Generic Unpacking using Entropy Analysis

Guhyeon Jeong”, Euijin Choo™", Joosuk Lee”, Munkhbayar Bat-Erdene”, and Heejo Lee”

“Div. of Computer & Communication Engineering, Korea University, Seoul, Republic of Korea.
Email: {ghjeong, jupiter7, munkhbayar, heejo} @korea.ac.kr
““Department of Computer Science, North Carolina State University.
Email: {echoo@ncsu.edu}

Abstract

Malwares attempt to evade AV scanners using var-
ious obfuscation techniques. Packing is a popular ob-
fuscation technique used by 80% of malwares. In this
paper, we propose a generic unpacking mechanism
to find the original entry point (OEP) using entropy
analysis. The experiment using 110 packed executa-
bles demonstrates the proposed mechanism can locate
the OEPs of 72% of the packed executables. Further-
more, we show how the mechanism could be applied
to packed malwares.

1 Introduction

Packing is one obfuscation technique. A packed
executable includes a compressed original executable,
and an unpacking module. The unpacking module de-
compresses the compressed executable and runs the
decompressed one. As packing uses a compression al-
gorithm, a packed executable is naturally obfuscated.
The increasing number of variants and unknown pack-
ers gives malware writers many choices. Moreover,
experts are capable of building their own packers to
evade signature-based AV scanners effectively. The
study [8] presented by Symantec Research Laborato-
ries showed, that over 80% of malwares is packed.

Nevertheless, AV programs still respond to packed
malwares by updating signatures to detect newly

978-1-4244-9356-2/10/$26.00 (©2010 IEEE

114

packed malwares. The time to analyse packed mal-
wares, and find their signature takes much longer com-
pared to the time to create new packers. Consequently,
some AV scanners simply report all executable files
compressed by the same packer as viruses, causing
false alarms [16].

In this paper, we propose a generic unpacking
mechanism to find the original entry point (OEP) us-
ing entropy analysis. Robert Lyda ef al. showed that
binary files with a higher entropy score tend to be
correlated with the presence of encryption or com-
pression [11]. Applying this fact, the concept arises
that an entropy score of memory space is continuously
changed while packed instructions are unpacked into
memory.

Contributions of our research follow. First, with the
help of entropy analysis, we can determine the mo-
ment at which unpacking is completed. The proposed
mechanism effectively finds the OEP. Second, our ap-
proach does not rely on signatures and therefore, it can
locate the OEP, even packed with an unknown packer.

The remainder of paper is organized as follows.
In section 2, we review related work. The proposed
mechanism is described in section 3. We introduce the
concept of packed executables and their entropy us-
ing information theory, and then our approach to un-
packing. Section 4 shows our experimental results and
analysis. In this section, the results indicate that our
approach can solve the unpacking problem. Finally,

we conclude in section 5.
2 Related Work

Most of unpacking research run a packed exe-
cutable in a specific environment, such as a debug-
ger or a virtual machine, to control its execution flow.
Accordingly, it is possible that finding hidden instruc-
tions generated during an unpacking process. The ex-
amples include PolyUnpack [12], OmniUnpack [13],
Renovo [9], Justin [8], and Hump-and-Dump [15]. In
contrast to the formers, a static approach [6] was pro-
posed.

PolyUnpack [12] performs static analysis over a
packed executable to acquire a model of what its ex-
ecution would look like if it did not generate and ex-
ecute code at runtime. When the first instruction of a
sequence not found in the static model is detected, the
unknown instruction sequence is written and the exe-
cution of the packed executable is halted.

OmniUnpack [13] monitors the program execution
and tracks written, as well as written-then-executed,
memory pages. When the program makes a poten-
tially damaging system call, OmniUnpack invokes a
malware detector on the written memory pages. If the
detection result is negative, execution is resumed. If
new type of malware appears, the dangerous system
calls they defined on their paper could not match.

Renovo [9] utilizes a virtual machine. By using
a virtual machine, they run a packed executable and
record memory writing operations on shadow mem-
ory. When execution flow reaches one of checked bits
of the shadow memory, all the checked memory bits
are dumped. Shadow memory is changed to extract
hidden code from packed executables with multiple
hidden layers. With this mechanism, Renovo can find
hidden layers as well.

