
PROBE: A Process Behavior-Based

Host Intrusion Prevention System

Minjin Kwon, Kyoochang Jeong, and Heejo Lee

Department of Computer Science and Engineering,
Korea University, Seoul 136-713, Korea

{mjkwon,kyoochang,heejo}@korea.ac.kr

Abstract. Attacks using vulnerabilities are considered nowadays a se-
vere threat. Thus, a host needs a device that monitors system activities
for malicious behaviors and blocks those activities to protect itself. In this
paper, we introduce PROcess BEhavior (PROBE), which monitors pro-
cesses running on a host to identify abnormal process behaviors. PROBE
makes a process tree using only process creation relationship, and then it
measures each edge weight to determine whether the invocation of each
child process causes an abnormal behavior. PROBE has low processing
overhead when compared with existing intrusion detections which use
sequences of system calls. In the evaluation on a representative set of crit-
ical security vulnerabilities, PROBE shows desirable and practical intru-
sion prevention capabilities estimating that only 5% false-positive and 5%
false-negative. Therefore, PROBE is a heuristic approach that can also
detect unknown attacks, and it is not only light-weight but also accurate.

1 Introduction

According to a variety of attacks, security is a substantial issue in today’s net-
works. Malicious users are attempting enormous methods to successfully disrupt
a target system. Against them, many technologies such as firewalls, anti-virus
programs, and intrusion detection systems (IDSs) have been used to keep net-
works and hosts safe. However, according to the advent of sophisticated attacks,
we nowadays need a new method based on intrusion prevention systems (IPSs)
to protect systems. Even though network-based IPS can block malicious traffic,
some can pass through it [1]. Thus, host-based IPS plays an important role in
the last line of defense.

To defend these attacks, we propose PROcess BEhavior (PROBE) which is
a host-based intrusion prevention system that investigates system processes to
identify abnormal process behaviors. By using it, intrusions which use remote
exploits to infiltrate a system are detected because an attack is behaved out of
common behavior. We present a novel characterization for process sequences of
a system. This characterization is based on two observations: a process is always
executed when a user wants to execute a program, and a process on an operating
system runs in sequence. The previous researches [2,3,4] detect anomalous be-
havior of system programs by inspecting different system call sequences in com-
parison with normal patterns of short sequences of system calls. The approaches

L. Chen, Y. Mu, and W. Susilo (Eds.): ISPEC 2008, LNCS 4991, pp. 203–217, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

204 M. Kwon, K. Jeong, and H. Lee

to the solutions are not practical for preventing the vulnerabilities in the real
world because of system call monitoring complexity. On the other hand, PROBE
is designed to detect major security violations by monitoring just several process
behaviors without tracing every system call triggered by running processes.

This paper’s main contribution lies in detecting unknown attacks and advanc-
ing a practical mechanism for intrusion detection. Our approach detects any
novel intrusions different from normal procedures without prior knowledge of
the attack mechanism. We represent processes’ relationship as a tree, and then
perceive the execution of an abnormal process just by examining a process’s
parent process and its child process. Thus, PROBE has low process monitoring
overhead and it is appropriate for adoption to protect a host from intrusions.

2 Related Work

Intrusion Detection Systems (IDSs) are designed to detect unwanted attack or
manipulation of a computer system. However, they cannot stop traffic, only
identify an attack as it occurs. On the contrary, Intrusion Prevention Systems
(IPSs) not only detect an attack, but also block the attack. Thus, it is considered
as a combination of both an IDS which has the power of detecting attacks and a
firewall which has the power of filtering attacks. Researchers have followed two
main directions in the investigation of techniques to identify attacks: anomaly
detection based IDS and misuse detection based IDS.

Anomaly detection based IDS generates an alert when a behavior deviates far
from the predefined normal behavior. There were studies of intrusion detection
for anomaly detection[2,3,4] using short sequences of system calls of running
processes. While this technique can detect unknown attacks, it unfortunately
generates false-positive1 problem. Thus, most IDS products in the market today
use misuse detection instead of anomaly detection[1].

