
JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 10, NO. 4, DECEMBER 2008 455

A Connection Management Protocol for Stateful
Inspection Firewalls in Multi-Homed Networks

Jin-Ho Kim, Heejo Lee, and Saewoong Bahk

Abstract: To provide network services consistently under various
network failures, enterprise networks increasingly utilize path di-
versity through multi-homing. As a result, multi-homed non-transit
autonomous systems become to surpass single-homed networks in
number. In this paper, we address an inevitable problem that oc-
curs when networks with multiple entry points deploy firewalls in
their borders.

The majority of today’s firewalls use stateful inspection that ex-
ploits connection state for fine-grained control. However, stateful
inspection has a topological restriction such that outgoing and in-
coming traffic of a connection should pass through a single fire-
wall to execute desired packet filtering operation. Multi-homed net-
working environments suffer from this restriction and BGP poli-
cies provide only coarse control over communication paths. Due
to these features and the characteristics of datagram routing, there
exists a real possibility of asymmetric routing. This mismatch be-
tween the exit and entry firewalls for a connection causes connec-
tion establishment failures.

In this paper, we formulate this phenomenon into a state-sharing
problem among multiple firewalls under asymmetric routing con-
dition. To solve this problem, we propose a stateful inspection pro-
tocol that requires very low processing and messaging overhead.
Our protocol consists of the following two phases: 1) Generation
of a TCP SYN cookie marked with the firewall identification num-
ber upon a SYN packet arrival, and 2) state sharing triggered by
a SYN/ACK packet arrival in the absence of the trail of its initial
SYN packet. We demonstrate that our protocol is scalable, robust,
and simple enough to be deployed for high speed networks. It also
transparently works under any client-server configurations. Last
but not least, we present experimental results through a prototype
implementation.

Index Terms: Connection management protocol, multi-homed net-
works, network security, routing asymmetry, stateful inspection
firewalls, SYN cookies.

I. INTRODUCTION

A. Background

The Internet engineering task force (IETF) is extending the
AS number size from 2 octets to 4 octets with the network size

Manuscript received April 10, 2007; approved for publication by Dongman
Lee, Division III Editor, July 29, 2008.

This work was supported in part by Seoul R&BD Program, the ITRC pro-
gram of the Korea Ministry of Knowledge Economy, and Defense Acquisition
Program Administration and Agency for Defense Development under the con-
tract 2008-SW-51-IJ-03. This is an extended version of the conference paper
published in the proceedings of IEEE ICC, 2004 [13].

J. Kim is with Google, Seoul, Korea.
H. Lee is with the Division of Computer and Communication Engineering,

Korea University, Seoul 136-713, Korea, email: heejo@korea.ac.kr.
S. Bahk is with the Department of EE, INMC, Seoul National University,

Seoul 151-742, Korea, email: sbahk@snu.ac.kr.

growing [26]. Enterprise networks increasingly leverage path
diversity through multi-homing because a single Internet ser-
vice provider (ISP) is not enough to provide consistent perfor-
mance. Multi-homing, which refers to a single network having
more than one connection to the Internet, has been used widely
for enhancing the reliability of the network connectivity and in-
creasingly used for better networking performance [1], [8]. To-
day, multi-homed non-transit autonomous systems (ASes) sur-
pass single-homed networks in number [12], [27]. Thanks to
its connectivity failure reduction and load balancing features af-
fordable at a modest cost, multi-homing is on such a steep rise
in deployment.

An important phenomenon on the Internet is asymmetric
routing, which is a real possibility for multi-homed networks.
Even before the current advent of multi-homed networks, it
was shown that routing paths are often asymmetric in the Inter-
net [18]. Recent studies have shown the prevalence of routing
asymmetry in the Internet [9], [10], where the measurements
were conducted either at the AS level or at the router level.

Meanwhile, most enterprise networks need to deploy firewalls
in their border to protect themselves from illegitimate traffic.
Recently, what is called the stateful inspection firewall has be-
come the de facto industry standard. It enables flexible and fine-
grained control over incoming traffic, and the filtering decision
can be dynamically made based on the need of the outgoing
traffic. Namely, a stateful inspection firewall intercepts a packet
and updates its internal state table with the extracted connec-
tion state information (source and destination addresses and port
numbers), based on which the filtering decision is made for the
incoming traffic [7]. However, this means that the stateful in-
spection has a topological restriction: Outgoing and incoming
traffic of a connection should pass through a single firewall.

The failure of meeting this restriction due to the possibil-
ity of asymmetric routing leads to the connection establishment
problem. Multi-homed networks may have multiple entry/exit
points (henceforth, MEPs) because of topological restrictions,
physical location diversity for reliability and so forth. If an AS
is with MEPs, outgoing and incoming flows may go through dif-
ferent firewalls. In this case conventional stateful inspection de-
signed for a single entry point (henceforth, SEP) does not work
as desired. One may think that moving SEP firewalls to end
hosts or a subnet with a single entry point can solve the problem.
However, the placement of firewalls enforcing route symmetry
cannot be a fundamental solution for stateful inspection in MEP
networks and even it may cause to lose their protection coverage
and induce the limited network utility.

In this paper, we address this inevitable problem that occurs
when MEP networks deploy firewalls in their border. In partic-
ular, we explore a state sharing method between firewalls used

1229-2370/08/$10.00 c© 2008 KICS

456 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 10, NO. 4, DECEMBER 2008

(a) (b)

(c) (d)

Fig. 1. Single entry point firewalls; (a) stateful inspection firewall, (b) dis-
tributed firewalls, (c) high availability setup, and (d) multi-link firewall.

in the MEP networks and the stateful inspection mechanism to
filter out packets from suspicious connections.

B. Related Works

We can consider a few approaches to configure a network with
firewalls according to the positioning of the firewalls. They in-
clude distributed firewalls for enhancing firewall performance,
firewalls with high availability setup, and multi-link firewalls
for increasing connectivity, which are shown in Fig. 1. The three
approaches can be described as follows:
• Distributed firewalls: Firewalls are distributed within an AS.

