An Energy-Efficient Access Control Scheme for Wireless Sensor Networks based on Elliptic Curve Cryptography

Xuan Hung Le, Sungyoung Lee, Ismail Butun, Murad Khalid, Ravi Sankar, Miso (Hyoung-IL) Kim, Manhyung Han, Young-Koo Lee, and Heejo Lee

Abstract: For many mission-critical related wireless sensor network applications such as military and homeland security, user’s access restriction is necessary to be enforced by access control mechanisms for different access rights. Public key-based access control schemes are more attractive than symmetric-key based approaches due to high scalability, low memory requirement, easy key-addition/revocation for a new node, and no key pre-distribution requirement. Although Wang et al. recently introduced a promising access control scheme based on elliptic curve cryptography (ECC), it is still burdensome for sensors and has several security limitations (it does not provide mutual authentication and is strictly vulnerable to denial-of-service (DoS) attacks). This paper presents an energy-efficient access control scheme based on ECC to overcome these problems and more importantly to provide dominant energy-efficiency. Through analysis and simulation based evaluations, we show that the proposed scheme overcomes the security problems and has far better energy-efficiency compared to current scheme proposed by Wang et al.

Index Terms: Elliptic curve cryptography (ECC), public-key cryptography, user access control, wireless sensor networks (WSN).

I. INTRODUCTION

A wireless sensor network (WSN) [1] commonly consists of a large number of sensor nodes that are densely deployed either inside the phenomena or very close to it. It can sense physical phenomena (e.g., temperature, pressure, etc.) or detect events (e.g., intruders, fire emergency, volcanic eruption, etc.) from its surroundings, process and store them, and finally provide these data to users, upon either demand or event detection. Due to privacy reason or security clearance (i.e., a status granted to individuals allowing them access to classified information), user’s access restriction may be enforced with different access rights. For example, a provider of a WSN which is deployed over a large geographic area offers paid services to many users. In a precision agriculture WSN [2], farmers subscribe to services and remotely query sensors on their fields using a mobile device like PDA. In this case, only authorized users should be answered by the network [3]. Another interesting example is a deployment of WSN in a battlefield. A high ranking officer should have more access rights than a soldier. As such a soldier is given access permissions to data information related to his task only and a high-ranking officer necessitates information gathering for an overall maneuver [4]. A simple but efficient way is to rely on popular symmetric-key cryptography. However, symmetric-key based schemes suffer a number of problems. It provides low scalability, requires large memory to store key materials, faces difficulty to add or revoke key and requires a complicated key pre-distribution [4]. The recent progress in public key cryptography using 160 bit elliptic curve cryptography (ECC) has shown that an ECC point multiplication takes less than one second on 8 bit CPU Atmel ATmega128 8 MHz [5]. This proves public key cryptography is feasible for sensor security related applications. Inspired by this result, Wang et al. proposed an ECC-based access control for WSNs [4] (for reference hereafter, we name their scheme HBQ). Though HBQ introduces a promising access control approach based on public key cryptography, it has several limitations as follows:

- It is burdensome for sensors in terms of time delay and energy consumption, which makes it unrealistic to employ in practice.
- It does not provide mutual authentication.
- It is vulnerable to denial-of-service (DoS) attack

To overcome these problems, we propose an ENergy-efficient Access control scheme Based on Elliptic curve cryptography (ENABLE). ENABLE retains all advantages of public key cryptography and also enhances the security of HBQ. More importantly, ENABLE achieves better energy-efficiency than HBQ, and almost similar to symmetric-key based approaches.

The remainder of the paper is organized as follows. In Section II, we briefly review HBQ scheme and discuss their limitations. Section III describes assumptions and an adversary model of the proposed scheme. ENABLE scheme is described in Section IV. Section V and Section VI present analysis and simulation based evaluations of the proposed scheme. Finally, Section VII concludes the paper and outlines the future work.

II. REVIEW OF HBQ SCHEME

A. HBQ Protocol

A user needs to apply for access permissions from a key distribution center (KDC) to access the network. KDC maintains an access control list (ACL) pool and associated user identifications. User’s access privileges are defined in an ACL that is typ-
ically composed of user identifier (uid), group identifier (gid), and user access privileges mask. The user access privilege mask is a set of binary bits. Each bit represents permission of a specific information or service. An example of ACL is shown in Fig. 1.

