FASSKEY: A Secure and Convenient
Authentication System

John Milburn
FASSKEY Technology, Inc.
Email: jem@fasskey.com

Abstract—We present an identity authentication system which
is cryptographically strong, pseudonymous, efficient enough to
run well on current smart phone devices, and easily extensible
for payment and banking functionality. We also describe high
security algorithm and programming methods for the implemen-
tation, including server, network transmission, and application
development. The system is intellectual property unencumbered
and provably secure. The end user app implementation uses three
factor security, a combination of unique device, user password,
and fingerprint. We use well-known and proven cryptographic
primitives.

I. INTRODUCTION

FASSKEY is a replacement for the traditional user-
name/password system still in use on most Internet systems.
It replaces the old system with a simple method based on
strong public key cryptography, in a way which is transparent
and easy to use. User secrets are generated by the user
device and only ever known by the user. The architecture and
implementation are focused on creating a simple and intuitive
user experience while maintaining very strong security — goals
which are often thought to be mutually exclusive.

Also, by virtue of its strong authentication capability,
FASSKEY securely enables other processes which require
authentication, including payments, P2P transfers, banking,
POS purchases, and ATM use. While there are many apps
which provide some of these features, they often lack the
security and authentication architecture required. Attacks on
banking applications in Korea, Australia, New Zealand and
Turkey have become commonplace[1][2].

FASSKEY is based on the SQRL system described by
Steve Gibson[3]. SQRL is designed as a username/password
replacement for websites. It uses a user generated secret master
key as the basis for per-site key pairs. SQRL has some features
unique to cryptographic authentication methods, particularly a
per site lock and unlock capability, and the ability for a user
to change his credentials in a cryptographically secure way.

We have extended and enhanced the SQRL protocol to
add provable site verification, transmission encryption, identity
management, transparent and continuous backup, multi-device
synchronization, batch mode processing for lock/unlock/re-key
operations, an eWallet system, shopping payment methods,
P2P payments, casual POS sales, banking, and ATM access.

978-1-4673-9486-4/16/$31.00 (© 2016 IEEE

489

Heejo Lee

Dept. of Computer Science and Engineering

Korea University
Email: heejo@korea.ac.kr

A. Logon with qlink

For a normal FASSKEY log on process, the website presents
a glink, a URL which includes cryptographic information. The
qlink is delivered to the user’s client application by clicking
on a link, scanning a QR code[4], or via NFC transfer. A
typical FASSKEY login glink is shown in Figure 1. The qlink
provides a 32-byte “nut”, a nonce which includes a timestamp,
server identifier, system identifier, random data and a truncated
MAC. The glink also provides the FASSKEY protocol type
(“SQT-AUTH” in this case), and a 32-byte ephemeral public
key (epk). The user client application generates the secret and

grl://demo.fasskey.com/squal_auth_login.php?
nut=zBPmr7UN1rO-kMCWFAfAqEtS5ibAqOYq59n7Cxtlse0
&protocol=SQT-AUTH
&epk=kadebkc_XICevG34NAYwizRqgq9JRI58QGphQ-5024Hds

Fig. 1. A FASSKEY qlink

public keys for the site, and responds with the public key and
the full glink, signed by the secret key. This allows the site to
confirm that the public key, which corresponds to the user’s
account at that site, is correct, in that it is signed by the holder
of the matching secret key.

B. Cryptography Used

Our implementation uses secure techniques throughout. The
established cryptography used includes AES-GCM[5] for en-
cryption and authentication of messages, SHA256 and SHA512
for hashing, twisted Edward’s curve digital signature algo-
rithm (EADSA)[6] for all signatures, and elliptic curve Diffie-
Hellman key agreement (DHKA)[7][8] for secure key deriva-
tion. The Elliptic Curve used is x25519, as used in many
Internet systems[9]. This curve and its 256 bit keys gives a
security level of about 2'26[10], which is roughly equivalent
to the security of a 3 kbyte RSA key. We do not use RSA style
cryptography[11] anywhere in the system.