To do stateful inspection with distributed firewalls, all rout-
ing paths still need to be symmetric. As conventional fire-
walls cannot filter any traffic they have not seen, all hosts
inside the protected sub network should be trusted. Dis-
tributed firewalls were proposed for finer-grained access
control against internal threats [2]. In this configuration, se-
curity policy is centrally defined but its enforcement is left
to an individual endpoint [11].

• High availability setup: With high availability setup, stateful
inspection firewalls share connection information with each
other through state mirroring. The firewalls can achieve lin-
early increased throughput by putting them in active mode,
and if any one fails, its connections will be taken over by
some other one. Duplicated firewalls normally use a ded-
icated communication line for mirroring state information.
This system is effective in SEP environments where a load
balancer or a switch distributes traffic over several firewalls.
If this system is with MEP environments, a race condition
occurs between a SYN/ACK packet arrival and its state mir-
roring. State mirroring requires processing time and mirror-
ing intervals, and it is hard to use dedicated communication
links in MEP environments. Particularly, if a TCP server is
located in the same AS with firewalls and a client is outside
the network, its SYN/ACK packet will probably arrive at a
firewall before state mirroring is completed. Therefore state

mirroring loses the race and the establishment of the TCP
connection will be dropped or severely delayed [28].

• Multi-link firewalls: Multi-link technology enables an AS
with a firewall to be connected with multiple ISPs [14]. Al-
though it can make use of multiple ISPs, all links are merged
into one firewall.

Thus, this is not relevant to our considered MEP network.
Above approaches are proper for SEP networks, but inadequate
for MEP networks. As well, existing security mechanisms have
been devised on the basis of the assumption that Internet routes
are symmetric at the AS level [5], or at the router level [7].
These approaches are not adequate for the current Internet envi-
ronments with large degree of routing asymmetry [9], [10].

C. Contributions of This Work

The main contributions of this work are three-fold. First, we
introduce the problem of firewalling for an MEP network. Sec-
ond, we propose a method of performing stateful inspection in
the MEP network, and design an effective mechanism for ex-
changing connection states among the firewalls. The proposed
mechanism is scalable such that its complexity is not related to
the number of firewalls. Third, through a prototype implemen-
tation, we verify that high-speed packet filtering is achievable in
the MEP network through minimizing the overhead caused by
the protocol.

The paper is organized as follows. Section II describes the
state sharing problem in asymmetric routing environments, then
discusses state sharing methods between firewalls during the
connection establishment procedures. In Section III, we propose
an algorithm that uses M-SYN cookies by considering the state
synchronization problem. The M-SYN cookie is a SYN cookie
modified for multi-homed environments which includes the fire-
wall identification number. Sections IV and V discuss perfor-
mance issues and implementation results respectively, followed
by the conclusion in Section VI.

II. STATE EXCHANGE FOR CONNECTION
ESTABLISHMENT

This section describes the state sharing problem in MEP envi-
ronments, and considers two state sharing approaches that take
different steps during the TCP handshaking. Then, we briefly
review the principles of a SYN cookie [3], which is applicable
to state sharing among firewalls.

A. Problem Definition

We let FW (c, s) denote the firewall on the one-way routing
path from client host c to server host s, either c or s is in the
considered AS to be protected by firewalls. We call the routing
path of a connection symmetric when FW (c, s) = FW (s, c).
Otherwise, it is asymmetric. Suppose a multi-homed AS is with
m firewalls at the entry points, i.e., FWi, i = 1, · · · ,m. With-
out loss of generality, let FWx denote FW (c, s) and FWy de-
note FW (s, c). State sharing between firewalls is needed when
FWx �= FWy for any client-server pair (c, s).

Fig. 2 shows an example of network with m = 4, FWx =
FW1 and FWy = FW2. To do stateful inspection of a TCP
connection, FW1 needs to share the state information with

KIM et al.: A CONNECTION MANAGEMENT PROTOCOL FOR STATEFUL INSPECTION... 457

Fig. 2. State sharing problem for asymmetric routing.

FW2. Assume that a SYN packet, referred to as SYN(c, s),
passes through FW1 and its corresponding SYN/ACK packet,
referred to as SYNACK(s, c), arrives at FW2. To check the
validity of SYNACK(s, c), FW2 needs to know the state in-
formation of this connection, otherwise it should drop the
SYNACK(s, c). Thus, a state sharing mechanism is required for
firewalls to protect the MEP network against possible attacks.
And we should achieve it at a minimum cost.

B. Two State Sharing Methods

We can consider two possible ways of state sharing for a TCP
connection according to the initiator of state sharing. One is
SYN-initiated, and the other is SYN/ACK-initiated. In the SYN-
initiated state sharing, if FWx receives a SYN(c, s), it sends
the connection information to FWy . Then, FWy inspects flows
from s to c using this information. In the SYN/ACK-initiated
state sharing, FWy initiates the sharing process. Upon receiv-
ing a SYNACK(s, c), FWy checks whether it has seen the cor-
responding SYN(c, s) packet before. If it has not seen, FWy

inquires other firewalls of the connection state.

B.1 SYN-Initiated State Sharing

In a SYN-initiated algorithm, a firewall receiving a SYN(c, s)
initiates information exchange by sending new connection in-
formation to all other firewalls. A drawback of this method is
that it is hard to know in advance which firewall will receive
the SYNACK(s, c). In case of symmetric routing, state sharing
among firewalls is not necessary for connections. But if a fire-
wall cannot convince the routing path a priori, it should send the
state information to every other firewall which does not need
it except the designated one. Such a SYN-initiated algorithm
incurs m − 1 extra packets per connection. Thus, messaging
overhead of m − 1 packets per SYN packet renders firewalls
vulnerable to denial of service (DoS) attacks with O(m) ampli-
fication.

