
Hidden Bot Detection by Tracing Non-human
Generated Traffic at the Zombie Host

Jonghoon Kwon, Jehyun Lee, and Heejo Lee

Division of Computer and Communication Engineering, Korea University
{signalnine, arondit, heejo}@korea.ac.kr

Abstract. Defeating botnet is the key to secure Internet. A lot of cyber
attacks are launched by botnets including DDoS, spamming, click frauds
and information thefts. Despite of numerous methods have been pro-
posed to detect botnets, botnet detection is still a challenging issue, as
adversaries are constantly improving bots to write them stealthier. Ex-
isting anomaly-based detection mechanisms, particularly network-based
approaches, are not sufficient to defend sophisticated botnets since they
are too heavy or generate non-negligible amount of false alarms. As well,
tracing attack sources is hardly achieved by existing mechanisms due
to the pervasive use of source concealment techniques, such as an IP
spoofing and a malicious proxy. In this paper, we propose a host-based
mechanism to detect bots at the attack source. We monitor non-human
generated attack traffics and trace their corresponding processes. The
proposed mechanism effectively detects malicious bots irrespective of
their structural characteristics. It can protect networks and system re-
sources by shutting down attack traffics at the attack source. We eval-
uate our mechanism with eight real-life bot codes that have distinctive
architectures, protocols and attack modules. In experimental results, our
mechanism effectively detects bot processes in around one second after
launching flood attacks or sending spam mails, while no false alarm is
generated.

1 Introduction

A botnet is a network of infected machines intended to commit malicious activ-
ities. They have been used for many kinds of cyber crimes, such as distributed
denial-of-service attacks, mass spamming, click frauds and sensitive information
thefts [1] [2]. Once a machine is infected, it participates in a botnet to launch
malicious attacks and to create other victims without users’ awareness: It may
lead legitimate users to potential attackers.

Given the importance of the problem, many network-based botnet detec-
tion mechanisms have been proposed to thwart botnet threats. Even though the
mechanisms are helpful, botnet still run rampant. While the detection mecha-
nisms are improving, the bot writers are constantly developing their bots stealth-
ier to hide abnormal behaviors. Early botnets normally construct centralized
structures using an IRC protocol to receive commands from an owner of the
botnet, i.e., botmaster. Recent botnets, however, are becoming more intelligent
with various structural features: various protocols (HTTP [3], peer-to-peer [4]

2

and customized protocol [5]) and architectures (centralized, decentralized, and
hybrid structures). Moreover, dividing a botnet into several small groups with
multiple C&C (Command and Control) servers and encrypting their communica-
tions make it difficult to detect the botnets as well. Particularly, the mechanisms
are hard to trace an origin of compromised machines, since the botnets can hide
their locations by utilizing IP spoofing, malicious proxy server and NAT-boxes.

In this paper, we propose a host-based bot detection mechanism. Our mech-
anism focuses on bot attacks (e.g., DDoS attacks and spam mailing) since they
are the common behaviors of botnets irrespective of bot types, sizes, etc. Thus
we detect the origin of attacks, particularly, the bot processes; The proposed
mechanism provides network and system resource protection immediately by
shutting down malicious traffics at the attack source. The contribution of our
mechanism is threefold: 1) high detection accuracy, 2) attack origin trace, and
3) early detection.

We first define user interactions and bot attacks to distinguish bots and
benign processes. The user interactions are communications that include requests
by human and progress reports by computer. The interactions decide whether
a task is performed by human requests. Then, we monitor the user interactions
and network traffics to detect bot attacks in real time. If attack traffics occur
in a host without any user interaction, we regard it as a bot attack and trace
an involved process. Finally, we find the bot process by analyzing correlations
between API calls and attack traffic.

In experiments, we evaluate the efficiency of our basic concept, attack anal-
ysis, and bot detection with the prototype of our detection mechanism. The
experiments perform with respect to eight real-life bot codes that have distinct
architectures, protocols and attack modules. As the results, the bots are accu-
rately detected in around one second after launching attacks. Also, our mecha-
nism detects real bots irrespective of their structural characteristics in a timely
manner.

2 Background

In this section, we will introduce previous studies to detect botnets based on
network-based, and host-based approaches. The motivation of our research will
be discussed in regard with botnet improvements.