Justin [8] is a generic unpacking solution. It is de-
signed to detect the end of unpacking of a packed bi-
nary’s run and invoke AV scanning against the pro-
cess image at that time. The difference to other
research is that Justin incorporates Dirty Page Ex-
ecution,Unpacker Memory Avoidance, Stack Pointer
Check and Command-Line Argument Access for accu-
rate end-to-unpacking detection.

Hump-and-Dump [15] is a different approach from
other research. Hump-and-Dump tries to find the OEP.

Using a characteristic of unpacking, it counts the num-
ber of loops used in unpacking. When the number of
loops is greater than a threshold and no more big loops
are used for the period of a threshold, the address of
the loop end point is the OEP.

Recently, Kevin Coogan et al. proposed an auto-
matic static unpacking mechanism [6]. It uses static
analysis techniques to identify the unpacking code that
comes with a given malware binary, then uses this
code to construct a customized unpacker for that bi-
nary. This customized unpacker can then be executed
or emulated to obtain the unpacked malware code.

Unpacking tools include VMUnpacker [7], Quick-
Unpack [3] and RL!Depacker [10]. These tools can
unpack executables packed with what they have anal-
ysed. However, this case-by-case approach is ineffi-
cient. First, it costs too much to analyse all the packers
and the analysis should be done manually. Second, it
will not work for variants.

Suggested unpacking mechanism can effectively
cooperate with malware detection systems such as Bit-
Blaze [14] and SplitScreen [5] because, as aforemen-
tioned, 80% of malwares are packed before having dis-
tributed.

3 A Generic Mechanism to Find the OEP

Finding the OEP is a primary requirement for un-
packing. An automated unpacking mechanism is also
necessary to unpack lots of packed malwares. An auto-
mated unpacking mechanism requires a generic char-
acteristic because automated but not generic mech-
anisms are limited to respond to unknown packers.
Therefore, these two requirements should be satisfied
by an unpacking mechanism.

In this section, a generic mechanism satisfying the
above two requirements is described. We first explain
fundamental knowledge of packed executables. Next,
entropy analysis is explained. It is a core concept mak-
ing our approach meet both requirements. Finally,
our approach is described based on this background
knowledge.

3.1 Packed Executables

A packed executable is built with two main parts
during a two phase packing process. First, the orig-

2010 5th International Conference on Malicious and Unwanted Software 115

inal executable is compressed and stored in a packed
executable as data. Second, a decompression module
is added to the packed executable. The decompression
module is used to restore the original executable.

Unpacking is the reversal of packing. Decompres-
sion is first conducted and the execution flow jumps to
the first instruction of the unpacked code. After restor-
ing the original executable, execution flow jumps from
the end point of the decompression module to an entry
point of the original executable.

3.2 Entropy Analysis

In information theory, entropy is a measure of un-
certainty in a series of an information unit. Informa-
tion is compressed by following a logical sequence.
First, some repeated patterns are found in the infor-
mation, and then the redundancies of the patterns are
used to reduce the size of the information. That is,
the number of patterns of the information is reduced
by compression and a series of bits becomes more un-
predictable, which is equivalent to uncertainty. There-
fore, the measured entropy of compressed information
is higher than of the original information.

Shannon’s formula is devised to measure informa-
tion entropy, as follows:

H(z) = — Y0y pli) - logh ",

where H(x) is the measured entropy value and p(i) is
the probability of an i*" unit of information in event x’s
series of n symbols. The base number of the logarithm
can be any real number greater than 1. However, 2, 10,
and Euler’s number e are chosen in general.

3.3 Proposed mechanism

The main concept is derived from the difference
of measured entropy values between packed and un-
packed instructions informing analysers an unpacking
process is being conducted. Basically, we execute a
given packed executable, and let it conduct unpack-
ing process. During an unpacking process, packed in-
structions are unpacked by a decompression module,
and intuitively, measured entropy of the memory space
will be changed. Eventually, the end of unpacking

can be detected by monitoring the cessation of entropy
changes.

In our approach, an executable is given as an input
and the approach locates the OEP as a result if the ex-
ecutable is packed. Additionally, we note an assump-
tion that we can assure if an executable is whether
packed, based on [11]. The remainder of this section
details the proposed approach.

First, the executable is executed and keeps running
unless the instruction is one of instructions such as
JMP, JCC, CALL, or RET. If one of the instructions
is encountered, execution is paused and entropy analy-
sis for that instant of the process is conducted because
when unpacking is completed, those kinds of instruc-
tions should be used to change an execution flow from
the end of the decompression module to the beginning
of the unpacked original code, the OEP.