II. RELATED WORK

Existing non username/password login methods, such as
OAUTH, rely on credentials from an authentication service
provider. This means that the user must put all trust and
confidence in the service provider, as the service provider

has access to all user connections, user data, and user secrets.
There are also fundamental security and authentication issues
with OAUTH, as pointed out by John Bradley in [12]. Most
sites using some type of Single Sign-On (SSO) method have
the inherent problem of giving the user credentials to the
website, removing control from the user over exactly how
those credentials are used[13].

All ssO methods have the additional problem of allowing
cross-site user tracking, by authenticating service and by
connected sites, a type of user privacy invasion.

Any public key system which uses the same key pair for
multiple sites has both the cross-site tracking problem, and the
additional problem of key overuse.

Two-factor authentication methods are cumbersome for the
user and have shown frequent flaws[14][15].

III. SQRL PROTOCOL

SQRL is a protocol that allows for easy and secure multiple
site access with no cross-site correlation or tracking ability.
This protocol uses strong cryptography methods along with
strict user control of identity keys. Deterministic per-site key
pairs are generated on the fly and only the public key is
disclosed to any website. SQRL also gives the user unique
ways to control his identity by having the capability to replace
(or re-key) the credentials should they be compromised and
lock/unlock sites as deemed necessary.

A. SQRL in a nutshell

e User generates one “Master Identity” for everything,
forever. (A randomly chosen 256-bit value.)

o A website’s domain name is used to key a hash which
produces a private key. The matching public key is
created and registered with the website as the user’s
identity token for that site.

o To authenticate the user at logon, the website presents
a per-logon nonce. The user signs the nonce using the
site-specific private key and returns both the site-specific
public key and the nonce signed by the matching private
key.

o Users are per-site pseudonymous. They present a unique
but fixed identity to every site. Inter-site tracking is
eliminated.

o These unique identities are synthesized from the websites
domain name, so no per-site data needs to be stored.

« Users give web servers no secrets to keep. Web servers
receive an identity token that is only meaningful for that
site.

o The use of a nonce applying a simple challenge/response
mechanism prevents reuse/replay attacks.

B. Site Specific Key Pairs

A key feature of the SQRL system is the ability to de-
terministically generate a new and uncorrelated key pair for
each site. This is achieved by hashing the user’s master key
with the website’s domain name, via a SHA256 based HMAC
function[16], to create a site specific private key. This high

490

entropy result is directly usable as a secret key, and from
it a public key is generated, as shown in Figure 2. This
is possible with elliptic curve public key cryptography, and
is fundamentally not possible with the older, well known
“products of primes” RSA cryptography.

Cryptographic Challenge
A

\

r Al
sqrl.//www.example.com/sqrl?KIA7nLFDQWWmYt10yVjNDOQ8luTvNorPrr53PPRIesz

J

v

Crypto
Signature

Master Key H HMAC

Identity
Authentication
Make
Public Key

Identity
Public Key

Fig. 2. Site specific key generation and signing

C. Lock and Unlock

When a user first registers to a site, he transmits not only his
public key, but also two others keys, the Server Unlock Key
(SUK) and Verify Unlock Key (VUK). Should the user ever
believe that his master key has been compromised, the user
may lock his account on the server. Once locked, the user can
unlock it only by using his Identity Unlock Key (IUK), which
is never stored in the application or on his device.

1) Lock Key Generation: The 1UK is generated at the same
time as the user master key. Using the TUK as a secret key,
its public key is generated as ILK = MakePublic(1UK) and
called the Identity Lock Key (ILK) (Figure 3). The ILK is
stored in the client along with the Master Key. The 1UK is
printed (as a QR code) or stored, then deleted from the device.