2.1 Related Work

Network-based Approaches Several researchers have proposed network-based
mechanisms with different approaches. Binkley et al . [6] propose an anomaly-
based botnet detection algorithm, which combines IRC statistics and TCP work
weight. Rishi [7] uses a signature-based botnet detection scheme with the simi-
larity of IRC bot nickname patterns. Even these works are useful for IRC-based
botnet detection, it is difficult to adopt other protocols. Zhuang et al. [8] develop
a mechanism to gain botnet membership using traces of spam emails. They in-
vestigate bots participating from Hotmail services using spam campaigns. This

3

study is also useful to detect and estimate bots. However, The mechanisms can-
not decide whether attack sources are correct due to the host concealments.

Beside, meaningful approaches have proposed such as BotHunter, BotSnif-
fer and BotMiner. BotHunter [9] models a botnet infection dialog model with
high level abstract. It then detects botnets using IDS-driven dialog correlation
according to the bot infection dialog model. BotSniffer [10] utilizes a detection
method referred to spatial-temporal correlation. It assumes that all botnets tend
to communicate with a highly synchronized fashion. BotMiner [11] presents a
botnet detection mechanism which clusters botnet communication and activity
traffic. It applies clustering algorithms and performs cross-plane correlation to
detect botnets. In spite of the improvements of detection mechanisms, they have
limitations. The mechanisms need a long monitoring time and unforged large-
scale data to detect abnormal behaviors; however, real botnets communicates
silently, divides into several small groups, and forges their information.

Host-based approaches BotSwat [12] is one of the impressive researches. It
traces all input data through networks and user inputs using a taint propagation
trace technique to uncover botnet commands. This work is designed to detect
botnets irrespective of their architectures. Nevertheless, it has limitations such
as false alarms and high system overheads due to the taint propagation trace.
BotTracer [13] detects three phases of botnets with the assistance of the virtual
machine techniques. It also has false alarms, since the three phases of bot-like
activities can be occurred by benign processes as well.

KolBitsch et al. [14] propose a malware detection method that uses behavior
graphs. They redefine a malware API call sequence as a behavior graph and
detect metamorphic malwares with high accuracy. However, it cannot work when
malwares change their entire behavior sequences.

Not-a-bot [15] guarantees user availability from bot attacks. It distinguishes
user requests from automatically generated request using Trusted Platform Mod-
ule (TPM) and offers attesters to user requests. Although it can certify user
availabilities, we cannot assume that other requests without attesters are mali-
cious behaviors. Also, the attesters can be abused another malicious attack such
as DDoS attacks with fake attesters.

2.2 Motivation

In spite of the numerous research efforts, botnet problems are most significant
security issues, because bot authors constantly improve their bot codes to evade
detection mechanisms. Major improvements of botnet technologies consists of
following features.

– Protocol changes - HTTP and P2P-based botnets take possessions of tra-
ditional IRC botnets [3]. Moreover, customized protocols and hybrid types
are adopted as alternative protocols. These changes offer the chance to evade
botnet detection methods depending on specific protocol characteristics.

– Communication encryption - Current botnets basically adopt encryption
techniques to their communications. Encryption can keep the botnets safe
by evading communication analysis.

4

– Intermittent communications - According to Botlab [5], recent bot-
nets communicate with their C&C once for two days on average. Especially,
Rustock contacts to C&C only once for 164 days. Such intermittent com-
munication patterns also make the botnets difficult to be revealed. In the
worst case, adversaries can exclude their communications by hardcoding the
commands in a bot binary.

– Botnet subgrouping - Adversaries can divide an entire botnet into small
groups using multiple C&C servers. Even defenders reveal the subset of bot-
net, other groups of a botnet are still available.

– Source concealment - A recent report represents many of botnets spoof
IP source addresses to hide their actual locations. Not only the IP spoof-
ing techniques, but also malicious proxy servers and NAT-boxes can evade
backtracking of their real locations.

The botnet phenomenon is getting harder to detect. Especially, the previous
researches are difficult to provide expeditious responses against botnet threats,
since they commonly need a long monitoring time, wide monitoring area and
unforged source information. We thus propose a host-based botnet detection
scheme to thwart the intelligent botnets with next three basic considerations.