In order to reduce the messaging overhead, the firewall can
use a table which stores routing paths for packets coming back
to the AS.1 The creation of such table is done by following the
reverse process of a routing table creation because it uses return-
ing paths instead of forwarding. To keep the table up-to-date, the
firewall needs close cooperation with current routing protocols
such as BGP, which is not a trivial work.

1In [21], a similar approach was suggested in order to check the source reach-
ability of a traveling packet, and to filter out spoofed packets through the collab-
oration between ASes. However, it is inefficient for each firewall to maintain a
table without support of routing protocols.

In addition to the redundant messages, a SYN-initiated ap-
proach has a race condition between state sharing and
SYNACK(s, c) arrival, which is the same problem incurred by
the high availability setup.

B.2 SYN/ACK-Initiated State Sharing

Under the SYN/ACK-initiated state sharing, FWy initiates
information exchange upon receiving a SYNACK(s, c). If FWy

receives a SYNACK(s, c) and it has not seen the corresponding
SYN(c, s) before, i.e., FWy �= FWx, then it requests the con-
nection information to the other firewalls.

The advantage of this method is that extra messages are not
generated for symmetric routing cases. The messaging overhead
of SYN/ACK-initiated sharing is proportional to α · (m − 1),
0 ≤ α ≤ 1, where α is the portion of asymmetric routing. The
SYN/ACK-initiated sharing has negligible messaging overhead
when α ≈ 0.

Nevertheless, it is still susceptible to DoS attacks like floods
of spoofed SYN/ACK packets. Fake SYN/ACK packets amplify
the number of messages because a single SYN/ACK packet in-
vokes m − 1 control packets. This amplification effect causes
DoS of the firewalling network.

These drawbacks motivate us to devise a novel approach with-
out incurring the amplification effect. There are two conditions
of a protocol to minimize the messaging overhead:
1. Only a valid SYN/ACK initiates state sharing,
2. FWy inquires only FWx instead of all the others.

In this case, the messaging overhead is only proportional to
α and independent of m. To achieve this goal, upon receiving
a SYNACK(s, c), the firewall needs to check the validity of the
SYNACK(s, c), and identify which firewall the corresponding
SYN(c, s) passed.

To design a protocol satisfying the above conditions, we
manipulate the initial sequence number (ISN) of a TCP SYN
packet, which is analogous to SYN cookies [3]. SYN cookies
were originally suggested by Bernstein to defend a TCP server
against SYN flooding attacks with IP spoofing [6]. As an ex-
tension of SYN cookies, Cascado et al. recently proposed a
network-based flood protection scheme using the “flow cook-
ies” [5], which is based on the same principle of host-based SYN
cookies.

C. Principles of Original SYN Cookies

Let us describe the communication protocol of SYN cook-
ies [3], which will be the basis of designing M-SYN cookies.

When a host receives a SYN packet, it stores connection in-
formation and remains in half-open state until it receives an
ACK packet in reply to the SYN/ACK packet it sent. If it re-
ceives enormous forged SYN packets, i.e., SYN flooding at-
tacks, it cannot work properly because all the resources are oc-
cupied by half-open connections. SYN cookies was designed
to defend against SYN flooding attacks, whereas M-SYN cook-
ies are designed to share connection states among firewalls. It
is a particular choice of initial TCP sequence number, which
represents a connection state. Instead of keeping all the connec-
tion information, hosts send out SYN/ACK packets each with
the SYN cookie to achieve the scalability. Thus, hosts using

458 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 10, NO. 4, DECEMBER 2008

Fig. 3. TCP 3-way handshaking with SYN cookie.

SYN cookies do not have to drop connections even if the back-
log queue fills up.

Fig. 3 shows a TCP 3-way handshaking with a SYN cookie.
Let isnc and isns denote the 32 bit ISNs sent by a client and
a server, respectively. Upon receiving a SYN packet, the server
generates a SYN cookie2 according to the following formula:

isns = hash(sec1, saddr, sport, daddr, dport)
+isnc + (time × 224)
+(hash(sec2, saddr, sport, daddr, dport,

time) mod 224) + mssindex, (1)

where time represents a 5-bit counter increasing every 64 sec-
onds, mssindex represents an encoded value of the MSS in the
range of 0 to 7, sec1 and sec2 represent secret keys which
only the server knows, and hash represents a cryptographic
hash function such as MD5 or SHA-1. The other four param-
eters saddr, sport, daddr and dport represent source address,
source port, destination address, and destination port of the SYN
packet, respectively. If a client receives the SYN/ACK packet
with the SYN cookie, i.e., isns, it sends an ACK packet with
the acknowledge number of isns + 1. A server receiving the
ACK packet checks its acknowledge number by using the fol-
lowing formula:

mssindex2 = acknum − seqnum − time × 224

−hash(sec1, saddr, sport, daddr, dport)
−(hash(sec2, saddr, sport, daddr, dport,

time) mod 224), (2)

where acknum and seqnum represent the acknowledge num-
ber and the sequence number of ACK packet respectively. If
mssindex2 is in the range of 0 to 7, the ACK packet is consid-
ered as legitimate, and the server creates a connection with the
MSS corresponding to mssindex2. In case that a packet is forged,
mssindex2 tends to be very different from a value between 0 and
7.

2The format of M-SYN cookie that we are using is different from that of SYN
cookie. Its format will be discussed in Section III-C.

Fig. 4. Connection state exchange protocol.

III. DISTRIBUTED STATEFUL INSPECTION
PROTOCOL

In this section, we propose a distributed stateful inspection
protocol for coordination of multiple firewalls in an AS.

A. Protocol Design

The requirements of our protocol design for connection state
exchange are as follows:
• It needs to be secure as much as a SEP firewall.
• It minimizes extra packets and computations.
• It guarantees no race condition.
• It is compatible with the current Internet.