Initially, KDC selects a particular elliptic curve over a finite field \(GF(p) \) (where \(p \) is a prime) and publishes a base point \(P \) with a large order \(q \) (where \(q \) is also a prime). It picks a random number \(x \in GF(p) \) as a private key, and publishes its corresponding public key \(Q = xP \). To access the sensor network, a user, say Alice, comes to KDC and gets her public key \((Q_A) \), private key \((q_A) \), and the certificate of her access list and public key \((T_A = C_A | ac_A, \text{where } | \text{ means concatenation}) \). KDC picks a random number \(e_A \in GF(p) \) and then calculates Alice’s public key constructor \(C_A = e_A P \). Based on Alice’s request and her background check, KDC issues a proper ACL \((ac_A)\) and attaches it to the public constructor \(C_A \) as a certificate. Meanwhile, a signature \(e_A \) is generated for the ACL, where \(e_A = H(T_A) \) (a \(\{0, 1\}^n \rightarrow \{0, 1\}^9 \) hash function). Then, KDC constructs Alice’s private key \(q_A = e_A C_A + x \) and public key \(Q_A = e_A C_A + Q \). Note \(q_A \) and \(Q_A \) satisfy \(Q_A = q_A P \).

Alice’s access list \(T_A \) can be regarded as the certificate of her public key \(Q_A \). Finally, Alice holds \(q_A, Q_A, \) and \(T_A \). The HBA authentication protocol is described in Fig. 2. When Alice wants to access a sensor node \(s_i \), she sends an access request with an access list \(T_A \). Receiving \(T_A \), \(s_i \) constructs Alice’s public key \(Q_A = e_A C_A + Q \). To verify that Alice indeed holds the private key \(q_A \), node \(s_i \) uses a challenge as follows. \(s_i \) selects a random number \(r \in GF(q) \) (to be used as the session key with Alice) and computes its signature \(r = H(r) \) over \(mod(q) \). Node \(s_i \) then generates a temporary public key \(Y_r = H(r) P \) and computes \(Z_r = H(r) aq_A = Z_r \). Afterwards, \(s_i \) encrypts the session key by computing \(r \oplus X(Z_r) \), where \(X(Z_r) \) is the \(x \)-coordinate of point \(Z_r \). Finally, \(s_i \) sends a cipher text \((s_r, Y_r, Z_r)\) to Alice, attached with a message authentication code (MAC) of nonce \(N_A \). Alice regenerates \(Z_r \) because \(q_A Y_r = q_A H(r) P = H(r) aq_A = Z_r \). Alice then decrypts the session key \(r = z_r \oplus X(Z_r) \), and verifies if \(Y_r = H(r) P \). If \(Y_r \) is valid, Alice uses \(r \) as the session key to generate a MAC value of nonce \(N_A \) concatenated with her access privilege \(ac_A \), and sends to \(s_i \). Sensor \(s_i \) decrypts the MAC message and verifies \(N_A \) and \(ac_A \). If they are valid, it proves that Alice is the owner of \(T_A \). Finally, \(s_i \) replies with the information requested by Alice, which again is encrypted by a session key \(r \).

B. Cryptanalysis of HBQ Scheme

Although HBQ scheme introduces a promising access control approach based on public key cryptography, it still possesses several limitations as mentioned earlier:

- **It is burdensome for sensors:** As the authors discussed in their paper [4], the authentication takes about 10.1 seconds and consumes 54.5 mJ for computation only. This means that HBQ scheme takes 130 times longer in authentication time and 80 times more expensive in energy consumption than symmetric-key based schemes. This makes HBQ scheme unrealistic to be employed in practice.

- **It does not provide mutual authentication:** In the scheme, Alice authenticates to sensor \(s_i \), but \(s_i \) does not authenticate to Alice. In many cases, it is necessary to authenticate sensors to ensure that Alice receives correct information from a legitimate node. As an example, consider a battlefield scenario where the officer wants to make sure that detecting an alert of an enemy tank must be originated from a legitimate node.

- **It is vulnerable to DoS attacks:** In the second step, upon receiving \(T_A \) from Alice, sensor \(s_i \) must perform three ECC point multiplications, one XOR, and one symmetric encryption. Each ECC point multiplication on TelosB mote 8 MHz takes 3.5 seconds and consumes significant energy. An attacker could easily launch DoS attacks by sending a forged \(T_A \) to \(s_i \) and could readily deplete \(s_i \)’s energy.