– High detection accuracy - Botnets are continuously changing their behav-
ior features. We thus have to use constant and general features to improve
detection accuracy.

– Attack origin trace - In current network infrastructures, botnets can easily
hide their actual locations. It may lead not only inefficient responses, but
also wrong responses. We have to trace real locations of the bots.

– Early detection - Botnets can bring huge damages just in few seconds.
Therefore, the early detection is one of the major considerations in botnet
detection.

In the next section, we analyze and arrange the characteristics of bots for
detecting bots in a host machine.

3 Basic concept

Two properties can distinguish between bots and benign processes in a host
machine. The first property is whether or not a behavior is intended by a user,
and the second is whether or not the behavior attempts malicious attacks. We
address more details of the properties in this section.

3.1 User Interaction

A bot is designed to serve its master. Once infected with a bot, the infected
host works according to the masters’ commands and tries to hide the infection
from legitimate users; Most bots do not need any interactive functionality with
a user to avert the user suspicion. Bayer et al. [16] describe that common
malicious code operates without the user intention. About 33.26% of codes has

5

a Graphical User Interface, and 97.8% of this consist of simple message boxes
to deflect users’ doubt. This analysis shows that bots operate without any user
intention; they can be classified as “non-human generated”. We define such an
interactive relationship between human and host as “User Interaction” that can
be classified as follows:

– Request Interaction (UIRQ) : When humans use a computer, they execute
various tasks using physical input devices such as a keyboard, a mouse,
a touch screen and a microphone. The physical input devices deliver user
requests to each programs by generating predefined input interrupt events.
Such request activities by human can be classified as request interaction. Our
mechanism considers keyboard and mouse events as request interactions.

– Report Interaction (UIRP) : Any event that informs the program status
to the user are classified as a report interaction. Common programs period-
ically report their information such as a task progress which is caused, even
resolved, by a user request. In this paper, we define several Windows events
that are delivered to GUI as report interactions.

Table 1. Program classification by user interaction

UIRQ UIRP Classification Related Activity Dangerous

Web surfing
User Document work

O O Interactive Sending mail Low
Service Playing game

Multimedia

O X
Triggered

History logging MediumService

X O
Report Auto update

LowService Reserved work

Background
Launching DDoS

X X
Service

Spamming High
Information theft

We classify the system behaviors based on user interaction. Table 1 shows
our classification results. Specific interrelation between a user interaction and a
program will be discussed in section 5.1. We use the user interaction methods
as a first criterion to trace the bots.

3.2 Bot Attacks

The second property to distinguish between bots and normal is whether its
task lies on maliciousness. We define bot attacks and find bot processes that
launch the attacks. Several researches report major bot attacks; TrendMicro [17],
CISCO [18] and Liu et al. [19] present that the major threats involving bots are
performing DDoS and mass spamming. Symantec [3] and ArborNetworks [20]

6

report that over 90% of DDoS attacks and spam mail are generated by botnets.
Hence, we focus on the attacks as major bot attacks. We discuss each attack
characteristic and detection approach as follows:

– DDoS attacks : A DDoS attack is an attempt to make a target system
or network resource unavailable to legitimate users. DDoS attacks can be
performed with various protocols such as TCP, UDP, ICMP, ARP flood.
ArborNetwork [20] present that DDoS attacks pose the largest operational
problems amongst the threats on the Internet. Such DDoS attacks have a
distinctive feature that can be observed in a host machine. It is the destruc-
tion of packet symmetry between request and reply packets by flooding or
IP spoofing. Nevertheless, common legitimate network traffic keeps packet
symmetry. Therefore, we decide to use the analysis of packet symmetry as a
second detection criterion.

– Spam emails : According to some estimates [3] [21], botnets are responsible
for the distribution of approximately 90% of all spam emails. Moreover, a
considerable number of recent bots has been propagated using spam relay.
Symantec shows that about 30% of malicious codes is propagated by spam
email attachments, and it ranks as the second popular propagation method.
Botlab [5] also estimates spamming statistics with the vast quantities of
spam emails that bots transmit. It shows that bots can generate spam emails
continuously. Srizbi and MegaD bots send out more than 1,500 messages
per minute, Grum, Kraken and Pushdo bots also generate about 300 spam
emails per minute. Despite the slow and constant rate of spam emails sending
by Rustock and Storm bots, the quantity of their spam email seems to be
massive, since the average rate of a legitimate user is only three per day. We
monitor the quantity and periodicity of the mail traffic, which is generated
without user interactions, to detect spam relay.

