
Task scheduling using a block dependency
DAG for block-oriented sparse

Cholesky factorization q

Heejo Lee a,*, Jong Kim b, Sung Je Hong b, Sunggu Lee c

a Ahnlab, Inc., 8F V-Valley Bldg., 724 Suseo-dong, Gangnam-gu Seoul 135-744, South Korea
b Department of Computer Science and Engineering, Pohang University of Science and Technology,

Pohang 790-784, South Korea
c Department of Electrical Engineering, Pohang University of Science and Technology,

Pohang 790-784, South Korea

Received 11 April 2002; accepted 17 September 2002

Abstract

Block-oriented sparse Cholesky factorization decomposes a sparse matrix into rectangular

subblocks; each block can then be handled as a computational unit in order to increase data

reuse in a hierarchical memory system. Also, the factorization method increases the degree of

concurrency and reduces the overall communication volume so that it performs more effi-

ciently on a distributed-memory multiprocessor system than the customary column-oriented

factorization method. But until now, mapping of blocks to processors has been designed

for load balance with restricted communication patterns. In this paper, we represent tasks

using a block dependency DAG that represents the execution behavior of block sparse Cholesky

factorization in a distributed-memory system. Since the characteristics of tasks for block

Cholesky factorization are different from those of the conventional parallel task model, we

propose a new task scheduling algorithm using a block dependency DAG. The proposed al-

gorithm consists of two stages: early-start clustering, and affined cluster mapping (ACM).

The early-start clustering stage is used to cluster tasks while preserving the earliest start time

of a task without limiting parallelism. After task clustering, the ACM stage allocates clusters

to processors considering both communication cost and load balance. Experimental results on

qThis research was supported in part by the Ministry of Education of Korea through its BK21 program

toward the Electrical and Computer Engineering Division at POSTECH.
*Corresponding author. Address: Ahnlab, Inc., 8F V-Valley Bldg., 724 Suseo-dong, Gangnam-gu

Seoul 135-744, South Korea.

E-mail addresses: heejo@ahnlab.com (H. Lee), jkim@postech.ac.kr (J. Kim), sjhong@postech.ac.kr

(S.J. Hong), slee@postech.ac.kr (S. Lee).

0167-8191/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0167-8191 (02 )00220-X

www.elsevier.com/locate/parco

Parallel Computing 29 (2003) 135–159

mail to: heejo@ahnlab.com


a Myrinet cluster system show that the proposed task scheduling approach outperforms other

processor mapping methods.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Task scheduling; Parallel sparse matrix factorization; Block-oriented Cholesky factorization;

Directed acyclic graph

1. Introduction

Sparse Cholesky factorization is a computationally intensive operation commonly

encountered in scientific and engineering applications including structural analysis,

linear programming, and circuit simulation. Much work has been done on paralle-
lizing sparse Cholesky factorization, which is used for solving large sparse systems

of linear equations. The performance of parallel Cholesky factorization is greatly in-

fluenced by the method used to map a sparse matrix onto the processors of a parallel

system. Based on the mapping method, parallel sparse Cholesky factorization me-

thods are classified into the column-oriented Cholesky, the supernodal Cholesky,

the amalgamated supernodal Cholesky, and the 2-D block Cholesky. The earliest

work is based on the column-oriented Cholesky in which a single column is mapped

to a single processor [8,17]. In the supernodal Cholesky, a supernode, which is a
group of consecutive columns with the same row structure, is mapped to a single pro-

cessor [5,26]. The amalgamated supernodal Cholesky uses the supernode amalgam-

ation technique in which several small supernodes are merged into a larger

supernode, and an amalgamated supernode is then mapped to a single processor

[4,30]. In the 2-D block Cholesky, a matrix is decomposed into rectangular blocks,

and a block is mapped to a single processor [10,31].

Recent advanced methods for sparse Cholesky factorization are based on the use

of the 2-D block Cholesky to process non-zero blocks using Level 3 basic linear al-
gebra subprograms (BLAS) [7,8]. Such a 2-D decomposition is more scalable than

a 1-D decomposition and has an increased degree of concurrency [34,35]. Also,

the 2-D decomposition allows one to use efficient computation kernels such as Level

3 BLAS so that caching performance is improved [30]. Even in a single processor sys-

tem, block factorizations are performed efficiently [25].

There are few works reported for the 2-D block Cholesky in a distributed-memory

system. Rothberg and Gupta introduced the block fan-out algorithm [31]. Similarly,

Dumitrescu et al. introduced the block fan-in algorithm [10]. Gupta, Karypis, and
Kumar [16] also used 2-D mapping for implementing a multifrontal method. In

[29], Rothberg has shown that a block fan-out algorithm using the 2-D decomposi-

tion outperforms a panel multifrontal method using 1-D decomposition. Even

though the block fan-out algorithm increases concurrency and reduces overall com-

munication volume, the performance achieved is not satisfactory due to load imbal-

ance among the processors. Therefore, several load balancing heuristics have been

proposed in [32].

136 H. Lee et al. / Parallel Computing 29 (2003) 135–159



However, the load balance is not the sole key parameter for improving the perfor-

mance of parallel block sparse Cholesky factorization. Mapping for load balance

only guarantees that the computation is well distributed among processors; it does

not guarantee that the computation is well scheduled when considering the commu-

nication requirements. Thus, communication dependencies among blocks may cause
some processors to wait even with balanced loads.

In this paper, we introduce a task scheduling method using a DAG-based task

graph which represents the behavior of block sparse Cholesky factorization with

exact computation and communication costs. As we will show in Section 3, a task

graph for sparse Cholesky factorization is different from a conventional parallel task

graph. Hence we propose a new heuristic algorithm which attempts to minimize the

completion time while preserving the earliest start time of each task in a graph. It has

been reported that a limitation on memory space can adversely affect performance
[37]. But we do not consider the memory space limitations in this paper, since we as-

sume that the factorization is done on a distributed-memory system with sufficient

memory to handle the work assigned to each processor. Even though there have been

recent efforts for scheduling irregular computations on parallel systems [11,18,19],

this paper presents the first work that deals with the entire framework of applying

a scheduling approach for block-oriented sparse Cholesky factorization in a distri-

buted system.

