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Abstract—Packing is widely used for bypassing anti-malware
systems, and the proportion of packed malware has been
growing rapidly, making up over 80% of malware. Few studies
on detecting packing algorithms have been conducted during
last two decades. In this paper, we propose a method to classify
packing algorithms of given packed executables. First, we convert
entropy values of the packed executables loaded in memory
into symbolic representations. Our proposed method uses SAX
(Symbolic Aggregate Approximation) which is known to be good
at large data conversion. Due to its advantage of simplifying
complicated patterns, symbolic representation is commonly
used in bio-informatics and data mining fields. Second, we
classify the distribution of symbols using supervised learning
classifications, i.e., Naive Bayes and Support Vector Machines.
Results of our experiments with a collection of 466 programs
and 15 packing algorithms demonstrated that our method can
identify packing algorithms of given executables with a high
accuracy of 94.2%, recall of 94.7% and precision of 92.7%. It
has been confirmed that packing algorithms can be identified
using entropy analysis, which is a measure of uncertainty of
running executables, without a prior knowledge of the executable.

Index Terms—Symbolic Aggregate Approximation (SAX),
Piecewise Aggregate Approximation (PAA), Entropy Analysis,
Original Entry Point (OEP), Packing Algorithms.

I. INTRODUCTION
A. Background on packing malware

Malware not only violates the security and privacy of
computer users, it also incurs a significant amount of financial
loss. Attackers continuously make their malware harder to
detect and analyze Choi et al. [1]. Although the development
of anti-virus and other malware analysis tools can mitigate this
situation to some extent, the evolution of malware, such as the
booming growth of polymorphic and metamorphic malware,
is making its analysis more and more difficult.

One popular and widely used technique is packing. Using
different packing algorithms, attackers can generate a great
number of malware options, and can hide the original behavior
of the malware, which makes malware harder to be analyzed
and to be detected from analysis tools such as anti-malware
software. A packer is basically a program that produces a
number of data blocks forming a compressed or encrypted
version of the original executable, as described Yan et al. [2].

Some packers use more sophisticated technique to evade
detection. As mentioned above, statistics have shown that
over 80% of malware is packed, as demonstrated by Lyda et
al. [3] and Yan et al. [2]. Popular packers include ASPACK,
FSG, MEW, MPRESS, NSPACK, ACPROTECT, MOLEBOX,
PECOMPACT, PELOCK, TELOCK, THEMIDA, UPX, VM-
PROTECT and YODA CRYPTER, many of which are readily
available on the Internet.
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As packers are making executables harder to be analyzed
the identification and classification of packing techniques is
becoming extremely important in revealing real behavior and
the intention of packed program. This information not only
helps the detection and analysis of malware, but also allows
functions and characteristics of benign packed programs to
be analyzed. In addition, quickly and correctly identifying
packers allows us to easily and correctly unpack a packed
executable file and retrieve the original payload for further
malware analyses.

B. Motivation

Malware is becoming a growing problem in modern com-
puter systems. Malicious software, also known as malware
(e.g., viruses, worms, or Trojan horses), mostly in the form of
packed executables, presents a significant challenge to com-
puter systems. According to Symantec Research Laboratories
Fanglu et al. [4] and Lyda et al. [3], over 80% of malware
appear to be created using a packing algorithm to circumvent
anti-malware systems. If the malware is packed, it becomes
impossible to detect its infection through signature matching.

Moreover, there is an evidence that more than 50% of new
malware are simply re-packed versions of existing malware.
Many different packers are used throughout one malware fam-
ily to avoid detection systems. Although packing algorithms
are widely used for packing malware Jeong et al. [5], they are
also applicable for protecting legitimate softwares from reverse
engineering. A packed executable has an uncertain data section
at run time. From entropy measurement of running programs,
we can know whether the given executable is packed or not.

A tremendous number of packing algorithms are created
every year, however there is no complete database to detect
them. The detection of packing algorithms is necessary for
recognizing hidden malware, and preventing such malware
from deluding anti-malware systems. Anti-malware systems
need to deal with a lot of packers and be prepared for new
ones every day.

An automatic system in detecting packing algorithms is in-
dispensable. A vast range of packing algorithm varieties makes
a packer detection process time consuming. All existing auto-
matic systems are mainly concentrated on detecting malware,
but not on methods of developing them. Nowadays, packing
algorithms are used extensively in malware development to
help malware unrevealed.