In this protocol, we take advantage of the SYN cookie to se-
curely exchange connection information between the two asso-
ciated firewalls. While the SYN cookie manipulates SYN/ACK
packets, we modify it to make it applicable to SYN packets.
Unlike the SYN cookie, the M-SYN cookie uses the firewall ID
instead of mssindex to securely record the cookie sender’s infor-
mation. The verification of SYN/ACK packets is performed by
a keyed-hash function. To use this function, all the firewalls in
the AS need to share the same secret key. Our proposed protocol
is depicted in Fig. 4, and it works as follows.
1. C sends a SYN packet which arrives at FWx.
2. FWx examines the packet according to its packet filtering

rules. If the requested connection is valid, continue the next
step.

3. FWx replaces isnc with the M-SYN cookie, and keeps3 the
connection information4 at the state table.

4. FWx sends the modified SYN packet to S.
5. S sends C a SYN/ACK packet which will go through FWy .
6. FWy examines the SYN/ACK packet and extracts the fire-

wall ID of FWx. If the packet is invalid, it will be dropped.
If FWx = FWy , go to step 9.

7. FWy forwards the SYN/ACK packet to FWx.

3The SYN cookie does not have this storing process.
4Source address, source port, destination address, destination port, and differ-

ence of the sequence numbers between isnc and the M-SYN cookie.

KIM et al.: A CONNECTION MANAGEMENT PROTOCOL FOR STATEFUL INSPECTION... 459

8. FWx checks the connection information of the packet and
sends it to FWy with the SYN/ACK packet. If there is
no corresponding connection information, FWx drops the
packet.

9. FWy updates its state table and replaces the acknowledge
number of the SYN/ACK packet with isnc + 1.

10. FWy sends the modified SYN/ACK packet to C.
This protocol enables FWx and FWy to share the connection

information, and forthcoming packets including the correspond-
ing ACK can pass through the two associated firewalls directly.

Fig. 4 illustrates when C is in the AS to be protected by fire-
walls and S is not, but the protocol also applies to the opposite
case.

B. M-SYN Cookies with TCP Reincarnation

There are regulations about TCP connection reincarnation for
Internet hosts as shown in [23]. The TCP reincarnation is de-
scribed as follows.
“When a connection is closed actively, it MUST linger in TIME-
WAIT state for a time 2 × MSL (maximum segment lifetime).
However, it MAY accept a new SYN from the remote TCP to re-
open the connection directly from TIME-WAIT state, if it assigns
its ISN for the new connection to be larger than the largest se-
quence number it used on the previous connection incarnation,
and returns to TIME-WAIT state if the SYN turns out to be an
old duplicate.”

We build our protocol on the assumption that Internet hosts
generate ISNs of larger than SNprev + 32768, where SNprev

denotes the sequence number used for the previous connection
incarnation. We first discuss how to support fast reincarnations
with SYN cookies. Then, we explain our design of M-SYN
cookies with TCP reincarnations.

When S stays in TIME-WAIT state, it may accept a new SYN
packet sent by C. To support the reincarnation, the ISN in the
new SYN packet should be larger than SNprev.

Since all arithmetic dealing with sequence numbers must be
performed modulo 232 [22], half of sequence numbers are larger
than SNprev and the others are not. So if FWx makes a SYN
cookie pseudo randomly by using a hash function without know-
ing SNprev, the probability of the SYN cookie not being ac-
cepted by S is 1/2. Thus, we need to lower this probability.

A simple way to achieve this is to store the information
about SNprev during the TIME-WAIT state period. Let’s de-
note SNprev of 32 bits by (S31, S30, S29, ..., S0)2. If the new
SYN cookie keeps the first two bits of SNprev and adds 230 to
itself, it always becomes larger than SNprev in modular arith-
metic, i.e.,

(S31, S30, S29, · · ·, S0)2

<

(
(S31, S30, ∗, · · ·, ∗)2 + 230

)
(mod 232) (3)

where ‘∗’ is a wildcard. So if firewalls store only two bits per
connection, they can support fast reincarnation exactly. How-
ever, as there are so many short-lived connections such as web
traffic, it still costs a lot for firewalls to keep this information per
connection for 2 × MSL.

Another way to support fast reincarnation is to send two SYN
packets with cookies that differ only in their most significant

Fig. 5. The message format of a M-SYN cookie, which is inscribed to
the ISN of a SYN packet.

bits. In this case, S will accept only one cookie larger than
SNprev and reply to the firewall with its SYN/ACK packet. This
method increases the overhead because of sending duplicated
messages. Furthermore, if the ISN of the SYN packet is the du-
plication of a previous connection, then it causes to do half-open
a wrong connection.

From the assumption for the support of fast reincarnations,
hosts need to generate ISNs of larger than SNprev + 32768
to have the capability of fast reincarnation. The number 32768
comes from the following reasons. 4.4BSD-Lite adds 64000 to
the ISN of each connection in addition to timer increase [29],
while NetBSD-1.5.2 adds 16777216. FreeBSD-4.5 and Linux
2.4.17 use 1MHz timer so every 33 ms the ISN is increased by
32768. For OSes which use 250 KHz timer proposed in [22], it
takes 132 ms to increase the ISN by 32768. However these in-
stances are not directly related to our case of fast reincarnation
because they are just concerned with increasing ISNs as a part
of connection setup.

Nevertheless, fast reincarnation is made possible by increas-
ing the ISN by ‘at least’ 32768 from SNprev. The increment of
smaller than 32768 is not enough to secure a hash field of our
M-SYN cookie which will be explained next.

If the assumption is fulfilled in the TCP implementations as
mentioned above, the upper 17 bits of the ISN sent by C be-
comes larger than SNprev. Therefore, it makes sense to leave
the upper 17 bits intact to support reincarnation properly.

C. M-SYN Cookie Messages

Our M-SYN cookie format is depicted in Fig. 5. It is as-
sumed that all firewalls share a secret key and a synchronized
time counter which increases every 16 seconds. The upper 17
bits of the M-SYN cookie are taken from that of the ISN of the
received SYN packet. T0 is the two least significant bits of the
time counter which enables a firewall to extract the time of the
cookie made. The firewall receiving the M-SYN cookie extracts
the time according to the following equation:

timeinput = timecurr + 1 − ((timecurr + 1 − T0) mod 4) (4)

where timecurr is the current time. This time value, as an in-
put of a hash function for verifying the validity of a cookie,
becomes invalid after 40 seconds on average from the genera-
tion of a cookie. We will explain the meaning of (4) and time
synchronization in Section IV-C.