III. ASSUMPTIONS AND ADVERSARY MODEL

We assume a sensor network with a large number of nodes deployed in a variety of environments such as a battlefield, a forest, or of nodes that are responsible for collecting, reporting and providing information and services to users through a wireless channel. For the sake of energy conservation, sensors may collaborate with each other to perform in-network data aggregation, and only one representative node reports information to users. The sensor network is managed by a base station or a KDC, which is responsible for generating all security primitives, issuing and revoking users’ access privileges. KDC is trusted and stays online all the time. This assumption is reasonable in the sense that we can de-
deploy one or more replica servers so that if one of them is down, another server can act as an online KDC. Mechanisms of how those replicated KDC servers work are beyond the scope of this paper. Users are equipped with a more powerful device such as a laptop or a PDA to query information from the sensor network. To access the network, users need to apply for access permissions from KDC. KDC maintains a user access list pool and henceforth, each sensor also has a public key

\[Q_s \]

and a corresponding private key \(k_{\text{KDC}} \). Each sensor computes \(R_s = (x_{s}, y_{s}) = k_{s}Q_{\text{KDC}} \) and broadcasts \(R_{s} \) KDC to all the sensors. Each node computes \(R'_{s} = (x'_{s}, y'_{s}) = k_{s}'Q'_{\text{KDC}} \) and obtains a new shared secret key \(x'_{s} \). KDC also computes \(R'_{\text{KDC}} = (x'_{\text{KDC}}, y'_{\text{KDC}}) = k'_{\text{KDC}}Q_{\text{KDC}} \), hence \(x_{s} = x'_{\text{KDC}} \). As a result, \(x_{s} \) is used as a shared secret key between node \(s \) and KDC.

B. Key Renewal

The shared secret key \(x_{s} \) must be renewed frequently to avoid security risks. To renew the secret key, KDC selects a new ephemeral private random number \(k_{\text{KDC}} \) and broadcasts \(R_{\text{KDC}} = (x_{\text{KDC}}, y_{\text{KDC}}) = k_{\text{KDC}}Q_{\text{KDC}} \) to all the nodes. Each node computes \(R'_{s} = (x'_{s}, y'_{s}) = k_{s}'Q'_{\text{KDC}} \) and obtains a new shared secret key \(x'_{s} \). KDC also computes \(R'_{\text{KDC}} = (x'_{\text{KDC}}, y'_{\text{KDC}}) = k'_{\text{KDC}}Q_{\text{KDC}} \), hence \(x'_{s} = x'_{\text{KDC}} \). Obviously, it is \(x'_{s} = x'_{KDC} \).

C. Protocol Description

Prior to accessing the network, user Alice’s request and background check, KDC issues a proper access control list \(acA \). This list has the same structure as HBQ scheme [4] (see Fig. 1). KDC generates a certificate of the list and Alice’s public key by signing with its private key \((cert_{A} = sign_{KD}(ac_{A}, Q_{A}) \). The certificate is then sent to Alice. Both Alice and KDC also compute a shared secret key \(x_{A} \) in the same way.

The authentication and access control protocol is described in Fig. 3. Supposed Alice wants to access the sensor \(s \). The protocol...
Alice computes: \[L = h(x_A \oplus T_A) \]
\[S_1 = \text{sign}_A((r) L | \text{cert}_A) \]

Alice → S: \((r) L, T_A, S_1 \)

S computes: \(\text{MAC}_1 = MAC(x_S, (r) L | T_A | S_1) \)

S → KDC: \((r) L, T_A, S_1, \text{MAC}_1 \)

KDC computes: check if \(T_A \) is valid?
\[\text{verify(MAC}_1), \text{verify(S}_1), \]
\[= h(x_A \oplus T_A), \]
\[r = \text{decrypt}((r)L), \]
\[M = h(x_S \oplus T_{KDC}), \]
\[\text{MAC}_2 = MAC(x_S, (r) M | ID_A) \]

KDC → S: \((r) M, T_{KDC}, ID_A, \text{MAC}_2 \)

S computes: check if \(T_{KDC} \) is valid?
\[\text{verify(MAC}_2), \]
\[M = h(x_S \oplus T_{KDC}), \]
\[r = \text{decrypt}((r) M), \]
\[\text{MAC}_3 = MAC(r, ID_S) \]

S → Alice: MAC\(_3\)

Alice computes: verify(MAC\(_3\))

Fig. 3. ENABLE protocol.

includes the following steps.