To lay a foundation for this, we studied and discovered a
new technique for identification and classification of packing
algorithms by creating simple patterns of packers. Further-
more, we studied the use of entropy based detection, which
is dynamic in nature, and more reliable than signature based
techniques. In this paper we propose a method for identifying
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packing algorithms of given either known or unknown packed
executables, and classify them by popular classification tech-
niques such as Naive Bayes and the Support Vector Machine.
We can detect the use of a packer and distinguish unknown
packers different from existing 15 packers in the experiment.
Results of this method demonstrate high accuracy in detecting
packing algorithms.

C. Main contributions

Our contributions are two-fold, which are described as
follows:

1) We developed a holistic method for identifying packing
algorithms of given executables, no matter whether the
packer of the executable is already known or not. That,
to the best of our knowledge, is the first method to find
a systematic way for classifying a packer used in an
executable. Our approach was proven to be effective in
practice and simpler than any other known methods.

2) We introduce a data conversion method, to transform
numbers into symbols, in order to greatly reduce the
space complexity while preserving the accuracy of de-
tection. Our method proved that the data size can be
reduced by from 1/2 to 1/10000 times. The method
implies a packer classification algorithm, which converts
entropy patterns (numbers/numeric values), consisting
from large data set, into symbols using a symbolic
representation.

The structure of this paper is as follows: Section II describes
previous work related to packer classification and pattern
recognition techniques. Section III defines the structure of the
proposed method with 466 packed executables i.e., a sym-
bolic representation conversion method classifier. Section IV
describes the evaluation result of the proposed method using
packed executables and different classification techniques.
Finally, Section V summarizes the main points of this paper.

II. RELATED WORKS

Manual analysis of packers is an early solution to malware
exposure. In terms of efficiency, manual analyses are too
costly. Despite its expense, however, such an approach is
mainly used in practice to reduce the false negatives of a
signature. Popular researches in detection and classification
of packing algorithms include works by Perdisci et al. [6],
Li et al. [7] and Cesare et al. [8]. Perdisci et al. proposed a
pattern recognition technique for the fast detection of packed
executables.

The authors applied various pattern recognition techniques
to classify executables into two categories, packed and non-
packed. Their technique used publicly available unpacking
tools and signature based anti-malware systems to distinguish
between specific kinds of malware and benign executables. If
an executable is classified as being packed, it will be sent to a
universal unpacker for hidden code extraction, and the hidden
code will then be sent to an anti-virus scanner.

On the other hand, if the executable is classified as non-
packed, it will be sent directly to an anti-malware scanner.
Nine features are combined for classification, i.e., the number
of standard and non-standard sections; the number of exe-
cutable sections; the number of readable, writable, and the
number of entries in the PE file’s Import Address Table (IAT);
and the PE header entropy; code section entropy, data section
entropy, and file entropy.

This system achieves very high accuracy (above 95%)
using classifiers such as Naive Bayes, J48 Decision Tree,

Bagged-J48, K-Nearest-Neighbors (KNN), and a Multi-Layer
Perceptron (MLP). The best results were obtained using the
MLP classifier, which had the best accuracy of 98.91% for
the test dataset. However, this approach did not perform the
classification of different packers into different families.

The weakness of this technique is that unknown packed files
cannot be unpacked because the researchers used universal-
unpacking tools as an unpacking mechanism. Moreover, this
approach utilizes static analysis, and the researchers did not
propose a technique for packer identification. In fact, our
classification system extracts the types of packing algorithms
from packed PE files, and our unpacking method unpacks any
packed executable files using entropy analysis.

Li Sun er al. [7] showed an effective packer classifica-
tion framework that applies pattern recognition techniques on
automatically extracted randomness profiles of the packers.
As a replacement for signature matching approaches, the
authors presented a packer classification problem by analyzing
the performance of various statistical classifiers. They also
tested various statistical classification algorithms, including k-
nearest neighbor, best-first decision tree, sequential minimal
optimization and naive Bayes.

All four classifiers were extremely effective, with three of
the four achieving an average true positive rate of around 99%
or above; However, Naive Bayes was least effective with a true
positive rate of around 94%. The k-nearest neighbor classifier
with k = 1 obtained the best overall performance. Its true
positive rate is 99.6%, and its false positive rate is 0.1%.