The next section describes the block fan-out method for parallel sparse Cholesky
factorization. In Section 3, the sparse Cholesky factorization is modeled as a DAG-

based task graph, and the characteristics of a task for this problem are summarized.

Since the characteristics of this type of task are different from those of the conven-

tional precedence-constrained parallel task, a new task scheduling algorithm is pro-

posed in Section 4. The performance of the proposed scheduling algorithm is

compared with the previous processor mapping methods using experiments on a

Myrinet cluster system in Section 5. Finally, in Section 6, we summarize and con-

clude the paper.

2. Block-oriented sparse Cholesky factorization

This section describes the block fan-out method for sparse Cholesky factorization,

which is an efficient method for distributed-memory systems [3,20,29,31]. The block

Cholesky factorization method decomposes a sparse matrix into rectangular blocks,

and then factorizes it with dense matrix operations.

2.1. Block decomposition

The most important feature in sparse matrix factorizations is the use of super-

nodes [4,5]. A supernode is a set of adjacent columns in the sparse matrix, which con-

sists of a dense triangular block on the diagonal, and identical non-zero structures in

each column below the diagonal. Since supernodes represent the sparsity structure of

H. Lee et al. / Parallel Computing 29 (2003) 135–159 137



a sparse matrix, block decomposition with supernodes cause non-zero blocks to be-

come as dense as possible and easy to handle due to shared common boundaries [31].

The performance of the factorization is improved by supernode amalgamation, in

which small supernodes are amalgamated into bigger ones in order to reduce the

overhead for managing small supernodes and to improve caching performance
[1,4,31]. Supernode amalgamation is a process of identifying the locations of zero ele-

ments that would produce larger supernodes if they were treated as non-zeros. On

the other hand, large supernodes are splitted by the maximum allowable supernode

size in order to exploit concurrency within dense block computations [10,29]. In the

following, such an amalgamated supernode will be assumed by default, and will be

referred to simply as a supernode.

In a given n� n sparse matrix with N supernodes, the supernodes divide the col-

umns of the matrix ð1; . . . ; nÞ into contiguous subsets ðf1; . . . ; p2 � 1g; fp2; . . . ;
p3 � 1g; . . . ; fpN ; . . . ; ngÞ. The size of the ith supernode is ni, i.e., ni ¼ piþ1 � pi andPN

i¼1 ni ¼ n. A partitioning of rows and columns using supernodes produces blocks

such that a block Li;j is the submatrix decomposed by supernode i and supernode j.
Then, the row numbers of elements in Li;j are in fpi; . . . ; piþ1 � 1g, and the column

numbers of elements in Li;j are in fpj; . . . ; pjþ1 � 1g.
After the block decomposition of the sparse factor matrix, the total number of

blocks is NðN þ 1Þ=2. The number of diagonal blocks is N , and all diagonal blocks

are non-zero blocks. Each of the NðN � 1Þ=2 off-diagonal rectangular blocks is either
a zero block or a non-zero block. A zero block refers to a block whose elements are

all zeros, and a non-zero block refers to a block that has at least one non-zero ele-

ment. A non-zero off-diagonal rectangular block is referred to as a rectangular block.

After block decomposition using supernodes, the resulting structure is quite regular

[31]. Each block has a very simple non-zero structure in which all rows in a non-zero

block are dense and blocks share common boundaries. Therefore, the factorization

can be represented in a simple form.

2.2. Block Cholesky factorization

The sequential algorithm for block Cholesky factorization, as described in [31], is

shown in Fig. 1. The algorithm works with the blocks decomposed by supernodes to

Fig. 1. Sequential block Cholesky factorization.

138 H. Lee et al. / Parallel Computing 29 (2003) 135–159



retain as much efficiency as possible in block computation. The block computations

can be done using efficient matrix–matrix operation packages such as Level 3 BLAS

[6]. Such block computations require no indirect addressing, which leads to enhanced

caching performance and close to peak performance on modern computer architec-

tures [7].

2.3. Block operations

Let us denote the dense Cholesky factorization of a diagonal block Lkk (Step 2 in

Fig. 1) as bfactðkÞ. Similarly, let us denote the operation of Step 4 as bdivði; kÞ, and
the operation of Step 7 as bmodði; j; kÞ. These three block operations are the primi-

tive operations used in block factorization.

Even though a non-zero block has a sparse structure, we handle it as a dense
structure. Since the blocks decomposed by supernodes are well-organized, such a

sparse operation for blocks is rarely required [29]. Therefore, we assume that all

block operations are handled with dense matrix operations.

For bfactðkÞ, an efficient dense Cholesky factorization, such as POTRFð Þ in

LAPACK, can be used. Also, bdivði; kÞ and bmodði; j; kÞ are supported by Level 3

BLAS routines such as TRSMð Þ and GEMMð Þ. Therefore, we can measure

the total number of operations required for each block operation as follows [7].

WbfactðkÞ ¼ nkðnk þ 1Þð2nk þ 1Þ=6;
Wbdivði;kÞ ¼ nin2

k ;

Wbmodði;j;kÞ ¼ 2ninjnk:

2.4. Required number of block update operations

The most computation intensive parts of block factorization are the block update

operations. The block update operations, bmodði; j; kÞ, are performed using a doubly

nested loop, and thus take most of the time required for block factorization.

The number of required block updates for block Li;j can be measured. We use the
notation ai;j to denote whether Li;j is a non-zero block or not.

ai;j ¼
0 if Lij ¼ ;;
1 otherwise:

�
Let nmodðLi;jÞ denote the number of required bmodð Þ updates for Li;j. When Li;j

is a rectangular block,

nmodðLi;jÞ ¼
Xj�1

k¼1

ai;k � aj;k:

For a diagonal block Lj;j,

nmodðLj;jÞ ¼
Xj�1

k¼1

aj;k:

Thus, the maximum number of updates for Li;j is j� 1.