Identity Identity
Unlock Key Lock Key
Randomly generated once Stored permanently
then exported & erased in SQRL client

from the SQRL client

Fig. 3. 1UK and ILK Key Generation

2) Locking Methodology: Account locking relies on ba-
sic properties of Elliptic Curve Diffie-Hellman Key Agree-
ment (DHKA)[8]. We generate a random secret key and
call it the Random Lock Key (RLK). From this we make
its public key, and call it the Server Unlock Key (SUK)
SUK MakePublic(RLK). Using DHKA, we know that
DHKA(RLK,ILK)=DHKA(SUK,IUK). As the ILK is available in
the client, we can generate the agreed key. We further create
the verification key (VUK) by treating the agreed key as a
secret key, and generating from it a public key, i.e. VUK =
MakePublic(DHKA(RLK,ILK), as shown in Figure 4. The
SUK and VUK are sent to the server and stored by the server
along with the user’s identity, and the RLK is discarded.

To unlock the account, the user requests the SUK from the
server. The user must now combine the SUK with his (offline
and very secret) Identity Unlock Key to generate the agreed

Randamly generated
then discarded

Server

B Unlock

Lock Key

Public

Identity

Lack Key Unlock

Stored permanently
in SQRL client

Fig. 4. SUK and VUK Key Generation

key via DHKA(SUK,IUK). This resulting key is used to sign
the unlock request (Figure 5). As the server already knows
VUK, which is the corresponding public key, the server does a
signature check using VUK to confirm that the user possesses
the correct 1UK. If confirmed, the account is unlocked. A
simple illustrated guide to these processes is shown at [17].

Imported for use, never stored

Server Identity

Unlock Key

Unlock Req

Unlack Signing Key

Key

Stared in Web Server

Signs identity change requests

Performed by SQRL client

Fig. 5. Unlock Process

3) Re-keying: The same mechanism used for Lock/Unlock
is used if a user needs to replace his master key. Detail
information on the key replacement mechanism can be found
at the SQRL website[3].

IV. FASSKEY - SQRL EXTENSIONS

We have extended and enhanced the SQRL protocol to
add provable site verification, transmission encryption, iden-
tity management, transparent and continuous backup, muti-
device synchronization, an eWallet system, shopping payment
methods, P2P payments, casual POS sales, banking, and ATM
access. The overall FASSKEY system architecture is shown in
Figure 6.

i
I

G FASS TECH

Secure Storage MAIN BLACK BOX

l_l
—_—
—
- - -

Bank Credit Card

AN
d

User Gateway

I
-
1
i

EJ< @ -
l m()

'“|B Bank Online Offline Retail
Website Seller Seller Seller

Internet

Nalel
2re
i

e

eWallet

Fig. 6. FASSKEY System Architecture

491

A. The FASSKEY Application

FASSKEY clients are currently available for iOS and An-
droid. The FASSKEY app is shown in Figure 7. The app

FASS KEY

Identity

History

Fig. 7. Front Page of the English FASSKEY App

implements all of the FASSKEY features described. Multiple
languages are supported.

B. Attestation - Site Verification

1) Initial Connection: At first run, the FASSKEY app con-
nects to a predefined attestation server. This initial connection
is made from the client, using a client generated nonce. The
app has two pieces of embedded data, the domain name of the
attestation server, and the public key of the attestation server
(ADPK). The client uses the domain name to generate a key
pair (ASSK, ASPK) for the attestation server, as in Figure 2.
The client generates a first session key K via DHKA for the
initial connection, as K = DHKA(ASSK, ADPK). The client
uses K to encrypt the message to the attestation server using
AES-GCM[5], along with the ASPK in the clear, all signed by
the ASSK.

The server is able to verify the signature of the mes-
sage, and then uses its secret key (ADSK) to generate the
decryption key as K = DHKA(ASPK, ADSK). The attestation
server next generates a user specific key pair (USSK, USPK)
via an HMAC operation, USSK = HMAC(ASPK, ADSK) and
USPK = MakePublic(USSK). The attestation server responds
to the client with a new session key, and delivers the USPK to
the client. The client stores this key, and uses it as the basis
for all future communication with the attestation server, rather
than the ADPK, to prevent overuse of the primary key pair.