4 Design Overview

In this section, we explain the details of our detection mechanism. Our detection
system implemented as a prototype can be divided as two parts; information
gathering and bot detection. Information gathering consist of three modules:
Network Monitor (M1), API Monitor (M2) and User Interaction Monitor (M3).
Bot detection part that organized with two modules: Malicious Network Activity
Analyzer (M4) and Related Host Activity Analyzer (M5), analyzes monitoring
results for detecting bot attacks and processes. Fig. 1 presents our algorithm
with the five modules.

- M1 (Network Monitor) : This module records all communication ten-
dencies in accordance with the features of a packet P , occurrence time T and
process ID PID to a packet information table PT . When a new packet is ob-
served in the host, we first extract features of the packet and occurrence time.
The features consist of five tuples: source address, source port, destination ad-
dress, destination port and protocol (according to the incoming or outgoing, P

can be presented as P̌ and P̂). After that, we find P from PT . If P already
exists in PT , the packet count in time slot Tn is incremented by one. If not, we

7

Start

Init. default setting

Packet Monitoring

New packet

triggered?

Get PacketInfo P

Get PID

Get CurrentTime T

Update PacketTable

PT{(P, PID), Tn}++
PT

API call Monitoring

New API triggered?

Get PID

Get CurrentTime T

Update API Table

AT{PID, Tn}++

AT

User Interaction

Monitoring

New UI triggered?

Get PID

Get CurrentTime T

Update UIT info.

Set UITPID = Tn

UIT

Outgoing packet?

Get user interaction

method UIPID

Is it attack?

Φ > 2

Get packet symmetry S

Get spam decision S

Correlation Analysis

ρ{PID, P} = Corr(ATPID, PTP)

for PID

ρ{PID, P} 1

PID is benign PID is detected as bot

END

Get attack decision Φ

Y

Y

Y

Y Y Y

N

N

N

N N N

M1: Network Monitor M2: API Monitor M3: User Interaction Monitor

M4: Malicious Network Activity Analyzer M5: Malicious Process Activity Analyzer

Fig. 1. Bot attack and process detection algorithm.

arrange a new slot for P with the time slot and set the packet count to one.
PID is optional information for user interaction check. A sample constitution
of PT is illustrated as follows.

- M2 (API Monitor) : We monitor network API function calls by means
of an API hooking technique to extract internal activities related with attack
traffic. Foremost, we inject a hook DLL to all running processes in the host, us-
ing a System-wide Windows Hook technique. Meanwhile, API addresses on the
Import Address Table (IAT) are overwritten; thus, the API calls are redirected
to our hook DLL. The hook DLL logs API types, times and PID, and redirects

8

to original API calls. Monitored API functions which have responsibility for net-
work traffic are chosen by extracting the MSDN library. As a results, 37 API
calls are selected, such as send(), sendto(), InternetConnction(), InternetWrite-
File() and HttpSendRequestEx(). When the API monitors are triggered, API call
counts in the API information table AT are updated with PID and T . AT is
referred by M5 to reveal bot processes which generate attack traffic.

- M3 (User Interaction Monitor) : User interactions for each process
are monitored. We hook the I/O events for the request interaction and Windows
events for the report interaction. Furthermore, we logged the latest time of the
event occurrence to the user interaction table UIT with PID. UIT information
provide a decision whether or not a packet is generated by a user in M4.

