
BinGraph: Discovering Mutant Malware using
Hierarchical Semantic Signatures

Jonghoon Kwon, Heejo Lee

Div. of Computer & Communication Engineering
Korea University

Seoul, Republic of Korea
{signalnine, heejo}@korea.ac.kr

Abstract— Malware landscape has been dramatically elevated
over the last decade. The main reason of the increase is that
new malware variants can be produced easily using simple code
obfuscation techniques. Once the obfuscation is applied, the
malware can change their syntactics while preserving semantics,
and bypass anti-virus (AV) scanners. Malware authors, thus,
commonly use the code obfuscation techniques to generate meta-
morphic malware. Nevertheless, signature based AV techniques
are limited to detect the metamorphic malware since they are
commonly based on the syntactic signature matching. In this
paper, we propose BinGraph, a new mechanism that accurately
discovers metamorphic malware. BinGraph leverages the seman-
tics of malware, since the mutant malware is able to manipulate
their syntax only. To this end, we first extract API calls from
malware and convert to a hierarchical behavior graph that
represents with identical 128 nodes based on the semantics. Later,
we extract unique subgraphs from the hierarchical behavior
graphs as semantic signatures representing common behaviors
of a specific malware family. To evaluate BinGraph, we analyzed
a total of 827 malware samples that consist of 10 malware
families with 1,202 benign binaries. Among the malware, 20%
samples randomly chosen from each malware family were used
for extracting semantic signatures, and rest of them were used
for assessing detection accuracy. Finally, only 32 subgraphs were
selected as the semantic signatures. BinGraph discovered malware
variants with 98% of detection accuracy.

I. INTRODUCTION

Malware is a software that implemented to damage com-
puter systems or networks without any user’s awareness [1].
Such malware like trojan, virus, worm and bot leads most
kinds of cyber crimes, such as DDoS attacks, spam, click fraud
and information theft. Even through there are numerical efforts
to detect malware, malware threat is rampant.

The major difficulty of malware detection is the rapid
increase of malware variants. Symantec and McAfee security
reports state that the number of new malware signatures has
shown an extreme growth by more than doubling on a year-
to-year between 2006 and 2011. Moreover, new signature
creation in 2011 is figured about 403 Million [2], [3]. The main
reason for the dramatic growth is that the malware variants can
be easily produced by adopting new techniques such as code
obfuscation and modularization [4]–[7].

The code obfuscation technique supports that malware can
change their instruction sequences and also even their sig-
natures with preserving their functionalities. Thus, the code
obfuscation provides the chance to evade existing signature-
based AV scanners with inexpensive cost [8]. This is the why
new malware having explosively increase, and AV venders
need to pay the amount of cost for generating new signature.
Taha and Jacob et al. state that, over 50% of new malware are
obfuscated version of existing known malware [9], [10].

Modularization of malware is another important issue of
the malware landscape [11]. Riech et al. and Thomas et al.
state that Malware authors often build their codes with several
modules [7], [12]. It allows them to easily create new malware.
For example, malware authors, who are lack of abilities to
implement their own malware, can build new malware by
combining existing malware modules. In addition, the mod-
ularization also offers possible ways to evade AV scanners as
well. If one of the modules is labeled as a malicious by AV
vendors, all the malware authors have to do is only simple
modification or substitution of the particular module.

Currently, most of AV venders have used signature scanning
for malware detection. It is known to be efficient because it
guarantees less time, small overhead, and low false positive
rate. In spite of the advantages, the signature-based malware
detection have a fatal failure. It is not able to detect brand new
malware, and even their mutants that their signatures have not
been updated yet. Therefore, malware analysis for signature
updating is the most important task to AV venders.

When a new suspicious binary is shown up, malware experts
conduct behavior analysis through several ways to determine
whether or not the binary has malicious attempts. More pre-
cisely, they execute the binary on the controlled environment
and monitor what the binary do, such as accessing specific
registries, creating files into windows system directories, trying
to kill the antivirus processes and so on. If any malicious
attempts are discovered, a signature of the malware is extracted
and updated. However, the signature update is not an easy task
since malware analysis is commonly time consuming task, and
there are too many malware to be analyzed. In the meantime,
unspecified individuals are just exposed to the malware. A new
technique to reduce the time for signature update is required.