An adversary may try to pass through the firewalls by a brute
force attack such as sending SYN/ACK packets with random or
sequential hashes. The M-SYN cookie uses a keyed-hash func-
tion to defend such attacks. But it has the output length of 13

460 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 10, NO. 4, DECEMBER 2008

bits differently from the original one of 32 bits. So the probabil-
ity of randomly guessing the correct hash value in an attempt is
2−13. Additionally we include the firewall ID by sacrificing the
length of hash output. For instance, if an AS is with 4 firewalls,
2 bits are required to identify a firewall so that the probability
of accepting a random hash increases to 2−11. This implies that
four out of 213 fake packets can be classified as legitimate and
three of them will be forwarded to other firewalls. These pack-
ets, however, will be filtered out by receiving firewalls because
their state information is not in the table. The other packet will
be also dropped by the first firewall due to the same reason. So
the flooding attack is tolerable because it incurs only one tem-
porary extra packet per 213/(m − 1) attacking packets.

The firewall executes the pseudo code in Fig. 6 to generate
the M-SYN cookie when it receives a SYN packet. When it re-
ceives a SYN/ACK packet, it runs the code in Fig. 7 to examine
the validity of the received cookie. For simplicity, we excluded
the codes for exception handling and general stateful inspection,
which are not directly related to this work.

D. State Synchronization

A proposed state sharing algorithm for connection establish-
ment is presented in the previous sections, and this section
discusses further issues about stateful inspection firewalls with
MEPs.

Stateful inspection firewalls should trace connection state
changes. So when state change occurs, the firewall should ex-
change state information with the other corresponding firewall.
For example, when ftp initiates a session (FTP PORT command)
or when a multimedia control session opens a UDP port for
streaming service, the firewall detecting the state change for-
wards the packet to the corresponding firewall to share the state
change without race condition.

If firewalls have to check the sequence number and the ac-
knowledge number of each packet using the cooperative stateful
inspection, they should exchange the state information when-
ever a packet traverses. Such high overhead makes firewalls un-
able to be deployed in MEP environments.

Now we consider three cases that an attacker sends fake ACK
packets.
Case 1) An attacker sends fake ACK packets to nonexistent

connections. This attack can be used for port scanning [17],
but it is ineffective under stateful inspection. When the fire-
wall does not have the connection information in its state
table, it will drop the fake ACK packets.

Case 2) An attacker sends fake ACK packets belonging to some
existing connections but he/she could not sniff the connec-
tions. In this case, the attacker cannot receive the ACKs for
the packets he/she sent. One probable aim of the attacker
is to hinder communications by cutting off the connection,
inserting corrupted data or malicious codes, and consum-
ing host or network resources. Since the victim can usually
be good at checking sequence numbers, the double-check
at firewalls is redundant at normal situations. However, in
terms of DoS attack defense, dropping most attacking pack-
ets through verifying sequence numbers is effective to di-
minish the impact of the DoS attack.

Case 3) An attacker has an ability to sniff the connection. In

this case, the attacker can send spoofed packets with valid
sequence numbers, and even hijack the connection. Accord-
ingly even stateful inspection firewalls in the SEP environ-
ment cannot protect the network from this attack properly.

Since it is hard to have a perfect mechanism for checking se-
quence numbers, we can consider a loosely checking mecha-
nism which is good at handling the case 2. In [25], exact check-
ing equations were proposed. Here we propose a mechanism al-
lowing some margin of constant or multiple window size of the
TCP connection to the equations to reduce the control packet
overhead.

For FIN and RST packets, the correctness of their sequence
numbers must be checked accurately to avoid erasing valid state
information from the state table. In this case, it is better for the
firewall to loosely check the sequence numbers first and then
updates state information by exchanging control packets and
checks them again tightly.

On the Internet, the majority of TCP sessions do not experi-
ence route changes during their connection lifetime [20]. How-
ever some connections undergo route oscillations. If a packet
arrives at a firewall which does not have its connection infor-
mation, it would be dropped. Therefore, to run under route os-
cillations as desired, other firewalls that have not participated
in connection establishment also should share minimum infor-
mation of the connection. But route oscillations do not happen
frequently and it is desired to protect long connections that tend
to be important. So if firewalls share minimum connection in-
formations at long intervals, they can tolerate route changes with
low overhead.

IV. PERFORMANCE

In this section, performance issues are discussed in terms
of processing overhead and messaging overhead. As well, we
briefly discuss security and scalability of the algorithm.

A. Processing Overhead

Since the algorithm does not contain loops or recursions,
the time complexity is O(1) for processing a single SYN or
SYN/ACK packet. Nevertheless, there are two computation in-
tensive parts for further considerations: a hash function and a
code for sequence number translation.

A.1 Hash Function

A hash function is called twice for each connection. One is
for generating a cookie and the other is for verifying the cookie.
In case of flooding SYN/ACK packets, either directly from at-
tacking sources or indirectly from reflectors [19], firewalls have
to call the hash function as much. Thus, the hash function gives
significant impact on the overall performance so that it must be
chosen carefully. There exist commercial network security pro-
cessors that achieve multi-gigabit throughput using MD5 and
SHA-1 hash functions. Also, fast hash functions like UMAC
and MMH can achieve multi-gigabit performance even on a 350
MHz Pentium II PC [4].

KIM et al.: A CONNECTION MANAGEMENT PROTOCOL FOR STATEFUL INSPECTION... 461

If a SYN packet is received and allowed in the filtering rule then
cookie = (isn_c & 0xffff8000) + (time%4 << 13)

+ HASH(secret, sa, sp, da, dp, time, isn_c>>15) % 2^13 + FWid
SNdiff = cookie - isn_c
Update StateTable(Store sa, sp, da, dp, time, SNdiff)
Change TCPseqnum to cookie
Recalculate TCPchecksum
Send the packet

Endif

Fig. 6. Generation of a cookie for a SYN packet.