- M4 (Malicious Network Activity Analyzer) : This provides an anal-
ysis to detect bot attacks. When an outgoing packet is generated, it runs first
analysis to determine whether the packet was generated by human requests. At
this point, we have to answer that; how long time interval between user interac-
tion and packet generation can be regarded as a valid time interval for human
intention? When a task starts after 10 seconds from a user request, we cannot
be sure that the task is intended by a user. We define ∆t = 1sec. as the valid
time interval for two reasons: 1) experience shows that current computing per-
formance completes all user requests within a few micro seconds. 2) common
programs are designed to report their states every second. Therefore, we define
the user interaction coefficient, as follows:

UIP =

{
1 if CurrentTime-LastUITime < ∆t

0 Otherwise.

The second analysis is an attack decision. Since we focused on the major bot
attacks such as DDoS and spam, we first define a packet symmetry test to analyze
packet flooding. Kreibich et al. [22] introduced the packet symmetry metric with
ln(Outgoing packets+1

Incoming packets+1). However, the metric can exaggerate the packet symmetry
for lower-rate transmission by +1 operation. Moreover, if the monitoring time is
too short, the metric leads miscalculation due to the variation of response time.
To solve the problems, we construct a new packet symmetry metric with simple
modification. A following equation represents the packet symmetry metric S.

S = ln[
max(

∑m
i=n PT{P̂ , Ti} × UIP , 1)

max(
∑m

i=n PT{P̌ , Ti}, 1)
]

From S, if flood packets are generated, PT{P̂ , Ti} will be rapidly increased
and PT{P̌ , Ti} will be stable. S therefore will increase with logarithmic scale.
Conversely, S will become zero in the case of perfectly balanced traffic. Based
on this difference, we determine the threshold of packet symmetry as 2. It cor-
responds to an nearly 8:1 (outgoing:incoming) ratio of packet symmetry within
the time unit n to m. Such a liberal ratio prevents the false positive caused by
huge data transmission.

Another attack decision test is for spam packets. In order to send a single
mail to a single victim, a system has to transmit at least eight packets: SYN,
EHLO, AUTH LOGIN, MAIL FROM, RCPT TO, DATA, DATA Fragment,

9

and QUIT. If the packets are transmitted without user interaction, it means
that unrequested mail is delivered to someone. We define a spam decision metric
S′ as follows:

S′ = ln[max(
n∑

i=m

PT{P̂ , Ti} × UIP , 1)]

Finally, based on the two attack decision tests, we derive Φ for bot attack
decision. If Φ is greater than 2, the packet will be classified as a bot attack.

Φ =

{
S′ if P.dport = 25
S Otherwise.

- M5 (Related Process Activity Analyzer) : When a packet is identi-
fied as an attack in M4, we have to determine its responsible bot process. M5
conducts bot process detection through analysis of host activities. An easy and
simple way to trace a process generating packets is the use of the port bind-
ing table. Unfortunately, malicious processes are easily able to hide their port
binding information in many cases. Bayer et al. [16] state that only 1.88% of
malwares binds ports, even though 45.74% of malwares uses TCP traffic and
27.34% uses UDP traffic. Consequently, we have to find another way for pro-
cess tracing. In our work, an analysis of correlation between the malicious traffic
and the APIs performs bot process detection. We use the Pearson Correlation
Coefficient. Pearson’s equation is represented as:

ρX,Y = corr(X,Y) =
cov(X, Y)

σXσY
=

E[(X − µX)(Y − µY)]
σXσY

X, Y are described to be:

X = AT{PID, Tn}, Y = PT{(P, PID), Tn}
The correlation result is a real number in [-1, 1], and it means as follows:

ρX,Y =





1 positive correlated
0 uncorrelated
−1 negative correlated

The correlation result tends towards one, when X and Y are intensely related.

5 Experimental Results

In order to evaluate an effectiveness of our approach, we perform a series of
experiments with respect to real bot samples. In the first experiment, we show
an efficiency of our basic concept. The second experiment shows detection results
for various bot attacks. At last, we evaluate an efficiency of our mechanism with
eight real-world bot codes which have distinct structures, protocols and attack
modules. All experiments are based on the Windows XP machines with a 2.8GHz
i5 CPU, 4GB main memory and 100Mbps bandwidth.