To this end, we proposes BinGraph, a new behavior-based
mechanism for analyzing and classifying metamorphic mal-
ware by automatic way. BinGraph is to mainly reduce the
analysis time for the signature update. We utilize a system-
call sequence as a binary characteristic. This is based on the
assumption that the same API call sequence S is appeared in
an original malware M and its new variant malware M ′ as
well. That is, even if the M ′ is generated by applying code
obfuscation to M and the syntax of M ′ is quite different from
M , the semantics of M ′ cannot be deviated from the semantics
of M .

We extract only several instructions related to the system
call sequence in a binary, and represent as a form of a directed
graph. After that, the graph is separated into several subgraphs
depending on their functionalities, and abstracted based on
behavioral semantics. We gather the subgraphs from not only
several malware variants but also benign executables, and
apply the graph mining to determine which subgraphs are
only present in malware. Finally, the subgraphs are used for
malware detection as the semantic signatures.

We implemented BinGraph and evaluated with a total of
827 real-world malware variants that can be classified as
10 malware families, and 1,202 benign executables including
Windows system programs. The malware samples were given
to us by a AV vendor who collect the binaries from submission
to a public web site on May 2012. Among the malware
samples, we randomly chose 20% of malware sample from
each malware family. 166 binaries were chosen to extract
semantic signatures, and rest of them were used for assessing
whether the extracted semantic signatures can detect mutant
malware binaries accurately.

In the experiments, we collected 8,673 subgraphs from the
selected malware samples and 161,328 subgraphs from 1,002
benign executables. By the graph mining step, 1,897 unique
subgraphs were extracted as the malicious behavior, and only
32 of them were addressed as the semantic signatures. The
sematic signatures are, finally, matched with 661 malware
samples as well as 200 benign binaries. BinGraph successfully
discovered malware variants with 98% of detection accuracy
using only the 32 semantic signatures, and there is no false
positive.

The main contributions of this paper are threefold:

• We present a novel approach that discover malware
even though the malware adopts code obfusctation. Our
approach leverages a common semantic characteristic of
a malware family, thus it is not influenced whether or not
the malware manipulate their instructions.

• We can detect modularized malware. Our approach de-
fines a binary with a hierarchical structure and separates
into tiny pieces of code based on functionality. Therefore,
we can determine whether or not a binary has a malicious
attempt even though the binary contains small piece of
malicious code.

• We reduce the number of malware signatures. Our exper-

imental results exhibit that each malware families have
distinct semantic signature(s), so we can detect much
malware variants using few signatures. This reduction
can solve the problem of extremely increasing malware.
Furthermore, analysis times and storages to be needed are
dramatically reduced as well.

The remainder of this paper is organized as follows.
In Section 2, the background of this research and related
studies are discussed. And, we describe the architecture of
our mechanism, BinGraph in Section 3. Section 4 evaluate
BinGraph, and finally, we conclude this paper and provide an
outline of future work in Section 5.

II. BACKGROUND

Malware and anti-malware warfare is endless. Malware
authors adopt new techniques, such as code obfuscation tech-
niques, which can manipulate their codes to avoid detec-
tion by defenders, since traditional anti-malware solutions
are commonly based on the signature scanning. Accordingly,
defenders have studied on the issue of obfuscated malware to
improve the detection performance.

Malware detection has been studied with mainly two ap-
proaches, static analysis and dynamic analysis, and the ap-
proaches have advantages and disadvantages for each. Dy-
namic analysis [13]–[17] executes malware samples in a
controlled, isolated environment such as Virtual Machine
(VM), monitors malwares behaviors, and reports automati-
cally. ANUBIS [18], CWSandbox [19] and TTAnalyze [20]
are the popular dynamic analysis tools. However, dynamic
analysis involves system infection, and malware authors can
apply the anti-VM techniques to prevent code analysis. Most
importantly, many of the current malware are operated by
attacker’s commands. Thus, even the malware is loaded on
the analysis system, there exist a possibility that the malware
does not work. This is un-ignorable limitation.

Binary pattern matching [21], data flow [22], and code flow
analysis [23], [24] are the examples of static analysis. They
analyze the malware without malwares execution, thus they
commonly guarantee fast and safe analysis. In addition, static
analysis can cover the entire malware code. Of course, static
analysis also has limitations. Static analysis has difficulty to
analyze code obfuscated malware. Using the code obfusca-
tion technique, the malware can change their codes without
changing functionality.