- **Step 1** Alice → S: \((r) L, T_A, S_1 \)
 Alice selects a random number \(r \in GF(p) \) which will be used as a session key with S, creates a secret key \(L = h(x_A \oplus T_A) \) (where \(T_A \) is the current timestamp generated by Alice), and encrypts \(r \) with key \(L, (r) L \). Alice then signs this encrypted value along with its certificate (\(S_1 = \text{sign}_A((r) L | \text{cert}_A) \)) and sends the message to S.

- **Step 2** S → KDC: \((r) L, T_A, S_1, \text{MAC}_1 \)
 Upon receiving the message from Alice, S first checks if the time \(T_A \) is valid. If yes, then it builds a MAC by the shared secret key \(x_S \) (\(\text{MAC}_1 = MAC(x_S, (r) L | T_A | S_1) \)). The sensor then forwards the message along with MAC\(_1\) value to KDC.

- **Step 3** KDC → S: \((r) M, T_{KDC}, ID_A, \text{MAC}_2 \)
 Upon receiving the message from S, KDC verifies MAC\(_1\) value. If the verification is successful, then S is authentic to KDC. KDC then verifies \(S_1 \) which was signed by Alice. If the signature is valid, then Alice is also authentic. The \(\text{cert}_A \) is also verified to check the validity of the access list \(ac_A \). KDC now constructs a secret key \(L = h(x_A \oplus T_A) \), and encrypts \(r \) to get \(r \). It then generates a secret key \(M = h(x_S \oplus T_{KDC}) \) (where \(T_{KDC} \) is the timestamp created by KDC), encrypts \(r \), and builds a MAC (\(\text{MAC}_2 = MAC(x_S, (r) M | ID_A) \)). Afterward, KDC sends them to S.

- **Step 4** S → Alice: MAC\(_3\)
 When S receives the message, it verifies MAC\(_2\) value. If it is valid, it indicates that Alice is authentic to S. After that, S constructs the secret key \(M = h(x_S \oplus T_{KDC}) \) and decrypts \(r \) to get \(r \). Using this secret key, S builds a MAC (\(\text{MAC}_3 = MAC(r, ID_S) \)) and sends to Alice.

Upon receiving the MAC value from S, Alice verifies it by the same key \(r \). If the verification is successful, then S is authentic to the user.

V. SECURITY ANALYSIS

This section presents security analysis of the proposed scheme and shows how it overcomes the aforementioned problems.

A. ENABLE Provides Mutual Authentication

In step 3 of the ENABLE protocol, KDC verifies the signature \(S_1 \). If \(S_1 \) is valid, then the user is authentic to KDC because only the user can generate the signature \(S_1 \) by his private key. Consequently, the user is also authentic to sensor S because S trusts KDC (step 4). On the other hand, only S shares the secret key \(x_S \) with KDC. It means that only S can decrypt \(r \) \(M \) (where \(M = h(x_S \oplus T_{KDC}) \)). So if S can achieve \(r \) \(M \) to build MAC\(_3\) (\(\text{MAC}_3 = MAC(r, ID_S) \)), then S is authentic to the user. The mutual authentication is provided through trust relations between Alice-KDC, and S-KDC.

B. The Proposed Scheme Can Defend against Replay Attacks

There are two possible ways for an adversary to launch replay attacks as follows:

- The adversary can intercept the message sent out from Alice (step 1) or from the sensor S (step 2). However, both cases are not possible in ENABLE because KDC can easily detect by verifying timestamp \(T_A \) (step 3). If \(T_A \) is older than a predefined threshold, it is invalid because it has been used for previous authentication. If \(T_A \) was changed, then \(S_1 (S_1 = \text{sign}_A((r) L | \text{cert}_A), \) where \(L = h(x_A \oplus T_A) \)) is not valid.