H. Lee et al. / Parallel Computing 29 (2003) 135–159 139



3. Task model with communication costs

Since a non-zero block Li;j is assigned to one processor [31], all block operations

for a block can be treated as one task. This means that a task is executed in one pro-

cessor, and a task consists of several subtasks for block operations. This section de-
scribes the characteristics of tasks, and proposes a task graph that represents the

execution sequence of block factorization. The task graph, referred to as a block de-

pendency DAG, reflects the costs of computations and communications and the pre-

cedence relationships among tasks.

3.1. Task characteristics

A task consists of multiple subtasks depending on the required block updates,
and is represented using a tree of at most 2 levels of subtasks. If a diagonal block

Lj;j requires m block updates, i.e., nmodðLj;jÞ ¼ m, its corresponding task has

mþ 1 subtasks including a bfactðjÞ operation. Then, the task has m parent tasks

as shown in Fig. 2. Let us denote the m blocks of parent tasks as Lj;k0 ; . . . ; Lj;km�1
,

16 ki 6 j� 1 for 06 i6m� 1. If there is no block update required for Lj;j,

i.e., nmodðLj;jÞ ¼ 0, then the task has no parent task and only one subtask for

bfactðjÞ.
If a rectangular block Li;j requires m block updates, i.e., nmodðLi;jÞ ¼ m, then the

corresponding task consists of mþ 1 subtasks including the subtask for the bdivði; jÞ
operation. The task has 2mþ 1 parents as shown in Fig. 3. Let us refer to the 2mþ 1

parent blocks as Li;k0 ; Lj;k0 ; . . . ; Li;km�1
; Lj;km�1

; Lj;j. A subtask for a block update

bmodði; j; kÞ executes after the two parent tasks for Li;k and Lj;k have completed

and sent their blocks to Li;j. Also, for a diagonal block Lj;j, only one parent for

Lj;k needs to be completed before executing the bmodðj; j; kÞ operation.

Fig. 2. Task for a diagonal block Lj;j.

140 H. Lee et al. / Parallel Computing 29 (2003) 135–159



3.2. Task graph

We now present a task graph for the block fan-out (right-looking) Cholesky fac-

torization. The task graph, referred to as the block dependency DAG, reflects the

precedence relationships among the blocks and the computation and communication

costs required for each block.

Let us assume that there are v non-zero blocks in the decomposed factor matrix.

Each block is represented as a single task, so that there are v tasks T1; . . . ; Tv and

XN
j¼1

XN
i¼j

ai;j ¼ v:

We assign a number to each block starting from the blocks in column 1 and end-

ing at column N . For blocks in the same column, the block in the smallest row num-
ber is enumerated first. Such a numbering method implies that the task with the

smallest number should be executed first among the precedence-constrained tasks

in a processor.

Block Cholesky factorization is represented as a DAG, G ¼ ðV ;E;W ;CÞ. V is a

set of tasks fT1; . . . ; Tvg and jV j ¼ v. E is a set of communication edges among tasks

and jEj ¼ e. Wx, where Wx 2 W , represents the computation cost of Tx. If Tx is a task

corresponding to a diagonal block Lj;j, then

Wx ¼ WbfactðjÞ þ
Xj�1

k¼1

aj;kWbmodðj;j;kÞ:

Also, if Tx corresponds to a rectangular block Li;j,

Wx ¼ Wbdivði;jÞ þ
Xj�1

k¼1

ai;k � aj;kWbmodði;j;kÞ:

C is a set of communication costs, and cx;y denotes the communication cost incurred

along the edge ex;y ¼ ðTx; TyÞ 2 E. If Tx is the task for Li;k and Ty is the task for Li;j,

Fig. 3. Task for a rectangular block Li;j.

H. Lee et al. / Parallel Computing 29 (2003) 135–159 141



then Tx needs to send the block Li;k to Ty . Therefore, we can estimate the commu-

nication cost cx;y in a message-passing distributed system as follows:

cx;y ¼ ts þ tcnink:

In the above equation, ts is the startup cost for sending a message and tc is the

transfer cost for sending one floating point number. For most current message-
passing systems, per-hop delay caused by the distance between two processors is

negligible due to the use of ‘‘wormhole’’ routing techniques and the small diameter

of the communication network [7].

We let parentðxÞ denote the set of immediate predecessors of Tx, and childðxÞ de-

note the set of immediate successors of Tx.

parentðxÞ ¼ fyjey;x 2 Eg
childðxÞ ¼ fyjex;y 2 Eg

Generally, the task graph G has multiple entry nodes and a single exit node. When

a task consists of multiple subtasks, some of them can be executed as soon as the

data is ready from the parents of the task. Thus, the time from start to finish for

a task Tx is not a fixed value, e.g., Wx, but rather depends on the time when the re-

quired blocks for subtasks are ready from their parents. Therefore, scheduling a task

as a run-to-completion task would result in an inefficient schedule. Most previous
DAG-based task scheduling algorithms assume that a task is started after all parent

tasks have been finished.

There are two approaches to resolving this situation. One is designing a task model

which includes subtasks. The other is using a block dependency DAG. The former is

a complicated approach because the task model may have many subtasks and some

of them may already be clustered. Thus, this task model is difficult to handle using a

scheduling algorithm. The latter uses a simple, precise task graph as a block depen-

dency DAG. Nevertheless, we can extract relevant information on all subtasks from
the relations in a block dependency graph. Therefore, we devise a task scheduling

algorithm using a block dependency DAG.

3.3. Task execution behavior on previous block mapping methods

Using the task model, we can estimate the performance of the previous block

mapping methods. The methods are 2-D block cyclic mapping [31] and load balance

mapping [32]. As an example, we use a 70� 70 sparse matrix decomposed into five
supernodes as shown in Fig. 4. The shaded blocks are non-zero blocks, and their task

numbers are counted lexicographically such that tasks of L11; L31; L51; . . . ; L55 are

T1; T2; T3; . . . ; T10, respectively. The corresponding task graph of the given sparse ma-

trix is shown in Fig. 5. We use ts ¼ 0; tc ¼ 10 for the communication costs.