10

5.1 Evaluation for User Interaction

We first observe user interactions by operating bots and benign processes to an-
alyze relationships between user and processes. In particular, benign processes
that offered automated network services are evaluated in comparison to the bots.
After execution, generated traffic and user interactions are traced and logged
without any external interferences. Fig. 2 represents the results of benign activ-
ities generated by normal processes. Fig. 2(a) shows a Web page loading through
IE (Internet Explorer). The IE periodically generates reconnect messages to gain
new information such as real-time topics top 10, and the user interaction as well.
Fig. 2(b) is the observation results for the mail traffic automatically generated
by the Outlook Express. The traffic is transmitted by the resolved send/receive
function. As we can see, the Outlook Express also generates the user interactions
to report task progresses, despite the user not being interested in. Fig. 2(c) and
2(d) illustrate mass size file transfers based on FTP and P2P. They also generate
user interactions during the tasks.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60

0

1

N
um

be
r

of
 P

ac
ke

ts

U
se

r
In

te
ra

ct
io

n

Elapsed Time (second)

IE(www.google.co.kr)
UIp

(a) Web connection

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60

0

1

N
um

be
r

of
 P

ac
ke

ts

U
se

r
In

te
ra

ct
io

n

Elapsed Time (second)

Outlook traffic
UIp

(b) Mail transfer

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

0

1

N
um

be
r

of
 P

ac
ke

ts

U
se

r
In

te
ra

ct
io

n

Elapsed Time (second)

P2P Traffic
UIp

(c) FTP file transfer

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50 60

0

1

N
um

be
r

of
 P

ac
ke

ts

U
se

r
In

te
ra

ct
io

n

Elapsed Time (second)

FTP Traffic
UIp

(d) P2P file transfer

Fig. 2. User interaction related to benign activities

11

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60
 0

 1
N

um
be

r
of

 P
ac

ke
ts

U
se

r
In

te
ra

ct
io

n

Elapsed Time (second)

TCP flood
UDP flood
ARP flood

ICMP flood
UIp

(a) DDoS attacks

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50
 0

 1

N
um

be
r

of
 P

ac
ke

ts

U
se

r
In

te
ra

ct
io

n

Elapsed Time (second)

Spam
UIp

(b) Spam attack

Fig. 3. User interaction related to bot activities

Fig. 3 indicates user interactions and traffic when specific attacks are launched
by bots. The first one shows results of various flood attack cases, and second one
shows spam email attack. When the bots launch the attacks, we cannot observed
any user interactions.

5.2 Bot Attack Detection

We decide to verify a performance of the attack decision method. We perform
TCP, UDP, ICMP and ARP flooding three times each, and also generate various
benign traffic to compare with the attacks. Fig. 4 indicates the distribution of
the packet symmetry S for the each experiments during 20 time units.

– TCP flood : In case of normal traffic, all packets show reasonable symmetry
rates in their communications. Although the packets for file transfer show

(a) TCP symmetry (b) UDP symmetry

Fig. 4. Cumulative distribution of packet symmetry S

12

apprehensive rates, their distribution constantly reside in a normal range.
Nevertheless, all S of the TCP flood packets exceed our threshold 2 within
brief time, and continuously increase.

– UDP flood : Despite UDP not guaranteeing packet symmetry basically,
common network services preserve UDP packet equilibrium. We can con-
firm this for VoIP services, online-games, P2P file sharing services and DNS
queries. In experience, all UDP based services have S converging to zero.
However, in the case of UDP flood packets are all exceed the threshold.

– ICMP and ARP flood : ICMP and ARP flood cases also clearly confirm
our assumption. All normal request packets can receive a corresponding reply
packet, whereas flood packets cannot.

As we can see, benign packets and flood packets show completely polarized
results. According to the results, we can classify the flood attacks irrespective of
volumes and types without false alarm. The attack detection results prove that
our packet symmetry threshold 2 works well.

Fig. 5. Cumulative distribution of spam attack decision S’

Fig. 5. represents the attack decision results S′ for spam email packets. Bots
continuously connect to a large number of mail servers and tries to transfer a
huge number of spam emails. From this, the bots generate the hundred of SMTP
packets every second. There is no human intention, of course. Consequently, S′

immediately exceed the attack decision threshold 2, and we can determine the
packets as spam email attacks.