2) Attestation: Websites which participate in the FASSKEY
system register with the attestation server, By this registration,
the attestation server stores the website public key (SDPK).

When a client connects to a website. it receives a nonce
from the website. Encoded into the nonce is a 4 byte website
identifier, and a 4 byte attestation server identifier. The client
presents this nonce to the attestation server, encrypting the

message with the key K = DHKA(USPK, ASSK), and signing
with ASSK. The attestation server is able to decode the
message via the equivalent key K = DHKA(USSK, ASPK),
after checking the signature. The attestation server decodes
the website from the identifier in the nonce, and responds to
the client with the website public key SDPK.

C. Transmission Link Encryption (TLE)

FASSKEY sites, when generating the initial nonce, also gen-
erate an ephemeral secret key (SESK). From that key, a public
key (SEPK = MakeKey(SESK)) is generated, and delivered
along with the nonce in the glink, as shown in Figure 1.
The client generates its key pair for the site (SSSK, SSPK),
gets the site’s general public key (SDPK) from the attestation
server, and generates its own ephemeral secret key (CESK) and
corresponding public key (CEPK = M akePublic(CESK)). The
client does a series of three DHKA operations:

k1 = DHKA(SEPK, SSSK)

k2 = DHKA(SDPK, CESK)
K = DHKA(k1, k2)

Client Session Key (1)

K is used to key the AES-GCM encoded response to the server.
With its response, the client sends, in the clear (but signed),
both the site specific public key SSPK and its ephemeral public
key CEPK.

The server receives sufficient information to check and
decrypt the message, using the three-step key generation
method to build the same set of keys:

k1 = DHKA(SESK, SSPK)

k2 = DHKA(SDSK, CEPK)
K = DHKA(k1, k2)

Server Session Key (2)

This server generated K is the same as the client generated
K, and thus can be used to decrypt the AES-GCM encoded
payload.

By incorporating ephemeral keys at both the server and
the client side, full perfect forward secrecy is achieved. Also,
since the server public key SDPK is delivered by the attestation
server, no Man-in-the-Middle (MITM) has sufficient informa-
tion to intercept and mimic another server, or to re-create the
session key.

D. Identity Management

FASSKEY allows the user to store personal information
securely in his device. This information may be used to
simplify interaction with service providers of all sorts.

From the perspective of protecting information, the user
may wish to always be completely anonymous. This is not
achievable in the current Internet environment. Many nations
have regulations which require some type of proof of identity
for registration to web services. In other cases the requirement
comes from the website or service itself. As such policies
vary significantly between countries, FASSKEY implements
such policies on a per country basis. For example, in Korea
certain connections or transactions require ‘“Mobile Device

492

Authentication”, a method to correlate user identity to his
registered, post-paid mobile phone. Confirmation is done by
a code sent via SMS message from a government approved
service.

In FASSKEY, all identity data is stored, encrypted, on the
user’s device. When a site requests data from the user, the
app prompts the user with the listed information and displays
the stored data. The user then has the option to send the
information, edit the reply, or cancel and send nothing.

Payment mechanisms, such as credit card, debit cards,
etc., can be entered into the identity data, and then used
automatically to make payments. Delivery addresses may also
be entered, and later shared easily during a purchase. A sample
of our credit card data entry screen is shown in Figure 8.

FASS KEY =

Delivery Personal Auth

g Credit card

o

Fig. 8. Credit Card Info Entry Page

E. Transparent Backups

All end user data is backed up to a FASSKEY service backup
server. All such data is encrypted by the client using AES-GMC
with a per-record derived key, then sent to the backup server
using the TLE protocol. The data at rest on the backup server
is unreadable by the backup server operator.

F. Multi-device Synchronization

All user database entries have per record time stamps
for both creation and modification time. The client program
periodically connects to the backup server and updates the
local on-device database should updates be found. This is done
for all user database types, including site-visited DB, identity
DB, and alt-id DB.