Entropy analysis is conducted by measuring mem-
ory spaces. It decides whether or not unpacking pro-
cess is complete by measuring entropy of the each sec-
tion of a packed executable, and checking if an instruc-
tion jumps to an address in a section where unpacked
code is written. The next step is determined by the re-
sult of the entropy analysis. If the packed executable
is unpacked, the OEP is located. Conversely, if the
unpacking process is incomplete, the paused process
continues to execute the next instruction.

Another issue about execution-flow-changing in-
structions is the number of the instructions in a pro-
gram. An unpacking module consists of several itera-
tions, which uses those instructions; thus, increasing
analysis time. To solve this problem, we cached a
number of addresses of JMP and JCC instructions that
are met during analysis; if a cached address is reached
again, entropy analysis at that point of time is skipped.

Using the formula explained in the Entropy Anal-
ysis section, the entropy of the filtered data can be
measured. We use the logarithm to the base Euler’s
number e, and the unit of data is a byte. During an
unpacking process, instructions are unpacked in a sec-
tion. A value of the measured entropy implies the data
state (e.g. packed, unpacked, or being unpacked) in
each section at that moment. Our experimental results
show that the entropy values change while a packed
executable is unpacked. As a consequence, we can de-
termine if unpacking is complete using entropy analy-
sis.

116 2010 5th International Conference on Malicious and Unwanted Software

Different from related works such as PolyUn-
pack [12], OmniUnpack [13], or Renovo [9], our ap-
proach locates OEP. Consequently, we are able to
restore packed malwares to original ones to analyse
them. It means that we can reuse the original mal-
wares to analyse, instead of conducting redundant dy-
namic analysis every time we need to analyse. When it
comes to Hump-and-dump [15], it relies on a threshold
in order to find OEP, and it could make false positives.
Although Justin [8] shows an impressive result on their
paper, there is a possibility that it could be bypassed
because it uses heuristics. In contrast, our approach is
based on a theory, which makes our approach more re-
liable. A flaw exists in ours that an entropy could be
modified by adding garbage data. It needs to be solved
by optimising monitored memory areas in the future
work.

4 Experimental Results and Analysis

In this section, we show experimental results with
analyses. We show that the measured entropy of un-
packed code is similar to the original executable’s
entropy. Next, the result for unpacking is given; it
demonstrates a 72% success rate. Patterns of pack-
ers are also presented with graphs of packed executa-
bles’ measured entropies. The patterns are used to
categorise packers. Finally, effectiveness of a cache,
which is used to accelerate the experiment, is pre-
sented. Some packers are chosen for the experiments
in consideration of related works [12] [13] [9] [8] [15]

[6].

Table 1. An experimental set of executables
and packers

Packers
alter_exe, aspack, fsg,
molebox, morphine, mpress,
nPack, nSpack, RLPack,
UPX iT, upxn

Executables
freecell, notepad, msiexec,
telnet, calc, winmine,
mshearts, mspaint, spider,
dxdiag

4.1 Entropy of Unpacked Code

Although entropy scores for each type of data is
given in [11], entropy scores of executables and mem-

ory space could be different. Thus, we measure en-
tropy scores of unpacked code sections. It would be
the best case if all the unpacked code is measured as
same entropy, unfortunately it is not. Hence, we need
to set a range of possible entropy values for being un-
packed. We use two constants, termed Fyp,i, and Fpqx
to determine if unpacking is complete.

To set the constants, we first run packed executables
and dump code sections. Garbage values can exist in
the dumped data, and should be erased. There are too
many consecutive zeros in bytes, which are garbage
values in most cases, in memory dumps. If twelve con-
secutive bytes exist in the memory dumps, we erase
the data because there are rarely instructions with the
same twelve consecutive bytes.

Although this idea might look nonsense, it has two
reasons. One is that the maximum length of an in-
struction is fifteen because if it exceeds fifteen, an x86
system would generate an exception. The other is that
disassembling dumped data to delete garbage values
costs too much. However, these are still limitations to
be improved later in the future work.