The system also reveals that the low randomness profile
of the packed file normally produced by the PE header and
unpacking stub contains important packer information. It is
therefore very useful in distinguishing between families of
packers. This approach belongs to signature based packer
detection techniques because the distance between the test
file and each packer signature is measured. The shorter the
distance is, the more likely the file is packed with this packer.

Signature based packer detection has a weakness in terms
of measuring distance. For instance, it can not measure
every packed files because some packers protect the packed
section after packing the given files. Li Sun et al. did not
propose a technique for detecting unknown packers. Through
this method, the detection of non-signature based packer and
packed files is impossible. While on the contrary our clas-
sification technique extracts packing algorithms from packed
executables.

Cesare et al. [8] proposed a novel malware classification
method by constructing control flow graph based signature.
The similarity between structured graphs can be quickly
determined using string edit distances to classify malware
effectively. What is similar to our work is that they also detect
OEP (Original Entry Point) of packed executables by the use of
entropy analysis when unpacking the packed malwares. How-
ever, their classification method is merely based on similarity
distance and pre-defined threshold which is relatively vague
and may be not effective enough for classification. That is why
we are using classic classification models such as Naive Bayes
and SVM to improve our classification results. Whats more,
even though they showed a relatively good result in terms
of identifying and classifying malware and its variants, they
did not actually perform the packing algorithms classification
as we did which is so important for the analysis of packed
malware. Jeong er al. [5] proposed a mechanism to find the
original entry point (OEP) using entropy analysis. They did
not actually perform the packing algorithms classification.
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III. METHOD FOR PACKING ALGORITHM DETECTION
A. Structure of Packing Algorithm Detection

A main concept of our paper is measuring entropy values
while unpacking packed executables by themselves. Detecting
packing algorithms straightaway through entropy pattern is
problematic. Because of the big (huge amount of) data and
bursting of errors, the process is time consuming and difficult
to analyze. Hence, we extracted simple patterns from Entropy
patterns through symbolic representation. Then we classified
the simple patterns through Naive Bayes and SVM classifica-
tion algorithms, which is a key point in our proposed method
of detecting packing algorithms. In general, we classified sym-
bolic representations using supervised learning classification
techniques. Figure 1 shows the three main parts of our method.
The first part is measuring the entropy patterns, the second is
converting them into symbolic representation, and the last is
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Fig. 1. A packing algorithm detection method

1) Measuring the entropy pattern: Measuring the entropy
pattern determines the entropy value of the packed executables
during the unpacking process. Therefore, we first execute a
given packed executable, and let it conduct the unpacking
process. While the unpacking process, packed instructions are
unpacked using a decompression module, and intuitively, the
measured entropy of the memory space will change. Finally,
the end of the unpacking can be detected by monitoring the
cessation of entropy changes. The executable is executed and
keeps running until JMP instruction is encountered. Entropy
analysis is conducted by measuring a specific memory space.
It decides whether or not unpacking process is completed
by measuring the entropy value of the sections of packed
executable, and checking if a JMP instruction jumps to an
instruction address in the sections. The packed executable is
completely unpacked only if OEP is found. Otherwise during
execution we measure the entropy value to determine the OEP.
The address of the first instruction of the decompressed code
is called the original entry point (OEP). Conversely, if the
unpacking process is incomplete, the paused process continues
to execute the next instruction. Therefore, we use entropy
analysis to detect the existence of packing algorithms.

2) Entropy analysis : Information theory, or entropy, is a
method for measuring uncertainty in a series of information
units Jeong et al. [5]. Entropy can be used to evaluate a
compression algorithm. In technical terms, entropy measures
the level of difficulty, or the probability of independently
predicting information of the series. Data compression is the

process of encoding information to represent the information
in a fewer number of bits. Information is compressed by
following a logical sequence. First, some repeated patterns
are found in the information, and the redundancies of the
patterns are then used to reduce the amount of information.
Therefore, compressed information has a smaller number of
patterns than before. In other words, the number of patterns in
the information is reduced through compression, and the series
of bits become more unpredictable, which is equivalent to un-
certainty. Therefore, the measured entropy of the compressed
information is higher than that of the original information.
Shannon’s formula was devised to measure the information
entropy as follows:

H(r) = =3 p(i) - log;” (M

where H(x) is the measured entropy value and p(i) is the
probability of an i*" unit of information in the series of n
symbols of event x. The base number of the logarithm can
be any real number greater than 1. However, 2, 10, or Euler’s
number, e, is generally chosen. We used two constants, termed
FEpin and E,, 4. to determine if unpacking is completed, but
they have not been given values yet. The entropy is also in
the range between E,;, and E,, 4.