G. eWallet

Every user within the FASSKEY system has an eWallet, as
does every participating website. Users may add value to their
eWallet via receipt from other users, cash deposit via retail
merchants, cash deposit via ATM machine, or charging from
credit card, cash card, or bank account.

H. Shopping Payment

FASSKEY partner websites can enable shopping payments.
Users need not register an account at the site to enable
shopping, as payments are handled by the FASSKEY payment
server (MBB). For simplicity, FASSKEY provides a dedicated
server to the website (BB), which provides all cryptographic
functionality. The website connects to the BB server via a
RESTful protocol running inside a dedicated VPN link. The
protocol flow for shopping is shown in Figure 9.

V (1). Seller website gets glink from BB
MBB V (2a). BB sends glink to Seller website.

(2b) orovid V (2b). BB registers glink with MBB.
<T rovider A (3). User gets glink from Seller website.
T4
(2a)) (5) 4)
(8) (6) T(5)
Seller 4>(3) (2)

website
V (7). MBB sends purchase confirm to BB.

V (8). BB confirms purchase to Seller website.

User sends glink to Provider(MBB),

proving Seller website

MBB confirms glink and

sends payment query to User.

User confirms purchase and payment method

A (9). Seller website updates to show paid.

V - VPN connection
T - TLE protocol
A - Visual QR Code or NFC

Fig. 9. Shopping Protocol Flow

Note that no user payment information is sent to the selling
website, as all payments are processed by the FASSKEY
payment server. The seller’s eWallet is credited with the
payment, and required delivery information is provided from
the FASSKEY app. Again note that to complete a purchase
with a partner merchant, buyer need not register.

1. P2P Payment

Any FASSKEY user can add any other FASSKEY user to his
friend list. This is done securely — face to face via QR code
or NFC[18] exchange with cryptographic confirmation. The
user may now transfer eWallet funds from his own account
to the friend’s account. We specifically disallow remote fund
transfers to non-friends, to minimize phishing and other attacks
or fraudulent behavior.

J. Casual POS Sales

Using the Sale button available to all users, face to face
payments are enabled. The seller enters the amount of the
sale, after which a QR code is displayed on the seller’s screen.
Then the buyer scans the code, selects a payment method, and
approves the transaction. After processing at the FASSKEY
payment server, the payment amount is credited to the seller’s
eWallet.

K. Banking

FASSKEY’s banking protocol allows strong, secure access
to individual bank account management via web or app
access. The app requires fingerprint authentication, One-Time
Password OTP[19] device, or PIN code for certain operations,
as specified by the bank.

493

L. ATM

FASSKEY’s ATM protocol is designed to minimize changes
to existing ATM systems. FASSKEY participates in the existing
ATM system as a bank member, and treats user eWallets as
accounts. Use is shown in Figure 10.

a. User initiates ATM session, requests FASSKEY link.
b. ATM machine displays QR code and/or NFC connec-
tion.
c. User chooses account to use. App sends account auth
info to bank’s backend system.
d. User chooses transaction type via ATM terminal.
e. User receives or deposits cash.
a

i -
A

H< c d

T

Fig. 10. FASSKEY ATM method

v

v

V. VALIDATION - ATTACK MITIGATION

Typical attacks are against the app, the network commu-
nication, or the server. Typical attack types are shown in
Table I. Current smart device apps are exceptionally vulnerable
to many of these attacks. Many network protocols have also
been proven to be unsafe.

FASSKEY is resistant to all these attacks. Some of the
methods we have designed and implemented include:

1) Attestation: When connecting to any site, the encoded
nonce from that site includes site identifying information. We
connect, via a TLE encrypted connection, to the central server
and confirm the identity of the site. The data received in the
confirmation message, plus some random component, is used
to create the session encryption key for the response message.
No MITM can recreate or spoof the necessary key components.
This gives absolute assurance that the site is valid, and assures
the user that no one except the real site can decrypt his
response messages.