3.3.1. 2-D cyclic mapping

2-D cyclic mapping uses the index of Li;j for mapping the block to a processor. On

a logical ðPr � PcÞ mesh, the mapping function is as follows:

mapðLi;jÞ ¼ ðimodPr; jmodPcÞ:

142 H. Lee et al. / Parallel Computing 29 (2003) 135–159



Fig. 6 shows the mapping result of cyclic mapping on 2� 1 processors. P0 stands

for processor ð0; 0Þ and P1 for processor ð1; 0Þ. The mapping is quite unbalanced be-

tween the two processors. P1 has 8 blocks, but P0 has only 2 blocks. The total com-

pletion time of the cyclic mapping is 49 225, as shown in Fig. 7.

3.3.2. Load balanced mapping

To improve the load imbalance, block mapping heuristics have been proposed

[32]. The block mapping heuristics are based on the Cartesian product that maps a
column of blocks to a column of processors and a row of blocks to a row of proces-

sors. Then the communication patterns become quite restricted, in that a block needs

Fig. 4. Sparse matrix decomposed using five supernodes.

Fig. 5. Block dependency DAG for the example sparse matrix.

H. Lee et al. / Parallel Computing 29 (2003) 135–159 143



Fig. 6. 2-D cyclic block mapping.

Fig. 7. The completion time by 2-D cyclic mapping.

144 H. Lee et al. / Parallel Computing 29 (2003) 135–159



to be sent to Oð
ffiffiffi
P

p
Þ processors on a P processor system ðP ¼ Pr � PcÞ. The mapping

function based on the Cartesian product is as follows:

mapðLijÞ ¼ ðmapIðiÞ;mapJðjÞÞ;
where

mapI : f1 . . .Ng ! f0 . . . Pr � 1g and mapJ : f1 . . .Ng ! f0 . . . Pc � 1g:
The mapping function, mapI or mapJ , for blocks can be determined by several

heuristics: decreasing work, increasing number, decreasing number, and increasing

depth. Based on such a strategy, each heuristic algorithm maps a block to the

processor with the minimum amount of work. Among such algorithms, algorithms

based on the decreasing number heuristic and the increasing depth heuristic usually

balance better than the other two methods [32].
When load balanced mapping with the decreasing number heuristic is applied to

the sparse matrix in Fig. 4, the mapping result shown in Fig. 8 is obtained. In this

figure, WorkI ½i� represents the total work of blocks in row i, and WorkJ ½j� represents
the total work of blocks in column j. Mapping by other heuristics are all the same for

this example. Although the mapping greatly improves the load balance, the comple-

tion time is not reduced by very much. The completion time by load balanced map-

ping is 46 060 as shown in Fig. 9. Since there is a lot of waiting time, the completion

time is reduced by only 6.5% from the cyclic mapping result.

Fig. 8. Illustration of load balance mapping. (For column mapping, mapJ ½j� ¼ 0 for all j ¼ 1; . . . ; 5. For

row mapping, mapI ½5� ¼ 0, and 1 for others.)

H. Lee et al. / Parallel Computing 29 (2003) 135–159 145



4. Task scheduling using a block dependency DAG

The problem of finding the optimal solution for a weighted DAG is known to be

NP-hard in the strong sense [33,36]. When each task in a block dependency graph

consists of only one or two subtasks, the scheduling problem using the block depen-

dency DAG reduces to the NP-hard scheduling problem. Thus, finding an optimal

scheduling of tasks in a block dependency DAG is an NP-hard problem. Therefore,

a heuristic algorithm is presented in this section.

The proposed scheduling algorithm consists of two stages: task clustering without

considering the number of available processors and cluster-to-processor mapping on
a given number of processors. Most of the existing algorithms for a weighted DAG

also use such a framework [14,15,21,28,33,39]. The goal of the proposed clustering

algorithm, called early-start clustering, is to preserve the earliest possible start time

of a task without reducing the degree of concurrency in the block dependency

DAG. The proposed method of mapping clusters to processors, called affined cluster

mapping (ACM), attempts to reduce the communication overhead and balance loads

among processors.

Fig. 9. The completion time by load balance mapping.

146 H. Lee et al. / Parallel Computing 29 (2003) 135–159



4.1. Task scheduling parameters

Several parameters are used in our scheduling method. The parameters, which are

measured for a given block dependency DAG, include the work required for each

subtask in a task, the parent information for subtasks, the earliest start time of a
task, the earliest completion time of a task, and the level of a task.

4.1.1. Work and parents of subtasks

A task Ti requiring mi block updates consists of mi þ 1 subtasks. We refer to the

work for themi þ 1 subtasks asWi;0;Wi;1; . . . ;Wi;mi . Then the following equation is sati-

sfied:

Wi ¼
Xmi

j¼0

Wi;j:

If Ti is the task for a diagonal block, then there are mi parents. The parent tasks are

referred to as Tk0 ; Tk1 ; . . . ; Tkmi�1
. If Ti is the task for a rectangular block, there are

2mi þ 1 parents, which are referred to as Tk0 ; Tk1 ; . . . ; Tk2mi .

4.1.2. Earliest start time of a task

The earliest start time of a task is defined as the earliest time when one of its sub-

tasks is ready to run. Note that the earliest start time of a task is not the time when
all required blocks for the task are received from the parent tasks, although this time

has been used by general DAG-based task scheduling algorithms. The earliest start

time of Ti, estðiÞ, is defined recursively using the earliest completion time of the pa-

rent tasks. The earliest completion time of Tk is denoted by ectðkÞ––ectðkÞ will be for-

mally defined later in this section. If Ti is the task for a diagonal block, then

estðiÞ ¼
0 if parentðiÞ ¼ ;;
mink2parentðiÞðectðkÞ þ ck;iÞ otherwise:

(

Also, if Ti is the task for a rectangular block, then

estðiÞ ¼
ectðk0Þ þ ck0;i if parentðiÞ ¼ fk0g;
min06 j6m�1ðmaxðectðk2jÞ þ ck2j ;i; ectðk2jþ1Þ þ ck2jþ1;iÞÞ otherwise:

(

When Ti is clustered with a parent Tk, then we can omit the communication cost

from Tk to Ti by setting ck;i ¼ 0. Thus, the above equations can be used in all of the
clustering steps.