B. Conversion into Symbolic Representation

An orderless entropy pattern is then converted into a simple
symbolic pattern. To extract a packing algorithm and represent
its pattern through a symbolic representation, we use the
entropy analysis shown in Figure 2. The symbolic aggregate
approximation (SAX) is the first symbolic representation for
time series data mining.

Symbolic representation allows for a dimensionality reduc-
tion and indexing with a lower-bounding distance measure of
the true distance. One can take advantage of the generic time
series data mining model, as well as a host of other algorithms,
definitions, and data structures that are only defined for
discrete data, including hashing, Markov models, and suffix
trees. SAX is one of the most competitive methods in the
literature.

SAX utilizes a similarity measurement that is easy to com-
pute because it is based on pre-computed distances obtained
from lookup tables. We introduce a detailed explanation of
this in Section III-B1.

1) Classification of symbolic aggregate approximation
(SAX) : Similarity search is a fundamental problem in com-
puter science, and has many application area such as multime-
dia databases, bio-informatics, pattern recognition, text min-
ing, computer vision, data mining, and machine learning. Time
series are data types that appear in many medical, scientific
and financial applications. Time series data mining includes
many tasks such as classification, clustering, similarity search,
motif discovery, anomaly detection and so on.

One key to the successful performance of these tasks is the
use of representation methods that can represent a time series
efficiently and effectively Keogh et al. [9]. Of all the symbolic
representation methods in the literature on time series data
mining, the symbolic aggregate approximation (SAX) stands
out as one of the most powerful method Jessica et al. [10].
The main advantage of this method is that the similarity
measurement that it uses is easy to compute owing to the
use of statistical lookup tables. In this paper we present an
improved similarity measurement for using SAX.
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This measurement has same advantages as the original
similarity measurement used in SAX. SAX is based on the
fact that a normalized time series has a highly Gaussian
distribution, and thus by determining the breakpoints that
correspond to the size of the alphabet, one can obtain equally
sized areas under a Gaussian curve Jessica et al. [10].

|
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l
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Pattern
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E

Fig. 2. A structure of the pattern extraction method

SAX is applied as follows: First, the time series are normal-
ized. Second, the dimensionality of the time series is reduced
using piecewise aggregate approximation (PAA) Keogh et
al. [9]. Third, the PAA representation of the time series is
discretized, which is achieved by determining the number
and location of the breakpoints. The breakpoint locations
are determined using statistical lookup tables such that these
breakpoints produce equally sized areas under a Gaussian
curve.

In algorithm 1, we presented process of converting en-
tropy value into SAX. The interval between two successive
breakpoints is assigned to a symbol of the alphabet, and each
segment of the PAA that lies within that interval is discretized
by that symbol. As a final step, similarity measurement of
SAX’s is performed. The SAX method approximates time
series X of length n into vector X = (T1, Tg , . . ., Tpr)
of any arbitrary length M (M <n, typically M <<n), where
each z; is calculated through the following formula:

T

1
zi=—| >, (@) )
j=r(i—1)+1
where r is a ratio defined as,
n
= 3
T=97 3

Here, M is the length of the original time service (entropy
pattern), n is the length of the string (the number of frame
or symbols). Simply stated, to reduce the time series from n
dimensions into M dimensions, the data are divided into M
equally sized frames. SAX is the first symbolic representation
of a time series with an approximate distance function that
lower bounds the Euclidean distance.

In SAX, the data are first transformed into a PAA rep-
resentation, and the transformed PAA representation is then
symbolized into a sequence of discrete strings. As said in Lin
et al. [10] there are two important advantages of SAX that are
mentioned in definitions one and two:

Definition 1: Dimensionality Reduction occurs when data
of very high dimensionality are converted into data of much

Algorithm 1: An algorithm for converting symbolic rep-
resentation
Require: An algorithm is required for converting entropy
values into symbolic representation. a number of symbols,
entropy of unpacked code, breakpoints, symbolic value
and normalized entropy of unpacked code are abbreviated
as ¢(pB), E, B, "X and ’E respectively, in the following
pseudocode.
Ensure: Extract symbolic unique pattern, which will be
used in detecting packing algorithms.
{Convert entropy values into symbolic representation}
We detect to packing algorithm using of the symbolic
representation, the SAX.
if Breakpoint 3;_1 < f3; and ’E<— normalized of E are
true then
¢(B) + calculate a number of symbols with breakpoints
else
Continue this loop.
end if
if "X+« convert ’E into SAX true then
@¢(B) + analyze "X using breakpoints
We extract new unique a symbolic pattern from a
entropy pattern.
Calculate to similarity measurement, accuracy and
recall.
else
Continue this loop.
end if

lower dimensionality such that each of the lower dimensions
conveys much more information. Thus, the dimensionality
reduction of PAA is automatically carried over to a symbolic
representation Keogh et al. [9] and Yi et al. [11].