If a SYN/ACK packet is received then
temp_cookie = TCPacknum - 1
temp_time = time + 1 - (time + 1 - (temp_cookie >> 13)) % 4
id = (temp_cookie - HASH(secret, da, dp, sa, sp, temp_time, temp_cookie>>15)) % 2^13
If id == FWid

If the session is in the StateTable
Update StateTable
Change TCPacknum to TCPacknum-SNdiff
Recalculate TCPchecksum
Send the packet

Else
Drop the packet

Endif
Else If id>=0 and id<=MAXid

Forward the packet to FW(id)
Else

Drop the packet
Endif

Endif

(a)

If a SYN/ACK packet is forwarded from FW(id)
If the session is in the StateTable

Update StateTable
Send the connection information and the packet to FW(id)

Else
Drop the packet

Endif
Endif

(b)

Fig. 7. Verification of the cookie from a SYN/ACK packet; (a) FWy–SYN/ACK received (Section III-A step 6, 7) and (b) FWx–SYN/ACK for-
warded(Section III-A step 8).

A.2 Sequence Number Translation

In order to change isnc, a firewall needs to translate all the
sequence numbers of packets in one direction and all the ac-
knowledge numbers in the opposite direction, and recalculate
their TCP checksums. The sequence number (SN) translation
can be done with one addition or one subtraction. TCP check-
sum (CS) can be recalculated by the following arithmetic [24]:

CSnew =∼ (∼ CSold+ ∼ SNold + SNnew), (5)

where ∼ a means one’s complement of a. This implies that the
sequence number translation gives negligible impact on the per-
formance.

B. Control Packet Overhead

The proposed protocol uses the minimum number of ex-
tra packets for each connection establishment. That means two
packets used for the request-and-reply state exchange when the
routing path is asymmetric. Furthermore, relaxed checking of
sequence numbers can further reduce the control packets. Also

as each control packet requires some processing overhead in-
cluding authentication, we can put multiple queries not in urgent
need into one packet.

C. Security

Firewalls with MEPs need to be as secure as SEP firewalls.
We consider two types of attacks in view of security depending
on how the firewall reacts when it receives SYN and SYN/ACK
packets.

C.1 DoS Attacks

There are two possible DoS attacks: SYN flooding and
SYN/ACK flooding. On receiving a SYN or SYN/ACK packet,
the firewall needs to execute the hash function. As explained in
Section III-C, such attacks cause only one extra control packet
per 213/(m − 1) attacking packets and most attacking packets
are dropped immediately.

462 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 10, NO. 4, DECEMBER 2008

C.2 Replay Attacks

In order to prevent replay attacks, the current time is used
as an input of the hash function. After 64 seconds, an M-SYN
cookie becomes invalid and the packet will be dropped accord-
ingly. The proposed protocol prevents an attacker from guessing
the M-SYN cookie without having seen it recently, which is the
same principle of the SYN cookie. To prevent the replay attack,
it is assumed that all firewalls have a synchronized time counter,
which increases every 16 seconds. We inserted the two least
significant bits T0 of the time counter, timeorg, and extracted
timeinput by using (4). Then, the timeinput has the following
property.

timeorg = timeinput

⇐⇒ timeorg − 1 ≤ timecurr ≤ timeorg + 2. (6)

The reason we allow (timeorg − 1) and (timeorg + 2) is to
tolerate time asynchronization between firewalls for up to 16
seconds. If the time asynchronization period does not exceed 16
seconds, the cookie is valid for 16 to 64 seconds, which equals
to 40 seconds on average.

D. Scalability

A good feature of our proposed protocol is its scalability be-
cause it runs independently of the number of firewalls in an AS.
This is caused by the fact that a connection exchange occurs just
between the two associated firewalls with their own identifiers.
Our protocol has low message complexity and does not induce
amplified messages. If one packet triggers m extra messages, it
will be very much susceptible to DoS attacks. Fortunately, M-
SYN cookies generate at most one control packet per SYN/ACK
packet. Desirably it does not generate any unnecessary con-
trol packets for symmetric connections, thus the scalability is
achieved regarding the number of exchanged packets for state
validation.

For storing the firewall ID in a M-SYN cookie, more space is
required for more firewalls. But allowing one more bit to the fire-
wall ID field doubles the number of partaking firewalls. Further-
more, we do not loose the protection power of M-SYN cookies
for a reasonable range of firewall numbers. For instance, even
with 16 firewalls, only one of 546 packets can pass through fire-
walls, but the connection will be dropped immediately, which is
discussed in Section III.C. From the facts discussed above, the
scalability can be achievable at the expense of hash space.

V. IMPLEMENTATION

We have implemented the proposed protocol using the netfil-
ter in the Linux kernel.5 This section starts with a brief intro-
duction of the Linux network kernel and the netfilter, and then
discusses our implementation. For an experimental setup, we
construct a network consisting of three firewalls.

A. Linux Network Kernel and Netfilter

When the Linux kernel receives an IP packet, it calls ip_rcv()
function. ip_rcv() checks the validity of the packet and calls

5Linux kernel version 2.4.19 is used for implementation.

Fig. 8. Netfilter architecture.

ip_route_input() to examine whether the destination is local or
not. If the destination is local, i.e., the host itself, the packet is
delivered to ip_local_deliver(). Otherwise the packet traverses
ip_forward() and ip_finish_output() and finally goes out to an-
other network.

The netfilter is the framework in the Linux 2.4.x kernel for
packet filtering, network address translation (NAT) and other
packet manipulation. It is a set of hooks in the network stack
of Linux kernel which allows kernel modules to register call-
back functions that are called whenever a packet traverses one
of these hooks [15]. The hooks are put at between the functions
mentioned above.