4.1.3. Earliest completion time of a task

The earliest completion time of Ti, referred to as ectðiÞ, is the earliest possible com-

pletion time of all subtasks in Ti. To define ectðiÞ, we use pestði; jÞ, which represents

the earliest start time of a particular jth subtask in task i (06 j6mi). If Ti is the task

for a diagonal block, then

H. Lee et al. / Parallel Computing 29 (2003) 135–159 147



ectðiÞ ¼ pestði;miÞ þ Wi;mi ;

pestði; 0Þ ¼ estðiÞ;

pestði; jÞ ¼ maxðpestði; j� 1Þ þ Wi;j�1; ectðkj�1Þ þ ckj�1;iÞ;

pestði;miÞ ¼ pestði;mi � 1Þ þ Wi;mi�1:

If Ti is the task for a rectangular block,

ectðiÞ ¼ pestði;miÞ þ Wi;mi ;

pestði; 0Þ ¼ estðiÞ;

pestði; jÞ ¼ maxðpestði; j� 1Þ þ Wi;j�1;maxðectðk2jÞ þ ck2j;i; ectðk2jþ1Þ þ ck2jþ1;iÞÞ;

pestði;miÞ ¼ maxðpestði;mi � 1Þ þ Wi;mi�1; ectðk2miÞ þ ck2mi ;iÞ:

4.1.4. Level of a task

The level of Ti is the length of the longest path from Ti to the exit task, including

the communication costs along that path. The level of Ti corresponds to the worst-

case remaining time of Ti. The level is used for the priority of Ti in task clustering.

Level is defined as follows:

levelðiÞ ¼ Wi if childðiÞ ¼ ;;
maxk2childðiÞðlevelðkÞ þ ci;kÞ þ Wi otherwise:

�

4.2. Early-start clustering

The proposed early-start clustering (ESC) algorithm attempts to reduce the total

completion time of all tasks by preserving the earliest start time of each task. ESC
uses the level of a task as its priority so that a task on the critical path of a block

dependency DAG can be examined earlier than other tasks. Each task is allowed

to be clustered with only one of its children to preserve maximum parallelism.

The ESC algorithm uses the lists EG, UEG, CL, and FL. EG contains the exam-

ined tasks. UEG is for unexamined tasks. CL is a list of the tasks clustered with one

of its children so that a task in CL cannot be clustered with other children. FL is a

list of all free tasks maintained by a priority queue in UEG so that the highest level

task can be examined earlier than others. CLUST(Ti) refers to the cluster for task Ti.
The complete ESC algorithm is described in Fig. 10.

Property 1. The ESC algorithm guarantees the maximum degree of concurrency.

Proof. Given a block dependency graph G, let k be the attainable maximum degree of

concurrency. This means that, at most, k tasks can run independently and concur-

rently. Let us denote these k tasks as v1; . . . ; vk. Consider the case when a node vi
(16 i6 k) is clustered with any one of its parents. If the parent is already clustered
with vj (16 j6 k; i 6¼ j), then the degree of concurrency becomes k � 1. Otherwise,

148 H. Lee et al. / Parallel Computing 29 (2003) 135–159



the degree of concurrency does not change. Since the ESC algorithm does not allow

two tasks to be clustered with the same parent, the maximum degree of concurrency

does not decrease while all k tasks to be examined are clustered with one of their

parents.

Next, consider the situation when ESC examines each child of the k tasks. Any
one child can be clustered with one of the k tasks, and none of the k tasks are allowed

to be clustered with two children. Therefore, the degree of concurrency does not

change after examining all children with the ESC algorithm. Thus, the ESC algo-

rithm guarantees the maximum degree of concurrency. �

The time complexity of ESC is as follows. To calculate the levels of tasks in Step

2, tasks are visited in post-order and all edges are eventually examined. Hence, the

complexity of Step 2 is OðeÞ. In the while loop, the most time consuming part is
the calculation of ectðiÞ in Step 16, which sorts all subtasks with respect to the ready

time of each subtask. Since the number of subtasks in a task is not larger than N ,

sorting of subtasks takes OðN logðNÞÞ time. The complexity of Step 16 is

OðvN logðNÞÞ for v iterations. Thus, the overall complexity of the ESC algorithm

is Oðeþ vN logðNÞÞ.

Fig. 10. The early-start clustering algorithm.

H. Lee et al. / Parallel Computing 29 (2003) 135–159 149



4.3. Affined cluster mapping

The most common cluster mapping method is based on a work profiling method
[12,27,38], which is designed only for load balancing based on the work required

for each cluster. However, by considering the required communication costs and pre-
serving parallelism whenever possible, we can further improve the performance of

block Cholesky factorization.

In this subsection, we introduce the ACM algorithm, which uses the affinity as

well as the work required for a cluster. The affinity of a cluster to a processor is de-

fined as the sum of the communication costs required when the cluster is mapped to

other processors. We classify the types of unmapped clusters into affined clusters,
free clusters, and heaviest clusters.

• Affined cluster: If any task in a cluster needs to communicate with the tasks allo-

cated to processor p, then the cluster is an affined cluster of processor p. The af-

finity of the cluster is the sum of the communication costs between the tasks in the

cluster and the tasks allocated to processor p.
• Free cluster: If a cluster has an entry task, the cluster is a free cluster. Such a free

cluster allows a processor to execute the entry task without waiting. Note that an

affined cluster can be a free cluster.

• Heaviest cluster: If the sum of the computation costs of tasks in a cluster is the
largest among all unmapped clusters, then that cluster is the heaviest cluster.

ACM finds the processor with the minimum amount of work and allocates a clus-

ter found by the following search sequence: the cluster with the highest affinity

among affined clusters to that processor, the heaviest cluster among the free clusters,

and then the heaviest cluster among all unmapped clusters. Initially, all processors

have no tasks. Therefore, the heaviest free cluster is allocated first. If the processor

with the minimum amount of work has some clusters already allocated to it, then
ACM checks whether there are affined clusters for that processor. If not, ACM

checks the free clusters. If there are no affined or free clusters, then the heaviest clus-

ter among the unmapped clusters is allocated to that processor.

