ucts concurrently. The concurrent execution by
partitioning a parallel system compensates the
loss of the performance by parallelizing a task
and increases the overall system performance.
Notice that the performance significantly im-
proves when a matrix product is running on less
than summit point of processor allocation.

4 Applying to Matrix Chain
Products

The performance enhancement by reducing the
dependent parallelism and increasing the in-
dependent concurrency can be applicable to
many processor allocation problems with scal-
able tasks.

As one example, let us consider the evalua-
tion problem of a matrix chain product, which
is commonly used as an example of dynamic pro-
gramming. In the evaluation of a chain of matrix
products with n matrices M = My X My X --- X
M,, where M; is a m; X m;y1(m; > 1) matrix, the
product sequence of matrices greatly affects the
total number of operations to evaluate M, even
though the final result is the same for all product
sequences by the associative law of the matrix
multiplication. An arbitrary product sequence
of matrices may be as bad as Q(T5,;) where T,y
is the minimum number of operations required to
evaluate a chain of matrix products [3]. The ma-
trix chain ordering problem (MCOP) is to find a
product sequence of matrices such that the num-
ber of operations is minimized.

There are many works reported for solving
MCOP and for reducing the ordering time. First
of all, MCOP was reported by Godbole [4] and
solved using dynamic programming in O(n3)
time. The optimal sequential algorithm which
runs in O(nlog(n)) time was given by Hu and
Shing [5, 6]. This algorithm solves MCOP by
solving the equivalent problem, known as the
problem of finding an optimal triangulation of
a convex polygon. Many parallel algorithms
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to reduce the ordering time have been studied
using the dynamic programming method [7, 8,
9, 10] or the triangulation of a convex poly-
gon [11, 12]. Bradford [9] proposed a parallel
algorithm based on the dynamic programming
which runs in O(log?(n)) time with n processors
on the EREW PRAM or O(log®(n)loglog(n))
time with n/loglog(n) processors on the CRCW
PRAM. Czumaj proposed a O(log®(n)) time al-
gorithm based on the triangulation of a convex
polygon, which runs with n?/log(n) processors
on the CREW PRAM [11]. Ramanan improved
the algorithm to run in O(log*(n)) time using n
processors [12].

However, the evaluation of a matrix chain
product by the MCOP order cannot guarantee
the minimal time on a parallel system due to in-
efficient use of processors. In the single proces-
sor system, the evaluation of a chain of matrix
products by the optimal product sequence guar-
antees the minimum evaluation time since the
optimal product sequence guarantees the mini-
mum number of operations. However, in par-
allel systems, parallel computation of each ma-
trix product with the product sequence found
for the minimum number of operations does not
guarantee the minimum evaluation time. This
is because that the evaluation time in parallel
systems is affected by various factors such as de-
pendency among tasks, communication delays,
and efficiency of processors as we discussed in
Section 2. Hence, the evaluation time of a chain
of matrix products in parallel systems can be
reduced by executing two or more independent
matrix products concurrently even though do-
ing so may increase the number of operations.
Therefore, it is more important to find a set of
independent matrix products and to increase the
set by modifying the product sequence as long as
we can reduce the overall evaluation time.

5 Conclusion

The processor allocation problem for matrix
products is considered in this paper. From the
experiments, allocating more processors does not
increase the speedup after a certain point — sum-
mit point. And the summit point of a product
to multiply an m; X m; matrix and an m; X mg
matrix is smaller than m; X mg in any kind of



a parallel system. For evaluating a number of
independent matrix products, we can get the
performance enhancement by executing multiple
matrix products concurrently on a partitioned
system.

This kind of efficient processor allocation con-
cept can be applicable to many processor alloca-
tion problems for parallel tasks with scalability
characteristics. We showed one example with
the evaluation problem for a matrix chain prod-
ucts which is known as matrix chain ordering
problem (MCOP). We are currently studying the
evaluation method for a matrix chain product on
a parallel system. Also, the result of this work
can be applicable to many other processor allo-
cation problem with scalable tasks.
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