By reducing the garbage values, entropy of only un-
packed code can be measured. Table 2 shows mea-
sured entropies of the code sections of executables.
It shows unpacked instructions have similar values to
their entropy, though they are not exactly same. 45
executables randomly chosen in the Windows system
directory are analysed to measure entropy. This exper-
iment determines F,,;, and F,,.; to be 4.1 and 4.6,
respectively.

Table 2. Measured entropy scores of ten un-
packed code used in the unpacking experi-
ment

UPX]aspack|mpressnspack||Original
calc.exe [4.26| 4.30 | 4.26 | 4.26 4.30
dxdiag.exe |4.26| 4.27 | 426 | 426 || 4.27
freecell.exe |4.33| 4.38 | 4.23 | 4.33 4.37
mshearts.exe|4.28| 4.32 | 425 | 4.32 4.32
msiexec.exe |4.34| 4.35 | 434 | 4.34 4.35
mspaint.exe [4.38| 4.41 | 438 | 438 || 4.40
notepad.exe [4.30| 4.37 | 4.30 | 4.29 || 4.37
spider.exe |4.61| 4.63 | 4.61 | 4.61 4.63
telnet.exe |4.46| 4.49 | 4.46 | 4.46 || 4.50
winmine.exe(4.41| 4.45 | 440 | 440 || 4.45

2010 5th International Conference on Malicious and Unwanted Software 117

Table 3. Correctness of analysed OEPs for 110 packed executables

alter_exe|aspack|fsg/molebox|morphine|mpressinPacknSpack|RLPack|UPX iT|upxn

calc.exe
dxdiag.exe
freecell.exe
mshearts.exe
msiexec.exe
mspaint.exe
notepad.exe
spider.exe
telnet.exe
winmine.exe

- HoNoNoNoNoNONe N K
oNoNoNoNoNoNoNONONS!
s HoNoNoNoNoNONe N N
oNoNoNoNoNoNoNONONS!

F

zslisslissiissliesiiosiiosiosilies!

T T)
nacAnNnaaAnAn
CloRoNo o Ro o R ke
CEoRoRo o Ro o R ke
maNAQQANATmAO
mTaAAQQNAQTAO

C:CORRECT (72%), .LINCORRECT (6%), F:Failure (22%)

4.2 Found OEP

We generate 110 packed executables by packing
each of the eleven executables using each ten packers
to conduct an experiment indicating the generic char-
acteristics of our approach. As we are aware of the
original executables, we found the OEPs of packed ex-
ecutables from the experiment can be compared to the
real OEPs to evaluate our approach. Table 3 illustrates
the accuracy of the analysed results. Three cases may
occur in this experiment. Each result obtains either the
correct or incorrect OEP. Correct and incorrect results
are written as C and I, respectively. The other case is
a failure to analyse a packed executable, and is written
as F.

This unpacking result indicates our approach lo-
cates 72% of exact OEPs. Traditional unpacking re-
search is not able to find the OEP. Similar to our work,
in Hump-and-Dump [15], they also try to find the OEP
in a packed executable. However, their algorithm de-
pends on some thresholds, whose values are not given
in their paper. It indicates their approach to solve this
problem could be evaded by modifying the number of
loops or each of the iterations. In contrast, our ap-
proach utilizes the nature of information, which cannot
be modified. Therefore, our approach is more reliable
than [15].

Some incorrect (6%) or failed (22%) results exist
in Table 3. The first case of incorrect results occurs
for a packer, mpress. It unpacks code and jumps to
the unpacked code at the very last part of unpacking.
However, the jump is not directed to the OEP. As it
is almost unpacked at the moment, entropy is also in

118

the range between Fy,;, and Fp,4;. This is the cause
of the imprecision. The packer does the remainder of
work before jumping to the OEP. In this case, the OEP
found is very similar to the real OEP as parts of origi-
nal code have been restored.

22% of failures occurs under the following condi-
tion. When execution flow reaches the OEP, if the
measured entropy value at that moment is less than
FEpin or greater than E,, ., the analysis tool cannot
find the OEP, and just ignores it. Due to our strong
assumptions about the memory space to be monitored
and the range between FE,,;, and FE,,,,, this failure
occurs a few times.

These two exceptions are caused by the strong as-
sumptions in this paper. The 28% fail-to-find-OEP
would become lower with additional research on two
issues. First, determining memory space to be mon-
itored. Second, minimizing the range between E,,;y,
and Fp,q;. These exceptions will be considered in fu-
ture work to improve the performance of our approach.