To overcome the limitations [24], code normalization [25],
[26] and semantic approaches have been proposed [27], [28].
Even though the approaches are helpful, code normalizations
are depending on specific obfuscating techniques, and the
semantic approaches have shown a weakness to new type of
code obfuscation.

Recent studies have shown that API calls can be useful for
malware detection since the API calls reflect the functionalities
of a program. Bai et al. presented a malware detection research
based on critical API-calling graph(CAG) [29]. The approach

deals with matching of the CAG rather than considering all
API calls. Eskandari and Hashemi proposed a metamorphic
malware detection using API calls on the Control Flow
Graph(CFG) [30]. They converted the resulted sparse graph
to a vector and adopted few machine learning techniques.
However, the works are only focused on the syntactic structure
of API call sequences, not the semantics of the API calls.
Therefore, their approaches cannot perform well for detecting
malware variants created by replacing the APIs with other
APIs or reordering the APIs while preserving the same func-
tionalities of the program.

CodeGraph [31], our previous work, has been proposed to
detect metamorphic malware using semantic signatures. As
one of the static analysis, CodeGraph converts the API call
sequence of the malware into a graph to extract the semantic,
and converts the graph to a code graph used for the semantic
signature. Finally, the semantic signature is compared with
other semantic signatures to calculate similarity. Unfortunately,
CodeGraph is susceptible to new types of malware, especially
modularized ones, since it only concerns whole behaviors of
malware as one semantic signature.

To unveil the modularized malware, the semantic signature
has to be represented as the functionality level rather than the
code level, and also contain unique behavioral features. To
address this, our work is focused on;

1) How to build subgraphs which can be distinguished
based on their functionalities,

2) How to address their semantics in the graph structure,
and

3) How to extract semantic signatures which represent
specific malware or malware families.

This work is basically an extension of the previous work,
where the concept of building the semantic signature was
proposed for detecting metamorphic malware.

III. BINGRAPH SYSTEM

BinGraph is a system to detect metamorphic malware
using semantic signatures. Fig. 1 shows the working flows
of BinGraph, and it has two phases: semantic signature
extraction and malware detection. At the first phase, we
construct the semantic signatures using both malware
samples and benign executables. Then, malware detection
against unknown binaries is performed by matching with
the semantic signatures at next phase. Our system consists
of five different analysis steps, behavior graph construction,
subgraph extraction, graph abstraction, graph mining, and
signature matching. In this section, we describe the details of
BinGraph from the perspective of the different analysis steps.

A. Behavior Graph Construction

Current malware detection is commonly based on the syn-
tactic signature matching, and malware authors adopt new
techniques such as code obfuscation to evade the malware

Behavior Graph Construction

Subgraph Extraction

Graph Abstraction

Graph Mining

Malware
Executable

Benign
Executable

Semantic Signature

Behavior Graph Construction

Subgraph Extraction

Graph Abstraction

Signature Matching

Unknown Executable
(Testing Sample)

Detect Result

Sematic Signature Extraction Malware Detection

Fig. 1. BinGraph architecture with two phase, semantic signature extraction
and malware detection.

detection system. It is surely effective since the technique
changes syntactics of malware without semantics. This is the
motivation that BinGraph is focused on semantic characteris-
tics of malware rather than syntatic characteristics.

The system call features are critical importance for under-
standing and identifying the semantic of malware. In the Win-
dows system, applications access the system resources, such as
process, memory, registry, and network, through Win32 API.
Malware is also able to access the system resources by using
API functions to implement their tasks, and semantics of the
API functions are clear. Hence, BinGraph utilizes the system
call information, especially call sequence, as the semantic
characteristics of binaries.

To represent the semantic of a binary, BinGraph construct
a behavior graph using the API call sequence. Therefore,
the extracting accurate call sequence is required. The code
analyzer [31], [32], fortunately, provides the extraction from a
executable. The code analyzer first extracts instructions related
to the system call sequence in the binary, and represents the
result into the set of nodes and edges. The result of code
analyzer is a call graph, G = (V,E), where V is a set of
system calls selectively chosen among the system calls. And
E is a set of calling relations of the system calls in V , e.g.,
E = {(vi, vj)}|vi, vj ∈ V }, where vi denotes the caller, and
vj denotes the callee.

We build the set of node V , which contains the system
calls, through the Import Address Table (IAT) in a executable.
Next, we generate the set of edges E for the call graph G
based on the system call sequence, where vi is the caller and
vj is the callee.