Definition 2: Lower Bound is a number less than or equal
to every number in a given set of entropy values. In other
words, it allows distance to be defined on in the original time
series (original entropy pattern). Hence, the lower bounding
distance between two symbolic strings can be proved by
simply pointing to the existing proofs for PAA representation
itself.

Given the normalized data set (entropy values) have
highly Gaussian distribution, we can simply determine the
breakpoints that will produce a, equal-sized areas under
Gaussian curve.

Definition 3: Breakpoints (53) are a sorted list of numbers,
B=p1, B2, . . ., Ba_1, such that 8; 1 < (3; divides the area
under a N(0,1) Gaussian curve into equal areas. The size of the
alphabet is also an arbitrary integer a greater than 2 (e.g., for
the letters = (a, b, ¢), a = 3). According to Lin ez al. [10], these
breakpoints are determined by looking them up in a statistical
table.

1
from f; to 6”1:5 “4)

( Bo and B, are defined as —oo and oo, respectively)

Definition 4: Euclidean distance (£D) is the most common
distance measure for time series [12] analysis. Given two time
series @ and S of the same length n, defines their Euclidean
distance.

ED(Q,5) = ©)
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If we transform the original subsequence into SAX represen-
tations, We use the following equation.

(6)

C. Classifier

There are two categories of classification methods. First,
supervised classification uses ground truth data in the form
of simple sets. A maximum likelihood classifier is a typical
supervised classification method. Second, unsupervised clas-
sification utilizes only spectral features without the use of
ground truth data. Clustering is an unsupervised classification,
in which a group of spectral values will be regrouped into a
few clusters with spectral similarity.

Our proposed method includes two types of classification.
The first one is a similarity measurement classification. We
introduce a detailed explanation of it in Section II-D. A
second one includes commonly used classification methods
such as the Naive Bayes classifier, Support Vector Machines
and J48 Decision Trees. By applying our method, we generated
patterns with high accuracy of detecting known and unknown
packing algorithms.

However, the classification of known and unknown packing
algorithms turned out to be a critical factor in our research. A
classifier can be designed using various approaches for classi-
fication. Roughly speaking, there are three different methods
that can be used Meijer et al. [13].

The first method is the simplest and most intuitive, and
is based on the concept of similarity. Template matching
is the one of such examples. The second method is prob-
abilistic. This includes Naive Bayes (NB), support vector
machine (SVM), J48 decision tree, Bagget-j48, RandomForest,
RandomWood, k-nearest-neighbors (KNN) and Multi-Layer
Perceptron (MLP).

The k-nearest neighbor (KNN), Parzen window, and branch-
and-bound (BnB) classifying methods are well known among
researchers. The third method is the direct construction of
decision boundaries by optimizing certain error criteria. Ex-
amples of this are Fisher’s linear discriminant, multilayer
perceptions, decision tree and support vector machines.

In this paper, we performed supervised classification based
on simple patterns. The main part of the experiment is detect-
ing unknown packers. We arranged available unknown packers
by determining their nearest similar simple patterns and placed
them into families with patterns they are analogous with. If
a family of similar patterns did not exist we created a new
database of families. Figure 3 illustrates our use of the first
and second methods. We practiced using NB and SVM, which
are both supervised learning classifiers, to classify the packing
algorithms.

1) Naive Bayes (NB) classification : The naive Bayes
classifier is an effective and efficient classification algorithm.
Classification is a fundamental issue in machine learning and
data mining fields. The NB classifier is both a supervised
learning method and a statistical method for classification.
The NB classifier is based on the Bayes rule of conditional
probability, which enables us to create classifications of known
and unknown packing algorithms using Bayes theorem.