- The adversary can intercept the message sent out from KDC (step 3) or from the sensor S (step 4). In the former case, node S can detect by checking timestamp \(T_{KDC} \). If \(T_{KDC} \) is older than the predefined threshold, it is not valid. If \(T_{KDC} \) was changed to \(T_{KDC}' \), then the MAC\(_2\) value (\(\text{MAC}_2' = MAC(x_S, (r) M | ID_A) \)) is not consistent with received MAC\(_2\). In the latter case, Alice can easily detect the replayed message by verifying MAC\(_3\). Alice builds a MAC value (\(\text{MAC}_3' = MAC(r, ID_S) \)) and compares with the received MAC\(_3\). If MAC\(_3' \) = MAC\(_3\), then Alice knows that MAC\(_3\) is not modified.

C. The Proposed Scheme Can Defend against DoS Attack

Upon receiving the message from the user (step 2), the sensor first check the timestamp \(T_A \) if it is valid. It then builds a MAC using a very fast Message Authentication Code algorithm such as CBC-MAC [16] and forwards the message to KDC. A CBC-MAC operation on MICA2 mote takes 3.12 ms [11], which is
very fast and lightweight compared with ECC point multiplications used by HBQ (which in total takes 3,500 ms, about 1121 times longer). Therefore, the proposed scheme significantly reduces DoS compared to HBQ. The attacker also may launch the DoS on the KDC by sending so many fake requests with a valid timestamp to the sensor, so that the sensor forwards all fake requests to the KDC in order to make KDC busy. One of the simple solutions is that if there are so many frequent requests (e.g., tens or hundreds) at the same time or constantly, the sensor will not forward the request to the KDC to avoid any possible DoS and reduce traffic congestion. On the other hand, before the KDC performs ECC operations (i.e., verifying $cert_A$), it first computes a MAC value and compares with the received MAC$_1$. If the MAC$_1$ is not valid, it will decline the message and will not perform ECC operations. A CBC-MAC operation is very lightweight. It only took 43.32 μs on 927 MHz Pentium II machine [13] which means that a normal machine (Pentium IV 3.2 MHz) can process millions of CBC-MAC operations at the same time. Therefore even though the attack sends so many fake requests, it would not be able to make KDC busy at all.

VI. PERFORMANCE EVALUATION

This section presents the performance evaluation of the proposed scheme in terms of computational and communication costs and compare with HBQ and symmetric-key based schemes.

A. Computational Cost

Since user’s equipment and KDC are powerful devices, the computational overhead is trivial compared to that of the sensors. Therefore, we only consider computation and communication overhead for sensors. We use the computational overhead (the computation time required by sensors, denoted by T) to analyze the performance of ENABLE. Notations are defined as follows:

- T_H: Time to perform one-way hash function (e.g., SHA-1).
- T_{MAC}: Time to generate MAC value (e.g., CBC-MAC).
- T_{RC5}: Time to encrypt or decrypt by RC5 (note: Encryption and decryption take almost same duration of time [14]).
- T_{MUL}: Time to perform ECC point multiplication.

According to practical implementations on MICA2 motes [5, 11, 14, 17], the computational time is mentioned in Table 2. Using this evaluation, the total computational time of the proposed scheme, HBQ and symmetric-key based schemes are shown in Table 3. For user authentication in HBQ scheme, it requires $2T_H$, $2T_{MAC}$, $2T_{RC5}$, and $3T_{MUL}$ (total cost is approximately 2,451.04 ms). Meanwhile, ENABLE requires only T_{MAC} (approximately 3.12 ms). For node authentication, HBQ does not support, while our scheme requires $2T_{MAC}$, T_{RC5}, and T_H (approximately 10.136 ms). For the symmetric key cryptography access control, we follow the same approach used in [4], so user authentication costs $2T_H$, and $2T_{MAC}$ (approximately 6.756 ms). In total, ENABLE takes only 13.256 ms for both user and node authentication that is much faster than HBQ scheme (which takes 2,451.04 ms) and only two times slower than symmetric key cryptography based approaches (which takes 6.75 ms).

We used the formula $E = UlT$ to estimate the energy consumption of security computations [13], [14]. For MICA2 mote, when processor is in active mode, $I = 8$ mA. Typically, $U = 3.0$ V if two new AA batteries are used [14]. Total energy consumption is shown in Fig. 4. ENABLE requires only 0.381 mJ of the sensor node to perform access control operations that is 184 times less than HBQ (58.82 mJ). Also, ENABLE consumes energy that is only twice more than symmetric key based schemes (0.161 mJ).