ACM uses the lists CLUST, MC, UMC, and FC. CLUST is the entire set of clus-

ters, and CLUSTðTiÞ represents the cluster containing task Ti. MC is a list of the

mapped clusters, and UMC is a list of the unmapped clusters. Thus

MC [UMC ¼ CLUST. FC is a list of the free clusters. UMC and FC are main-

tained as priority queues with the heaviest cluster first. Each cluster has a list of af-
finity values for all processors. The complete ACM algorithm is described in Fig. 11.

The time complexity of ACM is analyzed as follows. Let P denote the total num-

ber of processors. Since the number of clusters is less than the number of tasks, the

number of clusters is bounded by OðvÞ. In Steps 3–5, OðvP Þ time is required for ini-

tialization. In the while loop, Step 7 takes OðP Þ time and Step 8 takes OðvÞ time;

since the loop iterates for each cluster, these two steps take Oðv2 þ vP Þ time. Steps

14–20 are for updating the affinity values for each unmapped cluster communicating

with the current cluster. In the worst case, all edges are traced twice during the whole

150 H. Lee et al. / Parallel Computing 29 (2003) 135–159



loop of the ACM algorithm, once for checking the parents and once for checking the
children. Therefore, the complexity for updating affinities is Oð2eÞ. The overall com-

plexity of the ACM algorithm is thus OðvP þ v2 þ eÞ.

4.4. Running trace of the proposed scheduling algorithm

To illustrate the operation of the proposed scheduling algorithm, we use the ex-

ample matrix in Fig. 4. The result of clustering by the ESC algorithm is shown in

Fig. 12. After mapping by the ACM algorithm, the completion time is estimated
and shown in Fig. 13. The proposed scheduling algorithm takes only 35 510 units

of time. This is 1.39 times faster than 2-D cyclic mapping and 1.30 times faster than

load balanced mapping.

Fig. 14 shows a larger DAG that maps blocks onto processors using the proposed

scheduling method for the 100� 100 R2D100 matrix. The sparse matrix R2D100 is

generated by first randomly triangulating the unit square with 100 grid points, which

is taken from the SPOOLES library [2]. Then, 38 blocks are decomposed using 15

supernodes. In this example, the load balanced mapping does not allocate any block
to P2. since the mapping allocates rows and columns to processors independently.

The proposed scheduling method merges 38 blocks into 18 clusters, which results

in the maximum degree of concurrency. Thus, the proposed scheduling method

Fig. 11. The affined cluster mapping algorithm.

H. Lee et al. / Parallel Computing 29 (2003) 135–159 151



results in a better load balance with a higher degree of concurrency than load bal-

anced mapping.

5. Performance comparison

The performance of the proposed scheduling method is compared with various
other mapping methods. The methods used for comparison are as follows:

• Wrap: 1-D wrap mapping [13] simply allocates all blocks in column j, i.e., L�;j, to

the processor ðjmodP Þ.
• Cyclic: 2-D cyclic mapping [31] allocates Li;j to the processor ðimodPr; jmodPcÞ.
• Balance: Balance mapping [32] attempts to balance the workload among proces-

sors. The decreasing number heuristic is used for ordering within a row or column.

• Schedule: The task scheduling method proposed in this paper.

The test sparse matrices are mainly taken from the Harwell-Boeing matrix collec-

tion [9], which is widely used for evaluating sparse matrix algorithms. In addition,

three sparse matrices are taken from the independent matrix sets in Matrix Market.

The characteristics of the test sparse matrices are shown in Table 1. 1 All matrices are

Fig. 12. Clustering by the ESC algorithm.

1 The number of operations (W ) is measured for the non-zero block operation so that it is somewhat

larger than the number of required operations only for non-zero elements. This number of operations is

considered as a workload in scheduling.

152 H. Lee et al. / Parallel Computing 29 (2003) 135–159



Fig. 13. Completion time by the proposed scheduling algorithm.

Fig. 14. Proposed clustering and four-processor mapping result for R2D100. The number of entry tasks is

10. The maximum degree of concurrency is 18. The number of clusters is 18.

H. Lee et al. / Parallel Computing 29 (2003) 135–159 153



ordered using a generalized nested dissection ordering [24]. Supernode amalgama-

tion [4] is applied to the ordered matrices to improve the efficiency of block opera-

tions. The amalgamation parameter used is max zero ¼ 256 and max size ¼ 32

using the SPOOLES library [2].

The parallel block fan-out method [31] is implemented with MPI on a Myrinet

cluster system. The cluster system consists of 20 733 MHz Pentium-III PCs intercon-

nected by high performance Myrinet switches and LANai 7 network interface cards.

The unidirectional one-to-one bandwidth using the Myrinet network was measured
to be 655 Mbps based on benchmark tests with MPI running on GM version 1.4.

GM is a low-level message passing system for Myrinet systems developed by Myri-

com, the creator of Myrinet. For the block operations, we used a Pentium-III opti-

mized BLAS library version 1.3e. 2 The peak performances of the Level 3 BLAS

Table 1

Benchmark sparse matrices

Matrix n jLj N v W

662_bus 662 1568 65 191 2.07M

1138_bus 1138 2596 106 288 3.18M

gr_30_30 900 4322 67 212 4.00M

bcsstk14 1806 32 630 167 627 2.01M

bcsstk27 1224 28 675 73 308 9.68M

bcsstk15 3948 60 882 307 2311 207.81M

bcsstk16 4884 147 631 388 2682 297.82M

bcsstk25 15 439 133 840 1578 12 465 814.79M

s1rmt3m1 5489 112 505 343 1989 142.42M

s2rmq4m1 5489 143 300 351 2216 159.62M

12

cyclic
balance

schedule

14 16 18 20

M
PL

O
PS

Number of processors (P)

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10

wrap

Fig. 15. MFLOPS performance over P for the ‘‘bcsstk15’’ matrix.

2 http://www.cs.utk.edu/�ghenry/distrib/index.html.