2) Support vector machine (SVM) classification : Support
vector machine is a supervised learning method used for clas-
sification and regression Vapnik [14] and Yapnik et al. [15].
SVM is a widely used machine learning method introduced
by Vapnik [14]. SVM is a powerful, state of the art algorithm

Known/unknown \
packers

[
£
1]
=
v
g I
B
. Classification
—
= Mathod
]
L.
[ No Yes
m
Create a new Datact
group of packers
classification |
- = = =
Database of Database of
known packer
pattermn

unknown packer
pattemn
—

Fig. 3. The structure of a classifier

with strong theoretical foundations based on Vapnik’s theory.
A notable characteristic of an SVM is that its computational
complexity is independent of the dimensionality of the kernel
space, where the input feature space is mapped Burges et
al. [16]. Thus, the curse of dimensionality is bypassed. An
SVM takes a set of input data and predicts, for each given
input, which of two possible classes forms the output. In other
words, given the data from two classes as two sets of feature
vectors in an n-dimensional space, SVM constructs an optimal
hyperplane that separates a set of one class instances from
a set of the other class instances and maximizes the margin
between the two data sets. That is, if two parallel hyperplanes
are constructed, one on each side of the optimal hyperplane
and pass through the nearest data point in each data class,
the distance between the parallel hyperplanes needs to be as
far apart as possible while still separating the data into two
classes. This also has an influence on the classification for
packing algorithm detection, and SVMs tend to have a high
performance.

D. Similarity Measurement

A similarity coefficient ®(x,y) measures the strength and
direction of the linear relationship between two symbolic
representations of packing algorithm.

n

Z(Iz * Yi)

i=1 . 6)

(I)([L‘, y) =

The value is always between [—1;1], where 1 indicates a
strongly positive relation; 0, means no relation; and —1, means
a strongly negative relation. Similarity is the most widely used
coefficient. A similarity measure can be considered a measure
for representing the similarity of two sequences x and y under
the following comparison: This measure accepts an amplitude
shift.

IV. EFFECTIVENESS EVALUATION OF THE
CLASSIFICATION

In this section, we describe the experimental results of
our analysis. As previously stated, we proposed a method
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for detecting packing algorithms. The dataset used in this
experiment contains 466 packed executables, 246 of which are
packed malware files [17], and the remaining 220 are packed
benign executables. The malware samples were collected from
a malicious Web site offensive computing [18] and VX
heavens [17].

The data sample of the 246 packed malware executables
are a collection of viruses, Trojans, adware, spyware, and
a few variants [18]. The data samples of the 220 packed
benign executables are a collection of Windows system files
and normal executables. We used fifteen popular packers in
the experiments. We conducted around 6,800 experiments on
packing algorithm detection.

In these experiments methods of similarity measurement,
symbolic representation and popular forms of classification
were used on each packed executable. The data samples were
split into training and testing samples at a ratio of 50:50. The
training data set consists of 110 data samples from 220 packed
executables, with the rest being packed benign executables.
Similarly, the testing data set consists of 123 samples from 246
packed malware, with the remaining being packed malware.

A. Evaluation Metrics

When comparing the performances of different classification
techniques, it is important to assess how well they are able
to correctly predict the actual classifications of the packers.
Several metrics are conventionally used to numerically quan-
tify the effectiveness of the classification performance. To
introduce the metrics, let us define the classification of packers.
A packer is positive if it is predicted to belong to a specific
class, and is negative if it is predicted to belong to another
class.

Suppose that for a test set with n packers, the sets of positive
and negative packers for the classification are known, and
P and N are the numbers of positive and negative packers
respectively, such that

n=P+N. 8)

Using the four important counts defined below:

o TP represents a true positive, which is the number of
detected packers, correctly identified as a correct class of
the packing algorithm;

o ['P represents a false positive, which is the number of
detected packers that do not belong to a classification but
were incorrectly identified;

o T'N represents a true negative, which refers to the number
of detected packers, incorrectly identified as classifica-
tions;

o F'N represents a false negative, which is the number of
detected packers that belong to a classification but were
incorrectly identified as classifications.

Then, the numbers of positive and negative detected packer P
and N are defined by
P=TP+FN, )

and

N =FP+TN. (10)

Let A denote the accuracy of classification as the percentage
of test set packers that are correctly identified by the classifier.
That is,

(TP+TN) (TP+TN)
n ~ (P+N)

A= (11

The accuracy A provides the overall effectiveness. However,
this measure has one limitation. Suppose that a test set contains
a large number of negative packers and a very small number
of positive packers, and that we use a classifier labeling every
class as negative (no matter what the input data are). That is,
TN is very high, and T'P is very low.