4.3 Patterns of packers

Another potential capability of our approach is cate-
gorising packers by their unpacking patterns. Not only
variants of packers, but also some packers behaving in
a similar way to each other, could be categorised us-
ing this approach. We draw graphs to show patterns
of unpacking processes. The graphs are of the code
section. Figure 1 shows what happens during an un-
packing process in memory space in terms of entropy.
The order of execution-flow-changing instructions and
measured entropy values are shown on the X and Y

2010 5th International Conference on Malicious and Unwanted Software

Packed with nSpack (TYPEI - i)

Entropy Entropy
4 Py 3 Py

Packed with upxn (TYPE I - i)

. Packed with RLPack (TYPE I - ii)
Entropy
6

calc

freecell -

5 mshearts 5
» e SIEXEC o

notepad ------

telnet -----

cale calc
freecell

freecell -
mshearts mshearts
i SR

- MSieXee - o -
notepad —-—--- 4 BT notepad
telnet - g telnet ~

0
300000 500000 900000 0O 50000

JMPs
Packed with nPack (TYPEII - i)

700000

Entroj Entrop;
e Py r; Py

100000
JMPs JMPs
Packed with mpress (TYPE II - ii)

0
150000 200000 0 50000 100000 150000 200000 250000

Packed with aspack (TYPE II - iii)
Fénlmpy

calc
freecell -

i mshearts 5
s ‘ msiexec

calc

freecell -

T msheaits 5 i ;
msiexec [

cale

i freecell -
i nshearts

cC.
4 notepad ------ 4 notepad --—--- 4 notepad -—----
telnet - telnet -~ telnet -
3 3 3
2 2 2
1 1 1
0 0 0
0 50000 100000 150000 200000 0 100000 200000 300000 0 100000 200000 300000 400000
JMPs MPs JMPs

Figure 1. Patterns of unpacking processes

axes, respectively. The concept of cache is applied
to decrease the experimental time due to the many
execution-flow-changing instructions. In Figure 1,
the order of execution-flow-changing instructions are
the instant of each entropy analysis, execution-flow-
changing instructions in a cache are skipped. In this
experiment cache size is 15. Detailed explanation of
cache is given in the next section.

Figure 1 shows patterns of changes of entropy val-
ues during the unpacking process for each packer.
Scales of patterns distinguish between packed executa-
bles. Although the scales are not proportional to the
size of packed executables, interestingly, the executa-
bles packed with the same packer still make the same
patterns during unpacking processes. Thus, a pat-
tern of an unpacking process could be applied to find
the same packer family. Packer patterns fall into two

types.

Packers of type I initialize memory space, where
unpacked code will be written, as zeros; it starts with
zero entropy values. As packed code is unpacked,
written code causes the increase. Finally, it stops
changing when unpacking is complete. Classifying in
more detail, Type I packers could be categorised based
on the pattern at the beginning part of changes. Type
I-i (alter_exe, fsg, nSpack, UPX iT, and upxn) shows a
continuous increase of the entropy in contrast to type
I-ii (RLPack), an increase followed by the decrease in

entropy.

Type I packers overwrite unpacked code onto ex-
isting code, which could be already used and are never
going to be needed, or garbage values. Type II shows
decreasing patterns of entropy values even though they
can be divided into dramatic or gradual changes. As in
the way type I packers work, it stops changing when
unpacking is eventually completed. This type of pack-
ers can be also categorised further like type 1. Type II-
i (nPack) shows a gradually decreasing pattern in the
very first part of unpacking, and then a fluctuation of
entropy. Type II-iii (aspack, molebox) shows dramat-
ically decreasing entropy values. Type II-ii (mpress,
morphine) is in the middle between type II-i and II-iii,
and depicts a gradual decrease of entropy to the end
point of unpacking.

4.4 Cache

Execution-flow-changing instructions play a role of
a decision point at which to measure entropy. How-
ever, it also degrades analysis performance in terms of
time because some of those instructions could be used
for iterations and branches. Hence, reducing unneces-
sary entropy measurement is important to improve the
time performance; this can be achieved by reducing
iterations.