Misuse detection based IDS contains signature database which has typical
patterns of exploits used by attackers. If the attack signature matches any of
some predefined set of signatures, IDS raises an alarm. Autograph[5] is a Internet
worm signature monitoring system. However, its main drawback is that one
must know the signature of attack to detect intrusion, so it is difficult to detect
unknown, novel attack. Polygraph[6] is a study about the automatic generation of
signatures that match polymorphic worms and the detection of them. To evade
the problem of signature database maintenance, the techniques which detect
malware on the basis of its behaviors are being studied.

Behavior-based Spyware Detection[7] is one of the typical behavior-based mal-
ware detection techniques. While this technique can detect obfuscation transfor-
mations which can easily be evaded by signature-based techniques, it has high
false-positive and false-negative2 as compared with signature-based detection.
1 False-positive represents a legitimate behavior that is incorrectly identified as a ma-

licious behavior.
2 False-negative denotes an abnormal behavior that is incorrectly identified as a legit-

imate behavior.

PROBE: A Process Behavior-Based Host Intrusion Prevention System 205

These detection techniques of IDSs focus on how an attack works, so it de-
tects attacks after a system is already infected by malwares. To stop malicious
behavior before it causes any harm, IPSs, in contrast, focus on what an attack
does—its behavior[1]. Thus, we propose a dynamic detection system, PROBE,
that uses normal and abnormal characteristics of process connection. PROBE
does not require signatures for attacks as with misuse detection, nor monitor-
ing every system calls as previous system call trace studies. Thus, we instead
concentrate on the behavior of the system processes.

3 The PROBE Mechanism

Since it is difficult to find out all vulnerabilities of operating systems and to
patch them, we need a technique that can control abnormal access to a system
by discovering characteristics of process creation. Before we get down to details
of a technique that is based on the characterization of process behavior, we
should examine the execution procedure of normal boot processes closely to use
a control technique which can regulate an abnormal access within boot processes.
The majority of the actual intrusions do not follow normal system operations no
matter which exploit was used [8]. Thus, we will investigate from boot processes
running during the operating system startup, then explain a principle and control
procedures of abnormal processes.

3.1 Windows NT Boot Process

A process is a container for a set of resources used when executing an instance
of a program. As with other operating systems, Microsoft Windows system goes
through an elaborate boot up process. The boot process has a series of sequential
steps since the computer is powered on. By understanding the details of the boot
processes, we can diagnose problems that can arise during a boot. Our objective
is to make our host system safe against any intrusions since the host starts up.
The tracing abnormal behavior of system processes can achieve an execution of
safe system booting and correct booting procedure. Thus, we show the execution
steps of boot support files and the information on what some of the system files
are for. We can represent process execution sequences of an operating system
as a tree design. Figure 1 illustrates process execution sequences of Microsoft
Windows NT system. The sequence of Windows boot processes is all arranged
beforehand until application programs are executed. Application processes will
be corresponded to a leaf node which is a node that has zero child nodes. When
considering the process sequence tree, we can see that the path from a root node
to a leaf node has a regular pattern. If an unauthorized user accesses to a system
using a system’s vulnerabilities, the executed process sequence by the attacker
has a different characteristic from the normal process execution sequence. Thus,
we propose a model which can detect an abnormal execution of a process by
analyzing process execution relationship from a root node to a leaf node using
a process tree.

206 M. Kwon, K. Jeong, and H. Lee

System

ntoskrnl.exe

smss.exe

winlogon.execsrss.exe

lsass.exe userinit.exeservices.exe

explorer.exe•••

•••

< service processes >

< user processes >

Fig. 1. The process tree of Microsoft Windows NT system

3.2 Design

The boot processes are executed in sequence during the booting steps of an oper-
ating system. However, it is possible that an adversary is able to exploit a system
using specific bugs or vulnerabilities such as overflows during a boot. Since an
attacker executes at least one process to invoke an abnormal behavior to over-
whelm a system, a check of whether a process is executed by the operating system
came from a normal process or a non-related process helps prevent attacks such
as an overflowed buffer exploit. Thus, we design a host-based intrusion preven-
tion system beginning with boot processes to execute the system securely. Our
system, PROBE, takes a closer and deeper look at the activity of processes run
on the host, calculates three weights on each edge based on relationship between
a parent process and a child process, and determines acceptance or rejection of a
process using the three weights. Therefore, PROBE protects desktops or servers
by keeping operating systems securely from intrusions.