Despite the classifier being very primitive, it will achieve
very high classification accuracy on this data set. The true
(7-) and false (F,.) positive rates are introduced to measure
the proportion of positive packers that are correctly identified
and the proportion of negative packers that are incorrectly
identified, respectively. For each class, 7, is calculated as

TP TP
= — = = 12
T = T wPtEN) (12
and F, is defined by the following formula:
FP FP
Fr="n = (13)

N ~ (FP+TN)

Two other fundamental ways to measure the classification
effectiveness are precision and recall. Precision indicated the
proportion of packers classified as positive, which are clas-
sified correctly, and recall shows the proportion of positive
packers that have been correctly identified. Therefore, for each
class, precision P is defined as

TP

= 14
P (TP + FP)’ (14
and recall R is defined as
TP
= 1
R (TP+ FN) (15

B. Classification Result from an Entropy Analysis

All packers are measured based on their similarity. As an
example, a graph and result of the MPRESS packer are also
given in Table 1. Table II shows the similarity between the
experiment result of MPRESS and popular five packers from
fifteen packing algorithms.

TABLE I
EXPERIMENTAL RESULTS OF THE MPRESS PACKER
[ MPRESS | calc [ Treecell | mshearts | msiexec | notepad | telnet |
calc I ] 09688 0.9709 0.9604 | 0.9913 T 0.9130
freecell 0.9688 I 0.9923 0.98635 0.9797 | 0.9669
mshearts | 0.9709 | 0.9923 I 0.9742 | 0.9800 | 0.941T1
msiexec 0.9604 | 0.9865 0.9742 T 0.9724 ] 0.9667
notepad 0.9913 | 0.9797 0.9800 0.9724 T 170.9300
telnet 0.9130 | 0.9669 0.9411 0.9667 | 0.9300 1

We extracted packing algorithm patterns using the SAX
representation method.

TABLE II
SIMILARITY BETWEEN THE EXPERIMENTAL RESULTS OF MPRESS AND
OTHER PACKERS

MPRESS NPACK

“calc.exe”
0.7278

ASPACK
“calc.exe”
0.5599

RLPACK
“calc.exe”
-0.4034

UPXN
“calc.exe”
-0.2093

NSPACK
“calc.exe”
-0.4276

“calc.exe”

However, first we present the benign “calc.exe” files packed
with fifteen packing algorithms. Second, packed calc.exe”
executables converted by SAX using four types of ¢(0)
values. In the example above with ¢(8) = 10, ¢(5) = 100,
¢(B) = 1000, and ¢(8) = 10000 where n=100000, the
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data series is mapped to the character symbol ‘abcdefghi-
jklmnopgrstuvwxyz* where ¢((3) is the number of symbols.

Value M and ¢(/3) have reverse relationship. The lower the
value of M goes, the greater the beta becomes. When the
value M is low, the accuracy of converting entropy values to
symbolic representations will be high, which can be seen from
equation(16).

_ Entropies

o3 = =2

We show the combination of ¢(3) for converting entropy
pattern into symbolic representation in Figure 4.

(16)

Calc.exe packed with upxn
Entropy Ertropy
H .

3

Calc.exe packed with mpress

—ale

1 100001 200001 JMPs 1 20000t 200001 aomet IMPs

Symbolic representation of packed
calc.exe by upxn

Symbeolic representation of packed

Syboh calc.exe by mpress

10000
—— 4B

P — #iB100

#im-1000 e —— #iBpa000
— {10000 10 q_“hm

Fig. 4. Entropy patterns converted into symbolic representations using
different ¢(3)

In other words, ¢(S) evaluates the number of symbols
used for extracting packing algorithm pattern. For instance
(in fact), we packed calc.exe file by MPRESS packer. Next,
we extracted entropy pattern by unpacking the file through
measuring/analyzing its entropy value. Then we converted
the entropy pattern into a simple pattern through symbolic
representation. The simple pattern, which is expressed by
symbols such as ¢(3)= (10, 100, 1000, 10000) by using SAX
algorithm, is presented in Figure 4. We show that the accuracy
is independent from the number of symbols, ¢(3), as shown
in Table III.