As the purpose is not an optimization, but just a
reduction, a simple mechanism, caching, is used in

2010 5th International Conference on Malicious and Unwanted Software 119

PP Weorm Win32 Palovo. apg.cxe

P2P Worm Win32 Palevo. doo.exe

P2P Weorm Win32 Paleve. hfo.exe

Entropy Entrepy Entropy

6 6 8

5 5k 5

4 af 4

3 3t 3 f
o o Section 1 Section 3

1 {7 Section 1 ; 1 {7 Section 1 ; 1 | Secti Section &
! Section 2 ' Section 2 Section 3 Section 7 ;
| Section3 i | Section3 -~ o iSectiond v Section8 o

5 5

0 2000 4000 €000 €000 10000 12000 14000 O 2000 4000 €000 $000 10000 12000 1400C O 200000 400000 600000 800000 le+006 12e+0O
IMPs TMPs TMPs

Entrepy Packed Win32 TDSS. an.exe Ertropy Packed Win32 TDSS. mexe Entropy Packed Win32 TDSS. y.exe

6 6 5

5 \ 5 | T 5 \

4 4 Q 4

3 3 3

2 “Section 1 2 T Secon 1 —— 11 2 " Section 1 —— 1

Section 2 Section 2 ; Section 2
1 Section 3 1 Section 3 - 1] Section 3
Section 4 ——— Section 4 -—— | Section 4 '

| __Secton S .o-SectenS oot _,sections oo !

a a
a 50000 100000 150000 200000 250000 30000C O
IMPs

50000

100000

IMPs

- 5 L -
250000 O 10000 20000 30000 40000 50000 60000 70000 82000 $0000
TMPs

150000 200000

Figure 2. Analysis of packed malwares

our approach. To simplify caching, recent n JMP and
JCC instructions are cached, where n is the maximum
number of addresses that can be stored in the cache.
Caching helps make analysis about twice as fast than
before, as can be seen in Table 4.

Table 4. Analysis time in seconds vs. Cache
size

n 0 5 10 15
freecell | 392 337 360 331
calc 1296 974 899 687
mspaint | 7149 | 6542 | 5625 | 4207
spider | 17532 | 77423 | 12002 | 9703

4.5 Packed malwares in the wild

Another important point we should investigate is
if it really works for packed malwares in the wild.
We analyse unpacking process of packed malwares
using our approach, and locate the candidate OEP
from the analysis. Palevo and TDSS are chosen for
packed malwares to be analysed in this experiment
from VX Heavens [2]. Three variants for each packed
malware are given. Variants of Palevo and TDSS
are named as Palevo.apg, Palevo.doo, Palevo.hfo,
TDSS.aa, TDSS.m, TDSS.y, respectively.

120

Experimental results are illustrated in Figure 2.
Graphs of Palevo.apg and Palevo.doo looks similar.
Both of them use the third section to unpack instruc-
tions. However, the entropy scores of the first sec-
tions are different from each other. Two variants could
include packed instructions in the third section, and
it also seems possible that Palevo.apg has packed in-
structions in the first section according to the entropy
score. Palevo.hfo shows a totally different pattern from
the former variants. It is quite obvious that the third
section is initialized, and used to unpack instructions.
Its 1st, 7th, and 8th sections are possible areas packed
instructions could be placed. Palevo.apg, Palevo.doo,
and Palevo.hfo can be categorised into II-i, II-1, and I-i,
respectively.

A graph of TDSS.a shows that the second section
is used to unpack not native instructions but packed
instructions. After writing packed instructions in the
second section, it is used again to unpack packed in-
structions with the first section at the same time. Nev-
ertheless, we can conclude the first section is the one
holding the real OEP because its entropy score is in
a range of native instructions. TDSS.m writes packed
instructions in the first section, and uses it again to un-
pack packed instructions. TDSS.y can be said similar
to TDSS.aa in terms of its unpacking procedure. Ini-
tial unpacking packed instructions process comes ear-
lier, and unpacking packed instructions after the ini-
tial unpacking takes longer time in TDSS.y. TDSS.aa,

2010 5th International Conference on Malicious and Unwanted Software

TDSS.m, and TDSS.y can be categorised into II-iii, II-
ii, and II-i, respectively.

These experimental results for these notorious
packed malwares imply that the proposed unpacking
mechanism is useful to analyse packed malwares. It
is a meaningful result that the proposed mechanism is
applicable to packed malwares.