Process Information. To build a process tree and obtain the characteristics of
each path, we need some information related to processes. PROBE utilizes the
information which is provided by the operating system related to the processes.
A number of tools for viewing processes and process information are available[9]:
the tools included within Windows itself, Windows resource kits, and etc. The
most widely used tool to examine process activity is Task Manager. We arranged
these information into the six categories in Fig. 2.

3.3 Three-Phase PROBE Mechanism

PROBE inspects and detects abnormal behaviors by looking at processes within
a host. To facilitate the understanding the relationship of processes, we present
a process tree that shows parent and child connection between processes. For

PROBE: A Process Behavior-Based Host Intrusion Prevention System 207

 UID, PID, PPID

 STime, CTime, MTime, ATime

 Name, Path, Cmd Line, Description, Company

 Winsock, GDI, Advapi, DirectX

 CPU, Memory, Stroage, Network

 Environment Values

ID

Time

Image

Module

Resource

EnvValue

Fig. 2. Process Information which presents a unique process characteristic that can be
gained from Windows

Tree Builder

Path Checker

Process Controller

Pass Drop

Healthy
Path

Plagued
Path

Path Rule
Process

Information

PID
PPID

- Healthy Path
- Plagued Path

Fig. 3. The architecture of PBOBE that consists of three phases: Tree Builder, Path
Checker, and Process Controller

doing this, PROBE works according to following three phases: Tree Builder, Path
Checker, and Process Controller. We schematized the architecture of PROBE in
Fig. 3.

A process behavior-based host intrusion prevention system starts from creating
a tree structure. Tree Builder creates a process tree using PID and PPID of a pro-
cess. After the process tree is created, Path Checker analyzes each tree path based
on Healthy Path Rule and Plagued Path Rule. First, if the path is not determined
as a Leaf-Node path which is a Plagued Path Rule, the process is a healthy path.
Otherwise it is a suspicious process, so it needs additional steps. If there is a path
which is decided as a healthy path by Healthy Path Rule among plagued paths, it
becomes also a healthy path. Finally, Process Controller manages the process ac-
cording to the prejudged decision. Healthy paths are executed and plagued paths
are dropped in this phase. This procedure is illustrated in Fig. 4.

Tree Builder. Tree Builder monitors processes of a system, then creates a pro-
cess tree from running processes on an operating system. A node in a tree is a

208 M. Kwon, K. Jeong, and H. Lee

Fig. 4. The general algorithm of PBOBE. The θ threshold value represents a discrim-
inator to distinguish a normal process and an abnormal process. Thus, the value of θ
should be feasible for discriminating between a usual process and a unusual process.
We set the value as 0.7 in our simulation.

running process and it has references to other nodes. To construct a tree, we
use a process identifier which is a number used by an operating system kernel
to uniquely identify one specific process. Using two process identifiers, one for a
process’s PID (Process ID) and the other for a process’s PPID (Parent Process
ID), it can create a tree based on a relationship between a parent process and a
child process. The tree is created by first running system process with both child
pointers null. Thus, the root node of a tree is the node with no parents. After the
following process begins according to process steps required to boot a system, the
additional node is created and inserted into the root node as child node to build a
larger tree. Thus, a process which has a PID of a newly launched process creates
a node. After checking its PPID, the process becomes a child node of its parent
process node. The procedure of Tree Builder is described in Fig. 5.