154 H. Lee et al. / Parallel Computing 29 (2003) 135–159

http://www.cs.utk.edu/~ghenry/distrib/index.html
http://www.cs.utk.edu/~ghenry/distrib/index.html


operators were measured to be 564 MFLOPS for DGEMMð Þ and 228 MFLOPS

for DTRSMð Þ on a single processor machine of the Myrinet cluster. In order to

model communication costs, we use ts ¼ 10 and tc ¼ 1, which were estimated from

the benchmark tests.
The performance results when factorizing the four matrices, ‘‘bcsstk15’’,

‘‘bcsstk16’’, ‘‘s1rmt3m1’’, and ‘‘s2rmq4m1’’, are shown in Figs. 15–18, respectively.

The MFLOPS performances of ‘‘wrap’’, ‘‘cyclic’’, ‘‘balance’’ and ‘‘schedule’’ as a

function of P are shown in order from the lowest line in each figure. As the number

of processors (P ) increases, the proposed schedule outperforms the other methods

and shows the best scalability with respect to the number of processors.

2000
cyclic

schedule
balance

2500

0 2 4 6 8 10 12 14 16 18 20

M
PL

O
PS

Number of processors (P)

0

500

1000

1500

wrap

Fig. 16. MFLOPS performance over P for the ‘‘bcsstk16’’ matrix.

200

cyclic

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10 12 14 16 18 20

M
PL

O
PS

Number of processors (P)

schedule
balance

wrap

Fig. 17. MFLOPS performance over P for the ‘‘s1rmt3m1’’ matrix.

H. Lee et al. / Parallel Computing 29 (2003) 135–159 155



The performance comparison of the four mapping methods on 20 processors is

shown in Fig. 19. ‘‘schedule’’ outperforms three other mapping methods, especially

with large matrices rather than small matrices. For instance, ‘‘schedule’’ reaches 2.3

GFLOPS with ‘‘bcsstk16’’, which performs 20% better than �balance�. In the average

case, �schedule� performs 15% better than �balance�.

600

cyclic

800

1000

1200

1400

1600

1800

2000

2200

0 2 4 6 8 10 12 14 16 18 20

M
PL

O
PS

Number of processors (P)

balance
schedule

200

400

wrap

Fig. 18. MFLOPS performance over P for the ‘‘s2rmq4m1’’ matrix.

Fig. 19. Performance comparison.

156 H. Lee et al. / Parallel Computing 29 (2003) 135–159



From the overall comparison, we can deduce that the proposed scheduling

method achieves the best performance on the Myrinet cluster. However, can we con-

firm that the proposed scheduling method also performs better in other computing

environments? To partially answer this question, we also experimented with a lower-

bandwidth Ethernet interface [22] and with the Fujitsu AP1000þ multicomputer
[23]. Similar results were obtained on these platforms. As the ratio of communication

cost to computation cost increases, and as the number of processors increases, the

proposed scheduling method increasingly outperforms other mapping methods.

6. Conclusion

We introduced a task scheduling approach for block-oriented sparse Cholesky
factorization on a distributed-memory system. The block Cholesky factorization

problem is modeled as a block dependency DAG, which represents the execution be-

havior of 2-D decomposed blocks. Using a block dependency DAG, we proposed a

task scheduling algorithm consisting of early-start clustering and ACM. Based on ex-

periments using a Myrinet cluster system, we have shown that the proposed sched-

uling algorithm outperforms previous processor mapping methods. Also, the

proposed scheduling algorithm has good scalability, so that its performance im-

proves progressively as the number of processors increases.
The main contribution of this work is the introduction of a task scheduling ap-

proach with a refined task graph for sparse block Cholesky factorization. We are

currently working on applying this scheduling algorithm to sparse LU factorization.

Since numerical factorization is the most computation intensive part of solving linear

systems, we have focused on parallelizing numerical factorization. However, we also

plan to study the use of our scheduling approach for solving triangular systems after

numerical factorization.

Acknowledgements

We would like to thank Cleve Ashcraft for his valuable comments on this work.
In addition, he provided us with his technical reports and the SPOOLES library,

which is used for ordering and supernode amalgamation.

References

[1] C.C. Ashcraft, The domain/segment partition for the factorization of sparse symmetric positive

definite matrices, Technical report, Boeing Computer Services, Seattle, Washington, 1990. ECA-TR-

148.

[2] C.C. Ashcraft, SPOOLES: An object-oriented sparse matrix library, In Proc. of 1999 SIAM

Conference on Parallel Processing for Scientific Computing, March 1999.

[3] C.C. Ashcraft, S. Eisenstat, J. Liu, A. Sherman, A comparison of three column-based distributed

sparse factorization schemes, Technical report, Department of Computer Science, Yale University,

New Haven, CT, 1990, YALEU/DCS/RR-810.

H. Lee et al. / Parallel Computing 29 (2003) 135–159 157



[4] C.C. Ashcraft, R.G. Grimes, The influence of relaxed supernode partitions on the multifrontal

method, ACM Trans. Math. Software 15 (4) (1989) 291–309.

[5] C.C. Ashcraft, R.G. Grimes, J.G. Lewis, B.W. Peyton, H.D. Simon, Progress in sparse matrix

methods for large linear systems on vector supercomputers, Int. J. Supercomput. Appl. 1 (4) (1987)

10–30.

[6] J.J. Dongarra, J.D. Croz, I.S. Duff, S. Hammarling, A set of level 3 basic linear algebra subprograms,

ACM Trans. Math. Software 16 (1) (1990) 1–17.

[7] J.J. Dongarra, I.S. Duff, D.C. Sorensen, H.A. van der Vorst, Numerical Linear Algebra for High

Performance Computers, SIAM (1998).

[8] I.S. Duff, Sparse numerical linear algebra: Direct methods and preconditioning, Technical report,

CERFACS, Toulouse Cedex, France, 1996. TR/PA/96/22.

[9] I.S. Duff, R.G. Grimes, J.G. Lewis, Sparse matrix test problems, ACM Trans. Math. Software 15

(1989) 1–14.

[10] B. Dumitrescu, M. Doreille, J.-L. Roch, D. Trystram, Two-dimensional block partitionings for the

parallel sparse cholesky factorization, Numer. Algorithms 16 (1) (1997) 17–38.

[11] C. Fu, T. Yang, Run-time techniques for exploiting irregular task parallelism on distributed memory

architectures, J. Parallel Distrib. Comput. 42 (1997) 143–156.