5 Conclusion

Malware writers use packing as an obfuscation
technique to hide potential signatures that exist in their
malwares and to evade signature-based malware de-
tection systems. In this paper, we propose a generic
mechanism finding OEPs of packed executables. Ex-
periments show it satisfies two necessary requirements
(locating OEP and being generic) of unpacking mech-
anisms. We categorise packing techniques based on
patterns of entropy changes. Moreover we show how
this mechanism could be applied to the analysis of
packed malware. Our mechanism has the following
features.

6 Acknowledgments

This research was supported by the MKE(Ministry
of Knowledge Economy), Korea, under the
ITRC(Information Technology Research Center)
support program supervised by the NIPA(National IT
Industry Promotion Agency) (NIPA-2010-(C1090-
1031-0005)), and this work was supported by the
IT R&D program of MKE/KEIT. [KIO01863, The
Development of Active Detection and Response Tech-
nology against Botnet] Additionally, this research was
sponsored in part by the MSRA(Microsoft Research
Asia).

References

[1] Bochs: The open source ia-32 emulation project.
http://bochs.sourceforge.net.

[2] VX heavens. http://vx.netlux.org.

[3] AHTeam. Quickunpack. http://qunpack.
ahteam.org.

[4] F. Bellard. Qemu, a fast and portable dynamic trans-
lator. In ATEC 05: Proceedings of the annual confer-
ence on USENIX Annual Technical Conference, pages
41-41, Berkeley, CA, USA, 2005. USENIX Associa-
tion.

(5]

(6]

(7]
(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. K. Cha, I. Moraru, J. Jang, J. Truelove, D. Brumley,
and D. G. Andersen. SplitScreen: Enabling efficient,
distributed malware detection. In Proc. 7th USENIX

NSDI, San Jose, CA, Apr. 2010.

K. Coogan, S. Debray, T. Kaochar, and G. Townsend.
Automatic static unpacking of malware binaries. In
WCRE °09: Proceedings of the 2009 16th Working
Conference on Reverse Engineering, pages 167-176,
Washington, DC, USA, 2009. IEEE Computer Soci-
ety.

D.yS. W. L. (DSWLab). Vmunpacker.
www.dswlab.com/d3.html.

F. Guo, P. Ferrie, and T.-C. Chiueh. A study of the

packer problem and its solutions. In RAID ’08: Pro-
ceedings of the 11th international symposium on Re-
cent Advances in Intrusion Detection, pages 98—115,

Berlin, Heidelberg, 2008. Springer-Verlag.

M. G. Kang, P. Poosankam, and H. Yin. Renovo:
a hidden code extractor for packed executables. In
WORM ’07: Proceedings of the 2007 ACM workshop
on Recurring malcode, pages 4653, New York, NY,
USA, 2007. ACM.

R. Labs. Rl!depacker. http://apOx.jezgra.
net.

R. Lyda and J. Hamrock. Using entropy analysis to
find encrypted and packed malware. IEEE Security

and Privacy, 5(2):40-45, 2007.

L. Martignoni, M. Christodorescu, and S. Jha. Om-
niunpack: Fast, generic, and safe unpacking of mal-
ware. In ACSAC ’07: Proceedings of the 23rd Annual
Computer Security Applications Conference, pages
431-441, 2007.

P. Royal, M. Halpin, D. Dagon, R. Edmonds, and
W. Lee. Polyunpack: Automating the hidden-code
extraction of unpack-executing malware. In ACSAC
'06: Proceedings of the 22nd Annual Computer Secu-
rity Applications Conference, pages 289-300, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager,
M. G. Kang, Z. Liang, J. Newsome, P. Poosankam,
and P. Saxena. Bitblaze: A new approach to com-
puter security via binary analysis. In ICISS "08: Pro-
ceedings of the 4th International Conference on In-
formation Systems Security, pages 1-25, Berlin, Hei-
delberg, 2008. Springer-Verlag.

L. Sun, T. Ebringer, and S. Boztas. Hump-and-dump:
efficient generic unpacking using an ordered address
execution histogram. 2nd Int’] CARO Workshop,
May 2008.

W. Yan, Z. Zhang, and N. Ansari. Revealing packed
malware. [EEE Security and Privacy, 6(5):65-69,
2008.

R. W. Yeung. A first course in Information Theory.
Kluwer Academic/Plenum Publishers, 2002.

http://

2010 5th International Conference on Malicious and Unwanted Software 121

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