Fig. 8 shows the architecture of the netfilter [16]. Five ellipses
represent the hooks of netfilter and small rectangles are func-
tions that are invoked when packets encounter hooks. Besides
static packet filtering, the filter provides stateful inspection func-
tionalities. DNAT and SNAT represent destination and source
NATs respectively, and perform address translations of connec-
tions. DNAT applies to port forwarding, transparent proxying
and so on. SNAT changes the source address like the IP mas-
querading feature of Linux. Conntrack tracks connections, and
supports NAT and stateful inspection filtering.

B. Protocol Implementation

We implemented our protocol as a netfilter module. We
installed our function SCGEN between SNAT and Conntrack
at POSTROUTING, and SCCHECK between Conntrack and
DNAT at PREROUTING. SCGEN generates M-SYN cookies
for new connections by the codes in Fig. 6 and SCCHECK
checks the validity of received M-SYN cookies by the codes
in Fig. 7.

The main factor in deciding the location of each function
block is related to the use of NAT in the MEP network. For
example, if we turn on SNAT, FWx changes the source ad-
dress of the outgoing SYN packet, so the returning SYN/ACK
packet has the changed destination address. Assuming an MEP
environment and the routing path is asymmetric, FWy does not
know how to restore the original destination address, especially
if SNAT is dynamic. It is exactly the same problem as observed
in our state sharing problem, so it can be rightly solvable by our
protocol. After FWy validates the M-SYN cookie, it requests
connection information to FWx. Then FWx responds to FWy

with state information including NAT information. Using this
information, FWy performs NAT. Because FWy validates the
cookie by the changed address, FWx has to generate the cookie
with the changed address. Therefore SCGEN needs to be called
after SNAT.

KIM et al.: A CONNECTION MANAGEMENT PROTOCOL FOR STATEFUL INSPECTION... 463

Fig. 9. Testbed configuration.

C. Experimental Results

We conducted experiments for our proposed protocol on the
testbed shown in Fig. 9 which consists of three firewalls. Each
PC firewall is equipped with an Intel Pentium 4 1.8 GHz CPU
and two 100 Mbps Ethernet cards.

C.1 Protocol Validation

Following the initial design purpose, we tested our protocol
with asymmetric routing paths by allocating a designated fire-
wall for each direction of flow. Along with the experiments,
we verified that our protocol provides the intended functions
properly under various connection scenarios. These experiments
covered the case of time asynchronization among firewalls, and
verified the validity of the considered algorithms including (4)
and (6).

C.2 Hash Functions

We experimented with various hash functions to investigate
their effects on performance. Every SYN and SYN/ACK packet
arriving at the firewall calls for the hash function. We measured
the packet drop rate with the increase of connection requests,
which is shown in Fig. 10. Here, the packet drop rate implies
the dropping percentage of new TCP connections. NO HASH
stands for the case when the null function is used. When SHA-
1 is used, packets starts to be dropped at 65 Kpps. In case of
MD5, the packet drop rate increases drastically from 75 Kpps.
For UMAC [4], packets begins to be dropped at near 82 Kpps,
which is the similar performance to the case of NO HASH. In
this experiment, extra processing overhead results in 20% ∼ 0%
performance degradation depending on the hash function. It im-
plies that a fast hash function does not cause too much perfor-
mance degradation. Thus, the proposed protocol constituted by
hash functions can be used efficiently for protecting a network
with MEP.

C.3 Fake SYN/ACK Attack

The effectiveness of the proposed protocol with respect to ver-
ifying SYN/ACK packets is measured under a flooding attack
of fake SYN/ACK packets. We generated 1000000 SYN/ACK
packets with random acknowledge numbers. Among 1M forged
packets, only 251 packets, which are very close to the expected
value of 244,6 were forwarded to the other firewalls, and they
were all dropped at the receiving firewalls. This verifies that

6In case of m = 3, the expected value is 1000000 × (3 − 1)/213 ≈ 244.

Fig. 10. Hash function test.

no fake SYN/ACK packets could succeed to penetrate into the
network.

VI. CONCLUSION

The state sharing problem occurs among firewalls in the MEP
network as the Internet intrinsically allows connections to ex-
perience asymmetric routing paths. Conventional firewalls have
topological restrictions since they have no ability to do state-
ful inspection in MEP environments. Such a problem has hin-
dered deploying stateful inspection firewalls in the MEP envi-
ronments.

In this paper, we described the state sharing problem between
two associated firewalls in the MEP network. Also we proposed
a distributed stateful inspection protocol which exchanges con-
nection information and checks its validity by using our pro-
posed M-SYN cookie. Differently from the SYN cookie, our
cookie contains the field of firewall ID to indicate which fire-
wall the SYN packet passed through, and a hash value to check
the validity of a connection request. When the firewall receives
a SYN/ACK packet, it examines the hash value and extracts the
firewall ID from the acknowledge number to defend against DoS
attacks employing fake SYN/ACK flooding.

The proposed protocol is scalable because the control mes-
sages are exchanged between the two associated firewalls of an
asymmetric connection, regardless of the number of entry points
in an AS. The protocol requires low processing and messaging
overhead, thereby it can be applicable to current Internet envi-
ronments. For future work, we left the case of supporting UDP
sessions in the MEP network which are connectionless.

REFERENCES
[1] A. Akella, A. Shaikh, and R. Sitaraman, “A measurement-based analysis

of multihoming,” in Proc. ACM SIGCOMM, 2003.
[2] S. Bellovin, Distributed Firewalls; login: Magazine, special issue on se-

curity, Nov. 1999.
[3] D. J. Bernstein, SYN Cookies Homepage, 1996. [Online]. Available: http:

//cr.yp.to/syncookies.html.
[4] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway, “UMAC:

Fast and secure message authentication,” in Proc. Advances in
Cryptology–CRYPTO, 1999.

464 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 10, NO. 4, DECEMBER 2008

[5] M. Casado, A. Akella, P. Cao, N. Provos, and S. Shenker, “Cookies
along trust-boundaries (CAT): Accurate and deployable flood protection,”
Usenix SRUTI’06: 2nd Workshop on Steps to Reducing Unwanted Traffic
on the Internet, 2006.