[12] A. George, M. Heath, J. Liu, Parallel cholesky factorization on a shared memory processor, Lin.

Algebra Appl. 77 (1986) 165–187.

[13] A. George, M. Heath, J. Liu, E.G. Ng, Sparse cholesky factorization on a local memory

multiprocessor, SIAM J. Sci. Stat. Comput. 9 (1988) 327–340.

[14] A. Gerasoulis, T. Yang, Comparison of clustering heuristics for scheduling DAGs on multiproces-

sors, J. Parallel Distrib. Comput. (1992) 276–291.

[15] A. Gerasoulis, T. Yang, On the granularity and clustering directed acyclic task graphs, IEEE Trans.

Parallel Distrib. Syst. 4 (6) (1993) 686–701.

[16] A. Gupta, G. Karypis, V. Kumar, Highly scalable parallel algorithms for sparse matrix factorization,

IEEE Trans. Parallel Distrib. Syst. 8 (5) (1997) 502–520.

[17] M.T. Heath, E.G.Y. Ng, B.W. Peyton, Parallel algorithms for sparse linear systems, SIAM Rev.

(1991) 420–460.

[18] P. Henon, P. Ramet, J. Roman, A Mapping and Scheduling Algorithm for Parallel Sparse Fan-In

Numerical Factorization, in: EuroPAR�99, 1999, pp. 1059–1067.
[19] P. Henon, P. Ramet, J. Roman, PaStiX: A Parallel Sparse Direct Solver Based on a Static Scheduling

for Mixed 1D/2D Block Distributions, in: Irregular�2000, 2000.
[20] L. Hulbert, E. Zmijewski, Limiting communication in parallel sparse cholesky factorization, SIAM J.

Sci. Stat. Comput. 12 (1991) 1184–1197.

[21] Y.-K. Kwok, I. Ahmad, Dynamic critical-path scheduling: an effective technique for allocating task

graphs to multiprocessors, IEEE Trans. Parallel Distrib. Syst. 7 (5) (1996) 506–521.

[22] H. Lee, Scheduling and Processor Allocation of Matrix Computations on Parallel Systems, PhD

thesis, Pohang University of Science and Technology, January 2000.

[23] H. Lee, J. Kim, S.J. Hong, S. Lee, Task scheduling using a block dependency dag for block-oriented

sparse cholesky factorization, in: Proceedings of 14-th ACM Symposium on Applied Computing,

March 2000, pp. 641–648.

[24] R.J. Lipton, D.J. Rose, R.E. Tarjan, Generalized nested dissection, SIAM J. Numer. Anal. 16 (2)

(1979) 346–358.

[25] E.G. Ng, B.W. Peyton, Block sparse cholesky algorithms on advanced uniprocessor computers,

SIAM J. Sci. Comput. 14 (5) (1993) 1034–1056.

[26] E.G. Ng, B.W. Peyton, A supernodal cholesky factorization algorithm for shared-memory

multiprocessors, SIAM J. Sci. Comput. 14 (4) (1993) 761–769.

[27] J.M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems, Plenum, New York,

1988.

[28] M.A. Palis, J.-C. Liou, D.S. Wei, Task clustering and scheduling for distributed memory parallel

architectures, IEEE Trans. Parallel Distrib. Syst. 7 (1) (1996) 46–55.

158 H. Lee et al. / Parallel Computing 29 (2003) 135–159



[29] E. Rothberg, Performance of panel and block approaches to sparse cholesky factorization on the

iPSC/860 and paragon multicomputers, SIAM J. Sci. Comput. 17 (3) (1996) 699–713.

[30] E. Rothberg, A. Gupta, The performance impact of data reuse in parallel dense cholesky

factorization, Technical report, Stanford University, 1992.

[31] E. Rothberg, A. Gupta, An efficient block-oriented approach to parallel sparse cholesky factorization,

SIAM J. Sci. Comput. 15 (6) (1994) 1413–1439.

[32] E. Rothberg, R. Schreiber, Improved load distribution in parallel sparse cholesky factorization, in:

Proceedings of Supercomputing�94, 1994, pp. 783–792.
[33] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors, The MIT Press,

Cambridge, MA, 1989.

[34] R. Schreiber, Scalability of sparse direct solvers, in: The IMA Volumes in Mathematics and its

Applications, vol. 56, Springer-Verlag, New York, 1993, pp. 191–209.

[35] K. Shen, X. Jiao, T. Yang, Elimination forest guided 2D sparse LU factorization, in: Proceedings of

ACM Symposium on Parallel Algorithm and Architecture, 1998, pp. 5–15.

[36] B. Veltman, B. Lageweg, J. Lenstra, Multiprocessor scheduling with communication delays, Parallel

Comput. 16 (1990) 173–182.

[37] T. Yang, C. Fu, Space/time-efficient scheduling and execution of parallel irregular computations,

ACM Trans. Prog. Lang. Syst. 20 (6) (1998) 1195–1222.

[38] T. Yang, A. Gerasoulis, PYRROS: Static task scheduling and code generation for message passing

multiprocessors, in: Proceedings of 6th ACM International Conference on Supercomputing, 1992,

pp. 428–437.

[39] T. Yang, A. Gerasoulis, DSC: scheduling parallel tasks on an unbounded number of processors,

IEEE Trans. Parallel Distrib. Syst. 5 (9) (1994) 951–967.

H. Lee et al. / Parallel Computing 29 (2003) 135–159 159


	Task scheduling using a block dependency DAG for block-oriented sparse Cholesky factorization
	Introduction
	Block-oriented sparse Cholesky factorization
	Block decomposition
	Block Cholesky factorization
	Block operations
	Required number of block update operations

	Task model with communication costs
	Task characteristics
	Task graph
	Task execution behavior on previous block mapping methods
	2-D cyclic mapping
	Load balanced mapping


	Task scheduling using a block dependency DAG
	Task scheduling parameters
	Work and parents of subtasks
	Earliest start time of a task
	Earliest completion time of a task
	Level of a task

	Early-start clustering
	Affined cluster mapping
	Running trace of the proposed scheduling algorithm

	Performance comparison
	Conclusion
	Acknowledgements
	References