B. Subgraph Extraction

Many malware are implemented as several modules, and
the modules are shared to create other malware or attached

Program

Function

Basic block

API call Function F
n

…

Program P
i

Function F
3

Function F
2

Function F
1

Basic block B
1

Basic block B
2

Basic Block B
3

Function F
i

Layer 1

Layer 2

Layer 3

Layer 4

Fig. 2. A hierarchical structure of binaries with four layers.

into benign executables. To detect such kinds of malware, we
need to understand the malware in terms of functionalities.
Moreover, we need to understand the hierarchical architecture
of malware and duplicated behaviors across the malware
variants.

To do this, we classify the binary into four layers, which is
in order of API calls, basic blocks, functions, and a program.
Fig. 2 represents the hierarchy. A program P consists of
functions F , a function F consists of basic blocks B, and a
basic block B consists of API calls v. The API calls represent
the basic nodes composing a behavior graph, however a single
API call is not sufficient to express a specific behavior.

The basic block [33] is a portion of the code with certain
desirable properties. Usually, the basic block has an entry point
and an exit point, meaning there is no jump instruction and
only the last instruction can cause other basic block to execute.
We consider the basic block as a basic subgraph GB , since it
can be the smallest piece of code embracing a behavior with
a purpose.

In few cases, the basic blocks cannot represent specific
behaviors. For example, the size of all of them in a binary
are too small or only small number of API call is arisen in
the basic blocks. To handle this, if all the basic blocks are not
sufficient to exhibit the semantic characteristics of a binary and
we are not able to generate unique subgraphs for the binary,
we move to the upper layer, i.e., function layer, to produce
subgraph GF that expresses the function. More precisely, if a
function Fi consists of basic blocks B1, B2 and B3, and all
the basic blocks cannot present the semantic characteristics of
the binary, GFi is considered as one of the subgraphs.
GP is a super graph that represents all behaviors in program

P , and it is widely used in previous researches which applied
API call based binary analysis [34]. However, in BinGraph,
the GP is considered as a semantic behavior graph if and
only if there is no sufficient subgraphs for representing unique
semantics. This hierarchical subgraph approach guarantees at
least same detection performance with the previous works in
worst case, such as there is no unique malicious subgraph in
malware.

C. Graph Abstraction

So far, we have constructed call graphs based on the API
call to detect malware variants through comparing the graphs.
Unfortunately, the call graphs have thousands of nodes and
each nodes represents each calls, and the graph isomorphism
is as commonly known as a NP-complete problem. We need
to simplify the call graphs to comparable forms with preserv-
ing semantic characteristics. We call this step as the graph
abstraction.

To this end, we substitute the system calls into 128 nodes
based on their semantics. More precisely, we classify each
calls by 32 objects of a system call, where the objects are
process, register, memory, socket, and so on. And then, the
calls are classified again by four behaviors of the related
object, where the behaviors are open, close, read and write.
For instance, CreateProcess() is a member of the process-
open group. Note that the 32 objects are referenced from the
Microsoft Developer Network (MSDN) in order to implement
BinGraph on Windows system.

After the classification, the nodes within the same groups
are merged and edges are relocated based on the call relation-
ships of the nodes.

After subgraph extraction from a call graph, every subgraphs
are transformed abstracted graphs. We use an adjacent matrix
as a data structure to store the graph information. An adjacent
matrix is the most proper data structure for graph, since the
graph is a directed graph and the number of nodes is only
128. Finally, we can successfully abstract and transform the
call graphs to 128×128 matrices.

Fig. 3 is a simple example of the graph abstraction. A
subgraph (a) presents malicious behavior that collects system
information and sends to third party through the network. Note
that malware usually collects the information from infected
machines, and this behavior graph is captured from one of
the malware samples. The malware invokes the system calls
to collect Windows version and current memory status, and
sends them to attackers through a network connection. The
subgraph is abstracted as forms of a semantic graph (b) with

GlobalMemoryStatus

GetVersionExA

Send Recv

Connect

Socket

CreateThread

CloseSocket

Memory.Read Thread.Open

Socket.Open

Socket.ReadSocket.Write

Socket.Close

SystemInfo.Read

(a) An example of API call graph that

presents system information leakage.

(b) A semantic graph that is abstracted and

transformed from the information leakage

graph.