2) Scrambler: All memory used by the app to store any
data is done via a scrambled memory system. In addition to
the system-level and compiler-level scrambling, our scrambler
uses high quality entropy from our internal entropy harvester
to do runtime scrambling. Decrypted keys or other data are
stored and scattered amidst random data, making memory
dump analysis impractical.

TABLE I
TYPICAL ATTACK TYPES

Description

MITM Man in the Middle, attacker intercepts and
substitutes malicious data in the client-

server transaction.

Attacker records and then re-uses real client
data to mimic the client.

Replay

Attacker causes the app to dump its memory
to a file. Memory is inspected to find keys
and user private information.

Data Dump

Key Logger Malware in the OS records keyboard events

to reconstruct passwords.

Side Channel Malicious app, or connected machine, ana-

lyzes target system to get key information.

Fake App Attacker creates or modifies app to obtain a

user’s password.
Password Cracking Brute force attack to find passwords.

Attacker runs the app in debug mode, traces
execution, in order to change data.

Reverse Engineering
Buffer overflow

Attacker causes the app to execute malicious

code.
App infection Attacker modifies or changes operation of

3) TLE: All network connections are done using AES-
GCM encryption of payload, using ephemeral derived keys for
session based key generation, to provide both a public key
agreement method, and perfect forward secrecy. This com-
pletely stops network level eavesdropper activity and attacks.

4) Random payload: All network communications include
random payload components, to defeat any type of known text
or replay attack.

5) Secure Wiping: All data stored in memory is securely
erased immediately when it is no longer needed. The secure
wipe is done by first overwriting the real data with random
values, then deallocating the memory.

6) Constant time functions: All cryptographic functions are
designed and implemented using constant time and constant
compute operation. This means that the processing path is not
in any way dependent on the key values or data values. This
eliminates most types of side channel attacks.

7) Single use: Every nonce and glink in our system is
single use. No nonce may be reused in any situation. This
eliminates replay attacks.

8) Time constraint: All nonces are also time constrained.
There is a relatively short time window during which the nonce
may be used. If there is any attempt to use the nonce outside
of the time window, processing is denied.

9) Device binding: Decryption of the stored, encrypted
master key data file is locked to the device. After copying
this stored data to another device, the attacker is left with
only brute force attacks, even if he knows the users password.

10) Anti-Reverse Engineering: Although there is no perfect
solution to prevent reverse engineering, our goal is to make
it as difficult as possible by including: code function name
scrambling, string encryption, time window trapping between

threads and function calls, critical data randomization and data
flow abstraction.

11) Buffer overflow protection: Strict data boundary control
is implemented for all incoming and run time data. All data is
passed between threads or over the network using serialized
buffers, with strict boundary checking in both serialization and
de-serialization processing.

12) App infection: Any attempt to tamper with our app
will result in alarms sent to the FASSKEY monitoring system.
These alarms are sent directly, or are queued and sent when
the device is online.

13) Key Logging: The one remaining vulnerability is key
logging. This is an especially large problem on Windows
machines, somewhat less so on Android, a modest issue
on Mac OSX, and highly unlikely on iOS devices. This is
an Operating System and hardware device and driver issue.
We always implement industry best practices to mitigate this
attack.

VI. CONCLUDING REMARKS

FASSKEY, based on the SQRL protocol, provides for per site
deterministic key pair derivation, removing any need to store
such keys, and removing any cross-site tracking capability. The
cryptographic signature method is strong against all known
attack methods. We use established, trusted cryptographic
primitives with no known exploitable weaknesses. No user
secret data is stored on servers, so such servers are less
attractive targets, and cannot release important user authen-
tication data if compromised. FASSKEY extends SQRL with
multiple new features, including provable site verification,
transmission encryption, identity management, transparent and
continuous backup, muti-device synchronization, an eWallet
system, shopping payment methods, P2P payments, casual
POS sales, banking, and ATM access. FASSKEY combines
simple usability with high security. It is suitable for all ages.
Incorporation of payment mechanisms is efficient and secure,
allowing for low transaction fees and ease of use.