5.3 Bot Process Detection

Our detection scheme for bot process detection is based on the correlation be-
tween API calls and attack packets pattern. This approach can lead incorrect
results according to the point of view of analysis time. If we only considers time
duration after launching attacks, there exist potential false positives such as
processes that generate mass traffic in same time period. Therefore, we decide
to analyze not only a time period during the attack, but also a period before

13

(a) Flood packets

300

250

200

150

100

50

 0 10 20 30 40 50

60

50

40

30

20

10

N
um

be
r

of
 P

ac
ke

ts

N
um

be
r

of
 A

PI
 c

al
ls

Elapsed Time (100 millisecond)

Hellbot APIs
SMTP packets

(b) SMTP packet

Fig. 6. Correlation between attack packets and API calls

the attack commenced. Fig. 6(a) shows that the number of flood packets for
two seconds (before and after one second for each) and the number of API calls
generated from various processes at the same time.

The SDbot exhibits API call patterns that highly correspond to flood packets,
while other processes do not. The datasets for detection are the number of API
calls and packets recorded every 100 ms: The range of time unit can be one
second, 100 ms and 10 ms. We determine 100 ms to be the optimal value based
on experience, since 10 ms is too short to guarantee the relationship between a
API call and packet due to processing time. One second is also not an appropriate
time unit, because we need a long observation period for correlation analysis.
From this, we use total 20 time units (two seconds) for correlation analysis and
trigger the analysis in one second after the attack perception. Table 2 shows that
the results of correlation analysis. The SDbot is detected with high correlation
and the other processes are accurately classified as benign processes. Fig. 6(b)
shows that SMTP traffic and the spamming bots’ APIs. The spam attack also
shows high correspondence, despite the number of API calls being much greater
than the number of packets. The Hellbot is detected with a correlation result
0.990812.

Table 3 shows that the final detection results. In our experience, the bots
are accurately detected in around one second after launching attacks. The re-
sults show that our mechanism can detect bots irrespective of their architecture,
protocols, and attack types in reasonable time.

Table 2. Correlation analysis results

Process ρPID,P Result Process ρPID,P Result

SDbot 0.926548 Malicious VoIP client -0.06426 Normal
FTP client 0.191231 Normal Internet Explorer -0.16704 Normal
P2P client 0.022686 Normal Media player 0.315773 Normal

14

Table 3. Bot process detection results

Bot type Structure Protocol Attack Type ρPID,P Result

Kraken Centralize HTTP Spamming 0.837 Malicious
Rustock Centralize HTTP Spamming 0.772 Malicious
Storm Decentralize P2P UDP flood 0.992 Malicious

TCP flood 0.926 Malicious
SDbot Centralize IRC UDP flood 0.981 Malicious

ICMP flood 0.901 Malicious
TCP flood 0.897 Malicious

Agobot Centralize IRC UDP flood 0.933 Malicious
ICMP flood 0.912 Malicious

Hellbot Centralize IRC
TCP flood 0.943 Malicious
Spamming 0.991 Malicious
TCP flood 0.860 Malicious

Rbot Centralize IRC UDP flood 0.911 Malicious
ICMP flood 0.948 Malicious

Xbot Centralize IRC ARP flood 0.812 Malicious

6 Conclusion

Despite the significant research efforts invested to detect bots, it is still challeng-
ing, since bots rapidly evolve with new techniques. In this paper, we propose
a new effective scheme to detect running bots based on bot attacks and their
corresponding activities in the attack source. Our algorithm cannot be easily
evaded, because the attack activities are the only way to gain profits using bots.
The evaluation shows effectiveness of our mechanism against real bots. Even if
some bots bind itself to benign programs and operate according to the programs
interaction, attackers are limited on the timing critical functionalities. Future
work will focus on applying our approach for other attacks. Our approach can
be adapted to detection of various threats based on their attack definition. We
also plan to experiment on numerous bots and other malwares.

7 Acknowledgments

This research was sponsored in part by the Seoul R&BD Program(WR080951)
and the Mid-career Researcher Program through NRF grant funded by the
MEST[2010-0027793]. Additionally, this research was supported by the MKE,
Korea, under the ITRC support program supervised by the NIPA(NIPA-2010-
C1090-1031-0005).

References

1. E. Cooke, F. Jahanian, and D. McPherson : The zombie roundup: Understanding,
detecting, and disrupting botnets, in Proceedings of USENIX Workshop on Steps
to Reducing Unwanted Traffic on the Internet(SRUTI’05), pp. 170-179, Jul. 2005.