B. Communication Cost

To evaluate the communication cost, we simulated ENABLE, HBQ, and symmetric-key based schemes on SENSE simulator [12]. 300 sensor nodes are randomly deployed in a network field of 2000 m × 2000 m. For routing mechanism, we selected ad hoc on-demand distance vector (AODV) protocol. At the MAC layer, we used IEEE 802.11 distributed coordination function

Table 2. Execution time of security primitives.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_H</td>
<td>3.636</td>
</tr>
<tr>
<td>T_{MAC}</td>
<td>3.12</td>
</tr>
<tr>
<td>T_{RC5}</td>
<td>0.26</td>
</tr>
<tr>
<td>T_{MUL}</td>
<td>810</td>
</tr>
</tbody>
</table>

Table 3. Comparison of computational cost.

<table>
<thead>
<tr>
<th>User authentication</th>
<th>ENABLE</th>
<th>HBQ</th>
<th>Sym. key based schemes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{MAC}</td>
<td>\simeq 3.12 (ms)</td>
<td>$2T_H + 2T_{MAC} + 2T_{RC5} + 3T_{MUL}$</td>
<td>\simeq 2,451.04 (ms)</td>
</tr>
<tr>
<td>Node authentication</td>
<td>$2T_{MAC} + T_{RC5} + T_H$</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Total</td>
<td>$2T_{MAC} + T_{RC5} + 2T_H$</td>
<td>$2T_H + 2T_{MAC}$</td>
<td>$2T_H + 2T_{MAC}$</td>
</tr>
</tbody>
</table>

Fig. 4. Comparison of energy consumption.

![Energy consumption diagram](image)
the network so that each node can communicate with the closest KDC to reduce overall cost. This example leads to a solution to get rid of the online KDC will be researched and proposed.

We measured the average number of hops that the access control packets are transmitted through for each mechanism. The result is shown in Fig. 5. It indicates that for all KDC locations (either at the corner or center of the network field), the communication cost of ENABLE is almost similar to the HBQ and symmetric key based schemes. As the simulation results are shown in the Fig. 5, location of KDC does not affect to the overall performance of the proposed mechanism when a large number of user accesses are requested. As an example shown in Fig. 6, communication cost of ENABLE is $2(AB + BC)$, while it is $4AB$ in HBQ or symmetric-key based scheme. If $BC < AB$ (KDC is closer to the sensor S than Alice), then ENABLE has less communication cost than HBQ or symmetric-key based schemes. However, if $BC > AB$ (Alice is closer to S than KDC), then ENABLE brings more communication cost than others. This example leads to a solution to reduce the communication cost of ENABLE by deploying various KDC within the network so that each node S can communicate with the closest KDC to reduce overall cost.

VII. CONCLUSION AND FUTURE WORK

Public-key cryptography based access control scheme has more advantages than symmetric-key cryptography based scheme because of better scalability, low memory requirement, easy deployment of new nodes, and no key pre-distribution. HBQ is a promising public-key access control scheme based on elliptic curve cryptography but it is shown to have some major limitations. In this paper, we propose ENABLE as an access control scheme based on elliptic curve cryptography which improves security and performance of HBQ. Through analysis and evaluation, we have shown that ENABLE overcomes security limitations in HBQ, perform better than HBQ, and is comparable in performance to symmetric-key based schemes (184 times less energy consumption than HBQ, and only twice more than symmetric key based schemes).

For future work, we plan to implement the proposed scheme on MICA2 motes to observe a practical performance and show precise comparison with other schemes. Although we have suggested a simple solution to get the KDC online all the time, it raises another issue that all the KDC may be down and there will not have any KDC to carry out the access control process. Therefore, a solution to get rid of the online KDC will be researched and proposed.

REFERENCES

Xuan Hung Le received B.S. degree in Computer Science from Hanoi University, Vietnam, in 2003, M.S., Ph.D. degree in Computer Engineering from Kyung Hee University, Korea, in 2005 and 2008, respectively. From 2002 to 2003, he served as a software engineering at FPT corp., Vietnam. From Dec. 2008 to Aug. 2009, he was a Research Professor at the Department of Computer Engineering, Kyung Hee University, Korea. Since Sept. 2009, he has been a Postdoctoral Research Associate at the Department of Electrical and Computer Engineering, University of South Florida, USA. His research interests are wireless sensor networks, cryptography, and information security.