(c) Amatrix data structure that contains

the semantic graph in fixed size.

Fig. 3. Semantic abstraction with a real example of malicious behavior.

128 nodes, finally, transformed into the matrix data structure
(c).

This graph abstraction offers next three advantages:
1) The abstracted graphs can express semantics of the

executables,
2) The abstracted graphs can be represented as a small data

structure irrespective of their sizes or hierarchy, and
3) Computation time is extremely decreased, since the size

of a graph has only 128×128, thus it can be completed
within finite time at any condition.

D. Graph Mining

In this step, we conduct the frequent subgraph mining
for extracting semantic signatures. A frequent subgraph
means that it appears simultaneously in a fraction k of all
binaries. If k is greater than two and it appeared in only
malware samples, it is regarded as a shared module across
the malware variants. Consequently, it can be useful as a
semantic signature to detect malware variants.

M
al

w
ar

e
E

x
ec

u
ta

b
le

B
en

ig
n

E

x
ec

u
ta

b
le

M
al

ic
io

u
s

S
u

b
g

ra
p
h

M
in

in
g

Malware M
1

Malware M
2

Semantic

Signature

(Frequency 2)

Benign binaries B
n F

re
q

u
en

t
S

u
b

g
ra

p
h

M
in

in
g

Graph Mining Step

Fig. 4. A overview of graph mining process.

To mine graphs only observed in the malware, we perform
the comparison between two graph sets came from malware
and benign binaries respectively. To this end, the three analysis

steps, behavior graph construction, subgraph extraction and
graph abstraction, are equally performed to malware and
benign binaries. Next, we compare the each graph to determine
whether or not it appears in benign binaries. If a graph appears
in a benign graph set, it is removed immediately. But, if a
graph only appears in a malware graph set, it is added to the
set of a candidate of semantic signatures.

Even though a graph is not appeared in the benign graphs,
we do not consider the graph as a semantic signature directly.
In some malware cases, there are tens of or hundreds of such
graphs. If the number of samples to be analyzed is small,
that is no big deal. However, analyzing millions of samples
is a big deal since the time to process increases exponentially
in accordance with the number of signatures, and millions of
binaries are submitted to AV vendors lately. Therefore, we
need to minimize the number of signatures with maximizing
the coverage over malware.

The greedy strategy [35] is selected for efficient signature
mining. At first, we select a graph that has the highest
frequency, and exclude malware samples that can be detected
by the graph from training data pool. After that, we select
the most frequent graph among the data pool again. The
signature mining with the greedy strategy is performed until
the data pool becomes empty. The number of signature is
rarely similar with the number of malware sample, and most
cases, very small number of signatures is selected.

E. Semantic Signature Matching

The previous analysis adopts graph mining with sets of
known malicious and benign graphs to extract semantic sig-
natures. The semantic signature represents a behavior that
only appears in particular malware or variants. This step is
for detecting unknown malware by matching the semantic
signature.

In order to discover unknown malware, we first extract
semantic graphs to be compared with the semantic signatures.
As we can see in Fig. 1, BinGraph applies the behavior

TABLE I

STATISTICS OF SEMANTIC SIGNATURES FOR EACH MALWARE FAMILY

Malware Name # of Sample
of Total # of Unique # of Malicious # of Semantic
Subgraph Subgraph Subgraph Signature

Conficker 8 845 422 13 3
Killav 20 69 24 5 1

Koobface 8 173 126 41 3
Nebuler 20 3246 605 413 1

OnlineGameHack18 20 271 43 21 1
Palavo3 20 2011 1632 1345 7
Qhost 20 400 20 8 1

Rustock 10 270 193 0 4a

TDSS3 20 69 24 10 10
Userinit 20 1319 144 41 1

aThe semantic signatures of Rustock were composed in function layer.

graph construction, the subgraph extraction, and the graph
abstraction to unknown binary. After the pre-analysis steps,
matching with the semantic signature is performed.

As we mentioned in section 3.C, the graph isomorphism
problem is NP-complete, thus we utilize the matrix data
structure for semantic graph matching. Every semantic graphs
and signatures are represented by 128×128 matrices. More
in details, each matrix is stored as a 2KB bit-stream, and
simple XOR operation is executed to determine whether or
not the matrices of semantic signatures are matched with the
matrices of semantic graphs. Whenever a match is found,
the result of XOR operation is equal to zero, we define the
corresponding graph as a malicious behavior, and we classify
the corresponding binary as a malware.