2. The Honeynet Project : Know your enemy: Tracking botnets, 2005. http://www.
honeynet.org/papers/bots.

15

3. Symantec : Symantec global internet security threat report, Apr. 2010.
4. J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, and D. Dagon : Peer-to-

peer botnets: Overview and case study, in Usenix Workshop on Hot Topics in
Understanding Botnets(HotBots’07), Apr. 2007.

5. J. P. John, A. Moshchuk, S. D. Gribble, and A. Krishnamurthy : Studying spam-
ming botnets using botlab, in Proceedings of the 6th USENIX symphsium on
Networked System Design and Implementation(NSDI’09), pp. 291-306, Apr. 2009.

6. J. R. Binkley and S. Singh : An algorithm for anomaly-based botnet detection,
in The 2nd Workshop on Steps to Reducing Unwanted Traffic on the Inter-
net(SRUTI’06), pp. 43-48, Jun. 2006.

7. J. Goebel and T. Holz : Rishi: Identify bot contaminated hosts by irc nickname
evaluation, in Proceedings of the 1st Workshop on Hot Topics in Understanding
Botnets(HotBots’07), Apr. 2007.

8. L. Zhuang, J. Dunagan, D. R. Simon, H. J. Wang, and J. D. Tygar : Characterizing
botnets from email spam records, in Proceedings of the 6th USENIX symposium
on Networked System Design and Implementation(NSDI’09), Apr. 2008.

9. G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee :Bothunter: Detecting
malware infection through ids-driven dialog correlation, in Proceedings of the 16th
USENIX Security Symposium(Security’07), pp. 167-182, Aug. 2007.

10. G. Gu, J. Zhang, andW. Lee :Botsniffer: Detecting botnet command and control
channels in network traffic, in Proceedings of the 15th Annual Network and Dis-
tributed System Security Symposium(NDSS’08), Feb. 2008.

11. G. Gu, R. Perdisci, J. Zhang, and W. Lee :Botminer: Clustering analysis of network
traffic for protocol- and structure-independent botnet detection, in Proceedings of
the 17th USENIX Security Symposium(Security’08), pp. 139-154, Jul. 2008.

12. E. Stinson and J. C. Mitchell : Characterizing bots remote control behavior, in
Proceedings of the 4th international conference on Detection of Intrusions and
Malware, and Vulnerability Assessment(DIMVA’07), pp. 89-108, Jul. 2007.

13. L. Liu, S. Chen, G. Yan, and Z. Zhang :Bottracer: Executionbased bot-like malware
detection, in Proceedings of the 11th Information Security Conference(ISC’08), pp.
97-113, Sep. 2008.

14. C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou, and X. Wang :
Effective and efficient malware detection at the end host, in Proceedings of the
18th USENIX Security Symposium, pp. 351-366, Aug. 2009.

15. R. Gummadi, H. Balakrishnan, P. Maniatis, and S. Ratnasamy :Not-a-bot: Im-
proving service availability in the face of botnet attacks, in Proceedings of the 1st
Usenix Workshop on Large-Scale Exploits and Emergent Threats(LEET’08), pp.
307-320, Apr. 2008.

16. U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel : A view on current
malware behaviors, in USENIX Workshop on Large-Scale Exploits and Emergent
Threats(LEET’09), Apr. 2009.

17. Trend Micro : Taxonomy of botnet threats, technical report, Nov. 2006.
18. CISCO : Botnets: The new threat landscape, White Paper, Dec. 2007.
19. J. Liu, Y. Xiao, K. Ghaboosi, H. Deng, and J. Zhang : Botnet: Classification, at-

tacks, detection, tracing, and preventive measures, EURASIP Journal on Wireless
Communication and Networking, vol. 2009, Article ID 692654, 2009.

20. D. McPherson, R. Dobbins, M. Hollyman, C. Labovitz, and J. Nazario : Worldwide
infrastructure security report, 2009.

21. Georgia Tech. Information Security Center :Emerging cyber threats report, 2009.
22. C. Kreibich, A. Warfield, J. Crowcroft, S. Hand, and I. Pratt. Using packet sym-

metry to curtail malicious traffic. ACM HotNets: Proceedings from the Fourth
Workshop on Hot Topics in Networks, Dec. 2005.