TABLE III
RESULTS OF MPRESS PACKER CONVERTED BY SAX
[ MPRESS ¢(B) [ Tw% | F»% | A% | P% | R% |
10 100.0 33 98.0 95.2 T 100.0
100 100.0 0.0 | 1T00.0 | 100.0 | 100.0
1000 100.0 0.0 | 100.0 | 100.0 | 100.0
10000 100.0 0.0 | 100.0 | 100.0 | 100.0

In Table 1V, the patterns of fifteen packing algorithms
converted by SAX are shown. The different packers, detected
at an average accuracy of 94.2%. Table IV shows the detailed
accuracy of the sample dataset. The detection results of the
samples are presented as a confusion matrix. As shown in
Table IV, the accuracy of the MPRESS and MEW packing
algorithms are both 100%, whereas the minimum accuracy
refers to 88.5% which relates PELOCK packing algorithm.

Unlike other packing algorithms, we predict that the PE-
LOCK packing algorithm uses a protecting system (hiding
packing algorithm). Table IV shows an average true positive

TABLE IV
DETAILED ACCURACY OF EACH PACKER USING A MIXED SAMPLE DATASET
[ PACKERS [ Tw% | % | A% | P% [ R% |
NPACK 100.0 10.0 94.1 91.7 ] 100.0
MPRESS 100.0 0.0 | 100.0 [ T00.0 | T00.0
NSPACK 95.2 4.8 96.1 95.2 95.2
UPXN 90.5 6.7 92.2 90.5 90.5
RLPACK 90.5 10.0 90.2 86.4 90.5
ASPACK 95.2 4.8 96.1 95.2 95.2
PETITE 91.3 12.5 90.9 91.7 91.3
ASPROTECT 91.7 9.4 9I.1 92.0 91.7
FSG 100.0 3.1 98.2 96.0 [ 100.0
MEW 100.0 0.0 | 100.0 | 100.0 [ 100.0
THEMIDA 92.3 5.9 933 92.3 92.3
YODA CRYPTER 92.3 5.9 935 88.9 92.3
VMPROTECT 96.2 2.9 95.0 92.3 96.2
PELOCK 88.5 14.7 88.3 88.5 88.5
TELOCK 96.2 8.8 93.3 89.3 96.2
AVERAGE 94.7 6.6 942 | 92.7 94.7

rate of 94.7%, a false positive rate of 6.6%, a precision of
92.7%, and a recall of 94.7%. Finally, in Table V, we present
two classifications of packing algorithms based on symbolic
representation data.

Tables IIT shows some experimental results of the MPRESS
packer. The experimental results of the UPXN and RLPACK
packing algorithms graphed in Figure 5 look similar. Figures 5
shows three packing algorithms deputed from fifteen packing
algorithms i.e., UPXN, RLPACK, and MPRESS. The lower
graphs show the conversion into symbolic representation for
the corresponding packing algorithm.

TABLE V
DETAILED ACCURACY OF EACH CLASSIFIER
[ Classification [ % | A% ] A% | P% | R% |
Naive Bayes 98.0 1.5 90.4 91.8 98.0
Support vector machine 95.7 23 95.5 90.0 95.7
AVERAGE 96.8 1.9 929 | 90.9 96.8

The MPRESS packing algorithm shows a totally different
pattern from the UPXN and RLPACK packers. However, we
easily extracted a new symbolic pattern from each packing
algorithm. The example graphs in Figure 5 shows each packing
algorithm converted into a symbolic pattern with ¢(5) =
10000.

The experimental results for these notorious packing algo-
rithms imply that our proposed method is useful for identifying
packing algorithms. The results have also shown that the
proposed method is applicable to packed malwares.

As shown in Table V, the accuracy of the NB classification
is 98.0% which is higher than SVM classification. We can
therefore classify packing algorithms using entropy analysis
and symbolic representation with a high accuracy.

V. CONCLUSION

This paper discussed the use of packers, and presented a
novel technique to detect packing algorithms using SAX rep-
resentations and similarities of the sequence of SAX symbols
in each packer. In this method, the low randomness profile of
the packing algorithm is extracted and then passed to a pattern
classifier.

Our work demonstrates that the randomness profile com-
bined with strong pattern recognition algorithms produces a
highly accurate packer classification system on real life data.
The proposed system was tested on a large data set, including
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Fig. 5. Experiment result of entropy patterns converted into symbolic representations

220 benign packed files and more than 246 packed malware
from the wild.

Our method classifies packing algorithms using NB and
SVM classifiers with symbolic representation patterns. In
future work, we will extract the symbolic patterns of new
packed malware, multi-packing algorithms and use additional
classification method for packer classification.
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