IV. EVALUATION

We performed several experiments to evaluate accuracy and
efficiency of BinGraph. This section describes the evaluation
results and interesting features in detail.

A. Environments

BinGraph has been implemented and evaluated with a
total of 827 real-world malware variants. The samples were
provided from an AV company. The company obtained the
samples through the public submission Web site and classified
the samples upon their own analysis processes. The malware
samples were provided with names of 10 malware families,
and they all had distinct binary patterns.

To ensure that whether the classification of the malware
families is trustworthy, we leveraged the samples with two
different AV engines (e.g., Kaspersky and BitDefender). Un-
fortunately, the AV engines showed a difficulty to detect all the
malware samples. Besides, the labels of the malware conflict
depending on the AV engines. One of the binaries labeled

as Generic.Malware.SP!g.E654213E, thus we could not de-
termine its malware family. The signature database might not
be up to date at that time. Consequently, our evaluation was
performed based on the initial classification. The families
were Conficker (40), Killav (100), Koobface (37), Nebuler
(100), OnlineGameHack18 (100), Palavo3 (100), Qhost (100),
Rustock (50), TDSS3 (100) and Userinit (100).

Total 1,202 benign binaries, Windows system program
binaries on pure environment and freeware binaries, were
utilized for our evaluation. We verified the benign samples
with the three AV engines (Kaspersky, BitDefender and the
company’s AV engine) and confirmed that all the samples
were not classified as malicious. The size of the samples
ranges from few KB to tens of MB, and a total of 161,328
unique subgraphs were produced. The subgraphs cover the
various benign behaviors, and we utilized them to eliminate
benign behaviors from semantic signatures.

B. Semantic Signature Generation

Lately, detection rates of less than 20% are commonly seen
on newly discovered malware [36]. It means AV vendors have
only 20% of samples for new malware. Hence, we need to
discover all the malware variants using information obtained
from the 20% of samples. Among the provided 827 malware
samples, 20% of each family (166 samples) were randomly
selected for generating the semantic signatures.

Table I explains the analysis results for each malware
family. A total of 8,673 subgraphs were extracted and only
3,233 subgraphs show uniqueness. Finally, we analyzed 1,897
subgraphs as malicious by comparing with benign graphs.
However, all of the 1,897 malicious graphs could not be the
semantic signature, since comparing thousands of signatures
is not efficient as we mentioned in Section 3.D. Therefore, we
needed to figure out most efficient semantic signatures.

The efficiency in malware detection means how many
malware can be caught by the signature. In other words, how

Frequency 20

32 (78%)

Frequency 18

1 (3%)

Frequency 14

5 (12%)

Frequency 6

3 (7%)

Frequency 4

2

(20%)

Frequency 2

8

(80%)

Frequency 4

4 (31%)

Frequency 2

3 (23%)

Frequency 1

6 (46%)

Frequency 20

1 (20%)

Frequency 15

1 (20%)

Frequency 9

1 (20%)

Frequency 5

1 (20%)

Frequency 3

1 (20%)

Frequency 2

3 (7%)

Frequency 1

38 (93%)

Frequency 20

6 (28%)

Frequency 14

9 (43%)

Frequency 3

6 (29%)

Frequency 6

1 (0%)

Frequency 5

1 (0%)
Frequency 4

5 (0%)

Frequency 3

3 (0%)

Frequency 2

60 (5%)

Frequency 1

1275

(95%)

Frequency 20

8 (100%)

Frequency 20

31 (8%)
Frequency 17

1 (0%)
Frequency 16

2 (1%)
Frequency 14

4 (1%)
Frequency 13

1 (0%)
Frequency 7

1 (0%)
Frequency 6

3 (1%)
Frequency 4

6 (1%)
Frequency 3

3 (1%)
Frequency 2

18 (4%)

Frequency 1

343 (83%)

Conficker Killav

Koobface

Nebuler

Onlinegamehack18 Palavo3

Qhost TDSS3 Userinit

Fig. 5. Distributions of subgraph’s frequency for various malware families.

often the signature is appeared across the malware variants. We
define this as “Frequency”. If the frequency is equal to k, the
malicious graph appears in k distinct malware variants. Fig. 5
illustrates the frequency of the malicious graphs. For instance,
5 malicious graphs are discovered in 20 Killav variants and
each of the malicious graphs had frequency 20, 15, 9, 5 and
3 respectively. That is, one of the malicious graph appears
in every Killav variants, thus it bocomes the most efficient
semantic signature.