Sungyoung Lee received his B.S. in Material Science from Korea University in 1978, M.S., Ph.D. in Computer Science from Illinois Institute of Technology, USA in 1987, and 1991, respectively. Since 1993, he has been a Professor at the Department of Computer Engineering, College of Electronics and Information, Kyung Hee University, Korea. From 1992 to 1993, he was an Assistant Professor at the Department of Computer Science, Governors State University, University Park, USA. His research interest includes ubiquitous computing middleware, java virtual machine, real-time system, and embedded system.

Ismail Butun received his B.Sc. and M.Sc. degrees in Electrical and Electronics Engineering from Hacettepe University, Turkey in 2003 and 2006, respectively. He is currently pursuing his Ph.D. degree in Electrical Engineering at University of South Florida, USA. His research interests focus on the following areas: Cryptography, information security, digital signatures, and wireless sensor network security.

Murad Khalid received B.S. and M.S. degrees in Electrical Engineering from the City College of the City University of New York, USA, in 1993 and 1995, respectively. He is currently a Research Assistant working towards a Ph.D. degree in Wireless Communication and Networking area in the Department of Electrical Engineering at the University of South Florida. His research interests include mobile wireless communications and networks, with emphasis on cross-layer design, resource allocation and performance optimization of wireless ad hoc networks.

He was with Bahria University as the Assistant Professor in Computer Engineering Department. Before that he served as Senior Systems Engineer for Motorola, Bosch Telecom, and Ericsson Radio Systems.

Ravi Sankar received the B.E. (Honors) degree in Electronics and Communication Engineering from the University of Madras, India in 1978, the M.Eng. degree in Electrical Engineering from Concordia University in 1980, and the Ph.D. degree in Electrical Engineering from the Pennsylvania State University in 1985. Since then, he has been with the Department of Electrical Engineering at the University of South Florida, Tampa. He is currently a USF Theodore and Venette Askounes-Ashford Distinguished Scholar Award winning Professor of Electrical Engineering, and Director of the Interdisciplinary Communications, Networking, and Signal Processing (iCONS) Research group (http://icons.eng.usf.edu) and Interdisciplinary Center of Excellence in Telemedicine (ICE-T). His main research interests are in the areas of wireless communications, networking, signal processing, and its applications.

Miso (Hyong-Il) Kim received his M.S. in Computer Engineering from the Kyung Hee University, Korea in 1996. Currently, he is an Sensor Research Engineer in the telecommunication R&D Center at Samsung Electronics. His research interests are personal navigation and activity recognition for ubiquitous computing.

Manhyung Han received his B.S. and M.S. degree in Computer Engineering from Kyung Hee University, Korea, in 2005 and 2007, respectively. In 2008, he was a Visiting Researcher at University of Virginia, VA, USA. Currently, He is currently pursuing his Ph.D. degree in Computer Engineering at Kyung Hee University, Korea. His research interests are ubiquitous computing, context-aware middleware, activity recognition, autonomic computing, sensor middleware, embedded OS, and WSN.
Young-Koo Lee received his B.S., M.S., and Ph.D. in Computer Science from Korea Advanced Institute of Science and Technology (KAIST), Korea in 1988, 1994, and 2002, respectively. Since 2004, he has been an Assistant Professor at the Department of Computer Engineering, College of Electronics and Information, Kyung Hee University, Korea. From 2002 to 2004, he was a Post Doctoral Fellow Advanced Information Technology Research Center (AITrc), KAIST, Korea, and a Postdoctoral Research Associate at the Department of Computer Science, University of Illinois at Urbana-Champaign, USA. His research interests are ubiquitous data management, data mining, activity recognition, bioinformatics, on-line analytical processing, data warehousing, database systems, spatial databases, and access methods.

Heejo Lee received his B.S., M.S., and Ph.D. in Computer Science and Engineering from Pohang University of Science and Technology (POSTECH), Korea in 1993, 1995, and 2000, respectively. Since 2004, he has been an Assistant Professor at the Department of Computer Science and Engineering, Korea University, Korea. From 2001 to 2003, he was at Ahn Lab, Inc. as Chief Technology Officer (CTO) and Director of Technology Planning Department. From 2000 to 2001, he was a Post Doctoral Research Associate at the Network Systems Lab of the Department of Computer Sciences and at the Center for Education and Research in Information Assurance and Security (CERIAS), Purdue University. His research interest includes computer and communication security, parallel scientific computing, and fault-tolerant computing.