[6] CERT/CC, “TCP SYN flooding and IP spoofing attacks,” CERT Advisory
CA-1996-21, Sept. 1996.

[7] Check Point Software Technologies Ltd. (Aug. 2005). Stateful Inspection
Technology. Check Point Tech Note. [Online]. Available: http://checkpoi
nt.com/products/downloads/Stateful_Inspection.pdf.

[8] J. Han, D. Watson, and F. Jahanian, “An experimental study of Internet
path diversity,” IEEE Trans. Dependable and Secure Computing, vol. 3,
no. 4, pp.273–288, Oct.–Dec. 2006.

[9] Y. He, M. Faloutsos, and S. Krishnamurthy, “Quantifying routing asym-
metry in the Internet at the AS level,” in Proc. IEEE GLOBECOM, 2004.

[10] Y. He, M. Faloutsos, S. Krishnamurthy, and B. Huffaker, “On routing
asymmetry in the Internet,” in Proc. IEEE GLOBECOM, 2005.

[11] S. Ioannidis, A. Keromytis, S. Bellovin, and J. Smith, “Implementing a
distributed firewall,” in Proc. ACM CCS, 2000.

[12] J. Johnson. (June 2002). BGP Is A Reachability Protocol. A NANOG Pre-
sentation. [Online]. Available: http://www.nanog.org/mtg-0206/ppt/jerm
2/.

[13] J. Kim, S. Bahk, and H. Lee, “A connection management protocol for
stateful inspection firewalls in multi-homed networks,” in Proc. IEEE ICC,
June 2004.

[14] Stonesoft. (Oct. 2001). Multi-Link Technology. [Online]. Available: http://
www.stonesoft.com/products/whitepapers.

[15] Netfilter Homepage. [Online]. Available: http://www.netfilter.org.
[16] R. Russel and H. Welte, Linux netfilter Hacking HOWTO, June 2002.
[17] Nmap Homepage. [Online]. Available: http://www.insecure.org/nmap.
[18] V. Paxson, “End-to-end routing behavior in the Internet,” in Proc. ACM

SIGCOMM, 1996.
[19] V. Paxson, “An analysis of using reflectors for distributed denial-of-service

attacks,” Computer Communications Review 31 (3), July 2000.
[20] K. Park and H. Lee, “On the effectiveness of probabilistic packet marking

for IP traceback under denial of service attack,” in Proc. IEEE INFOCOM,
Apr. 2001, pp.338–347.

[21] K. Park and H. Lee, “On the effectiveness of route-based packet filter-
ing for distributed DoS attack prevention in power-law internets,” in Proc.
ACM SIGCOMM, Aug. 2001, pp.15–26.

[22] J. Postel, Transmission Control Protocol, STD 7, RFC 793, Sept. 1981.
[23] R. Braden, “Requirements for Internet hosts–communication layers,” STD

3, RFC 1122, Oct. 1989.
[24] A. Rijsinghani, “Computation of the Internet checksum via incremental

update,” RFC 1624, May 1994.
[25] G. Rooij, “Real stateful TCP packet filtering in IP filter,” 10th USENIX

Security Symposium invited talk, Aug. 2001.
[26] Q. Vohra and E. Chen, “BGP support for four-octet AS number space,”

Work in progress, Internet Draft draft-ietf-idr-as4bytes-13.txt, Feb. 2007.
[27] D. Vukadinovic, P. Huang, and T. Erlebach, “A spectral analysis of the

Internet topology,” Technical Report ETH-TIK-NR 118, 2001.
[28] D. Welch-Abernathy, Essential Check Point FireWall-1, Addison-Wesley

Publishers, Jan. 2002.
[29] G. Wright and W. Stevens, TCP/IP Illustrated, Volume 2: The Implemen-

tation, Addison-Wesley, 1995.

Jin-Ho Kim received the B.S. degree in electrical en-
gineering from Seoul National University in 1997, and
the M.S. and Ph.D. degrees in electrical engineering
and computer science from Seoul National University
in 1999 and 2004, respectively. He is a software en-
gineer at Google. Prior to joining Google, he was a
senior engineer at Samsung Electronics from 2004 to
2007. His research interests include internet proto-
cols, architecture, and network security. He is a mem-
ber of the IEEE.

Heejo Lee is currently an Associate Professor at the
Division of Computer & Communication Engineer-
ing, Korea University, Seoul, Korea. Before joining
Korea University, he was at AhnLab, Inc. as a CTO
from 2001 to 2003. From 2000 to 2001, he was a
postdoc at the Department of Computer Sciences and
the security center CERIAS, Purdue University. He
received his B.S., M.S., and Ph.D. degrees in Com-
puter Science and Engineering from POSTECH, Po-
hang, Korea. Dr. Lee serves as an editor of Journal
of Communications and Networks. He has been an

advisory member of Korea Information Security Agency and Korea Supreme
Prosecutor’s Office. As well, he served as an advisor for constructing the Nat’l
CERT in the Philippines (2006), the consultation of Cyber Security in Uzbek-
istan (2007).

Saewoong Bahk received B.S. and M.S. degrees in
Electrical Engineering from Seoul National Univer-
sity in 1984 and 1986, respectively, and the Ph.D.
degree from the University of Pennsylvania in 1991.
From 1991 through 1994 he was with AT&T Bell
Laboratories as a member of technical staff where he
worked for AT&T network management. In 1994, he
joined the school of electrical engineering at Seoul
National University and currently serves as a Profes-
sor. He has been serving as TPC members for vari-
ous conferences including IEEE ICC, GLOBECOM,

INFOCOM, PIMRC, WCNC, etc. He is on the editorial board of Journal of
Communications and Networks (JCN) and editor-in-chief of KICS Journal. His
areas of interests include performance analysis of communication networks and
network security. He is an IEEE Senior Member and a Member of Whos Who
Professional in Science and Engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