Half of the malware samples in Fig. 5, Killav, Nebuler,
Onlinegamehack18, Qhost and Userinit, show at least one
or more subgraphs that rank maximum frequency 20. Other
malware families also have frequent subgraphs ranked more
than two. Even though the frequent subgraphs are not able to
cover all variants in a malware family, they are undoubtedly
useful since a frequent subgraph can discover more than two
malware variants.

We performed the semantic signature selection by applying
a greedy algorithm. As a result, only 32 semantic signatures
were constructed for 166 malware variants. The number of
semantic signatures decreased to only 19.28% of the number
of syntactic signatures.

C. Detection Accuracy

We assessed whether the semantic signatures can accurately
detect malware variants without false alarm. To this end, we
performed two experiments. First, we evaluated the semantic
signatures with the remain 80% of real malware samples. And
then, we applied the semantic signatures to benign binaries to
evaluate false positives.

To validate the detection accuracy, we performed the four
analysis steps (viz., Fig. 1) against the 661 malware variant
(80% of samples). First, a call graph was extracted from
each malware, and second, subgraphs were extracted based
on the basic blocks. Third, the subgraphs were transformed
into 128×128 matrices through the graph abstraction step.
Finally, the graphs were matched with semantic signatures
to determine whether or not the graphs attempt malicious
behavior.

Table II exhibits the detection results. Among the 661
malware samples, 649 were matched to the 32 semantic
signatures. Average detection rate was 98.18%. Furthermore,
we also performed matching with 200 benign binaries. 6,379
subgraphs were extracted from the benign samples and there
was no matched results with our semantic signatures. As a

TABLE II

DETECTION RESULTS FOR REAL MALWARE SAMPLE

Malware Name
of Testing # of Matched Detection

Sample Sample Rate
Conficker 32 32 100%

Killav 80 80 100%
Koobface 29 25 86.20%
Nebuler 80 80 100%

OnlineGameHack18 80 80 100%
Palavo3 80 73 91.25%
Qhost 80 80 100%

Rustock 40 39 97.50%
TDSS3 80 80 100%
userinit 80 80 100%

result, BinGraph effectively discovered metamorphic malware
without false positives.

V. CONCLUSION

In this paper, we present BinGraph, a novel approach to
analyze and classify metamorphic malware. The subgraph
analysis can provide not only metamorphic malware
classification, but also behavior analysis of modules used
by malware variants. Such information can be useful to AV
venders and make the malware authors harder to develop
metamorphic malware. For the future work, we will extract
semantic signatures presenting common behavior across
various kinds of malware families, and analyze specific
behavioral features of metamorphic malware.

VI. ACKNOWLEDGMENTS

This research was supported by the KCC(Korea
Communications Commission), Korea, under the R&D
program supervised by the KCA(Korea Communications
Agency)(KCA-2012-12-911-01-111). Additionally, this work
was partially supported by Seoul City R&BD program
WR080951.

REFERENCES

[1] M. Christodorescu, S. Jha, and C. Kruegel, “Mining specifications of
malicious behavior,” in European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software Engineering,
2007.

[2] Symantec, “Global internet security threat report,” Apr. 2012.
http://www.symantec.com/threatreport/.

[3] McAfee, “Threats report: First quarter 2012,” 2012.
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-
2012.pdf.

[4] M. Driller, “Metamorphism in practice.” 29A Magazine, 2002.
[5] L. Julus, “Metamorphism.” 29A Magazine, 2000.
[6] Rajaat, “Polymorphism.” 29A Magazine, 1999.
[7] K. Rieck, T. Holz, C. Willems, P. Dussel, and P. Laskov, “Learning and

classification of malware behavior,” in Fifth Conference on Detection
of Intrusions and Malware & Vulnerability Assessment (DIMVA 08),
pp. 108–125, June 2008.

[8] D. Mohanty, “Anti-virus evasion techniques
and countermeasures.” Whitepaper, Aug. 2005.
http://www.hackingspirits.com/ethhac/papers/whitrepapers.asp.

[9] G. Taha, “Counterattacking the packers.” McAfee, 2007.