ACKNOWLEDGMENTS

The authors would like to thank Steve Gibson for his intro-
duction, description and development of the SQRL protocol.

Initial support in November, 2013, was provided by KT
Corporation for a proof of concept implementation of a server
and an iPhone application.

REFERENCES

[1] Simon Huang, The South Korean Fake Banking App Scam, Trend Micro,
https://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/
white-papers/wp-the-south-korean-fake-banking-app-scam.pdf, 2015.
ESET, Android Trojan Targets Customers of 20 Major Banks, ESET https:
/Mt.co/tGpEmfw]jm, March 2016.

Steve Gibson, SQRL — Secure Quick Reliable Login, https://www.grc.com/
sqrl/sqrl.htm, October 2013.

ISO/IEC 18004:2000, Information technology - Automtic identification
and data capture techniques - Bar code symbology - QR Code, June
2000.

Wikipedia, Galois/Counter Mode, https://en.wikipedia.org/wiki/Galois/
Counter_Mode

[2

—
(98]
—_ =

[4

=

[5

—_

494

[6] Bernstein, Daniel J.; Duif, Niels; Lange, Tanja; Schwabe, Peter; Bo-
Yin Yang (2012). High-speed high-security signatures, https://ed25519.
cr.yp.to/ed25519-20110926.pdf. Journal of Cryptographic Engineering
2 (2): 7789. doi:10.1007/s13389-012-0027-1 https://dx.doi.org/10.1007%
2Fs13389-012-0027-1.

[7] Daniel J. Bernstein, Curve25519: new Diffie-Hellman speed records.
Pages 207228 in: Public key cryptographyPKC 2006, 9th international
conference on theory and practice in public-key cryptography, New
York, NY, USA, April 2426, 2006, proceedings, edited by Moti Yung,
Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin. Lecture Notes in
Computer Science 3958, Springer, 2006. ISBN 3-540-33851-9. http:
/fcr.yp.to/papers.html#curve25519

[8] Wikipedia, Elliptic Curve Diffie-Hellman, https://en.wikipedia.org/wiki/
Elliptic_curve_Diffie-Hellman

[9] Things that use Ed25519, https://ianix.com/pub/ed25519-deployment.
html.

[10] Bernstein, Daniel J.; Lange, Tanja, SafeCurves: Introduction, https://
safecurves.cr.yp.to.

[11] Wikipedia, RSA (cryptosystem), https://en.wikipedia.org/wiki/RSA_
(cryptosystem)

[12] John Bradley, The problem with OAuth for Authentication., http://www.
thread-safe.com/2012/01/problem-with-oauth-for-authentication.html,
January 2012.

[13] Tim Wilson, Security Flaw Found In OAuth 2.0
And OpenlD, DARKReading, http://www.darkreading.com/
security-flaw- found-in- oauth-20-and-openid- third- party-authentication
-at-risk/d/d-1d/1235062, May, 2014.

[14] Antone Gonsalves, Google flaw exposes weakness in two-factor
authentication, http://www.csoonline.com/article/2133038/access-control/
google-flaw-exposes- weakness-in-two-factor-authentication.html, Febru-
ary 2013.

[15] Brian Krebs, Attackers Hit Weak Spots in 2-Factor Authentica-
tion, http://krebsonsecurity.com/2012/06/attackers- target-weak-spots-in\
-2-factor-authentication/, June 2012.

[16] H. Krawczyk et al., HMAC: Keyed-Hashing for Message Authentication,
IETF RFC 2014, Feb., 1997.

[17] Ben Cooper, SQRL - An lllustrated Guide, http://sqrl.pl/guide/.

[18] Near Field Communication (NFC), http://nfc-forum.org/.

[19] Wikipedia, One-time password, https://en.wikipedia.org/wiki/One-time_
password.

495