[10] G. Jacob, H. Debar, and E. Filiol, “Behavioral detection of malware:
from a survey towards an established taxonomy,” Journal in Computer
Virology, 2008.

[11] P. Ferguson, “Observations on emerging thrests,” in USENIX Workshop
on Large-Scale Exploits and Emergent Threats (LEET), Apr. 2012.

[12] K. Thomas and D. Nicol, “The koobface botnet and the rise of
social malware,” in IEEE Int. Conf. Malicious and Unwanted Software
(Malware 10), pp. 63–70, Oct. 2010.

[13] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. Kemmerer, “Behavior
based spyware detection,” in 15th Usenix Security Symposium, 2006.

[14] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song, “Dynamic spyware
analysis,” in Usenix Annual Technical Conference, 2007.

[15] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. Mitchell, “A
layered architecture for detecting malicious behaviors,” in Symposiumon
Recent Advances in Intrusion Detection (RAID), 2008.

[16] C. Kolbitsch, P. Comparetti, C. Kruegel, E. Kirda, X. Zhou, and
X. Wang, “Effective and efficient malware detection at the end host,” in
Proceedings of the 18th USENIX Security Symposium, Aug. 2009.

[17] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,
“Scalable, behavior-based malware clustering,” in Symposium on Net-
work and Distributed System Security (NDSS), 2009.

[18] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel, “A view
on current malware behaviors,” in USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET), 2009.

[19] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic
malware analysis using cwsandbox,” in IEEE Security & Privacy,
pp. 32–39, 2007.

[20] U. Bayer and E. Kirda., “Ttanalyze: A tool for analyzing malware,”
in 15th Ann. Conf. of European Inst. for Computer Antivirus Research
(EICAR), pp. 180–192, 2010.

[21] F. Cohen, “Computer viruses: Theory and experiments,” Computers &
Security, pp. 22–35, Feb. 1987.

[22] D. Chess and S. White., “An undetectable computer virus,” in Virus
Bulletin Conference, Sept. 2000.

[23] A. Moser, C. Krugel, and E. Kirda, “Exploring multiple execution paths
for malware analysis,” in IEEE Security & Privacy, pp. 231–245, 2007.

[24] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for
malware detection,” in 23th Annual Computer Security Applications
Conferecne (ACSAC 2007), pp. 421–430, Dec. 2007.

[25] D. Bruschi, L. Martignoni, and M. Monga, “Code normalization for
self-mutating malware,” in IEEE Security & Privacy, pp. 46–54, 2007.

[26] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant,
“Semantics-aware malware detection,” in IEEE Security & Privacy,
pp. 32–46, 2005.

[27] M. Preda, M. Christodorescu, S. Jha, and S. Debray, “A semantics-based
approach to malware detection,” ACM Transactions on Programming
Languages and Systems (TOPLAS), Aug. 2008.

[28] V. Sathyanarayan, P. Kohli, and B. Bruhadeshwar, “Signature generation
and detection of malware families,” in the 13th Australasian Conference
on Information Security and Privacy (ACISP 2008), pp. 336–349, July
2008.

[29] L. Bai, J. Pang, Y. Zhang, W. Fu, and J. Zhu, “Detecting malicious
behavior using critical api calling graph matching,” in 1st International
Conference on Information Science and Engineering, pp. 1716–1719,
Dec. 2009.

[30] M. Eskandari and S. Hashemi, “Metamorphic malware detection using
control flow graph mining,” International Journal of Computer Science
and Network Security, Dec. 2011.

[31] J. Lee, G. Jeong, and H. Lee, “Detecting metamorphic malwares using
code graphs,” in ACM Int’l Symp. on Applied Computing(ACM SAC
2010), Mar. 2010.

[32] K. Jeong and H. Lee, “Code graph for malware detection,” in Int’l Conf.
on Information Networking (ICOIN), Jan. 2008.

[33] WIKIPEDIA, “Basic block,” 2012.
http://en.wikipedia.org/wiki/Basic block.

[34] K. Han, I. Kim, and E. Im, “Detection methods for malware variant
using api call related graphs,” in In proceedings of the International
Conference on IT Convergence and Security, Dec. 2011.

[35] P. Black, “Greedy algorithm,” in Dictionary of Algorithms and Data
Structures, Feb. 2005.

[36] A. Fried, “Whose internet is it, anyway,” in Blackhat Conference, Feb.
2010.