Path Checker. Path Checker analyzes each directed edge of a tree which was
made at Tree Builder phase and detects if something abnormal occurs according
to Healthy Path Rule and Plagued Path Rule. For this, we use important infor-
mation from operating system about system objects—attributes, modification
time, etc. This Process Information is later used for checking the processes
whether they are under the rule of Healthy Path or Plagued Path. Path Checker
uses this Process Information to attempt to determine the intent of a process by
catching the relationship with a parent process and a child process. PROBE can
detect abnormal process execution just only examining local tree information of

PROBE: A Process Behavior-Based Host Intrusion Prevention System 209

Fig. 5. The first phase of PROBE: Tree Builder

an edge between a parent node and a child node, which was connected by the
creation procedure of a process, not all tree information.
• Plagued Path: Abnormal path. It defines the edge in the process tree which

is constructed through Tree Builder phase when the process is executed by
a suspicious behavior. We assigned Leaf-Node Path into the plagued path
which has a probability of something abnormal behavior happening.

• Healthy Path: Normal path. It defines the edge in the process tree which is
constructed through Tree Builder phase when the process is executed by an
ordinary behavior. We assigned Shell-Leaf Path, the parent process serves
as a shell process, and Twins Path, two related processes triggered from one
program execution, into the healthy path.

Leaf-Node Path. Leaf-Node Path checks if the child process is an application
process node. Each downward path from a root node to a leaf node is unique. In
principle, processes from application programs are dangled at the bottommost
level of the tree. Typically, most of application processes do not create any
child processes except a process that carries out a function as a shell program.
Leaf node application processes are only executed by a particular parent process
such as a shell program. Figure 6 describes an algorithm that measures weight
of Leaf-node path. Thus, if it is perceived that both a parent process and a
child process are processes derived from any application programs, there might
be a possibility that something abnormal such as execution of exploits using
buffer overflow is happening. That is, it is considered as a doubtful activity that
application process creates another application process.

Shell-Leaf Path. Shell-Leaf Path checks if the parent node which executes a
child process node is a shell program process. A shell denotes not only the
system-defined shell, Explorer.exe, but also a program which serves as a shell
process. The way to determine normal behavior would be to monitor process
relationships in execution. Figure 7 shows these relationships. To identify a shell
process, sibling processes created from a same parent process are influenced to
weight a value of Shell-Leaf Path.

210 M. Kwon, K. Jeong, and H. Lee

Fig. 6. Leaf-Node Path, which is a plagued path, is considered to be a security risk if
the behavior of process is related to any of intrusion’s behaviors we defined as follows:
1) the parent process uses network services, 2) the child process uses network services,
3) the child process is not associated with Windows graphics, or 4) the child process
utilizes advanced Windows API’s.

Fig. 7. Shell-Leaf Path which is a healthy path to check the parent process fills the
role of characteristics of Windows shell

Twins Path. Twins Path checks a characteristic of closeness between two nodes.
We named it Twins Path that a path between a parent process and a child

PROBE: A Process Behavior-Based Host Intrusion Prevention System 211

Fig. 8. Twins Path which is a healthy path to measure how much the parent process
and the child process are related. The δ threshold value denotes time interval to measure
the creation time difference of a parent process and a child process within a certain
span.

process has a similar characteristic. When there is a similarity between processes,
an application process can execute another application process. Thus, a process
not owned by the requesting process will be blocked by this phase. This is a signal
that an abnormal behavior is happening. To measure the similarity between a
parent process and a child process, we use the Process Information such as
process image creation time and company to reflect weight of similarity into
Twins Path as shown in Fig. 8.

Process Controller. Process Controller regulates process execution according
to whether the process path is healthy path or plagued path. When the process
behavior of a system deviates far from the Path Rule, alerts are generated and
the process cannot be executed.

4 Evaluation

Today attacks are often taking advantage of multiple vulnerabilities. In order
to measure the effectiveness of PROBE, we need to develop a means to produce
an accurate model of today’s Internet security vulnerabilities. It has been
tested using SANS Top-20 lists[10] released in recent two years, November 2006
and November 2005. SANS announces critical vulnerabilities, the most often
exploited Internet security flaws, that led to worms like Blaster, Slammer, and
Code Red every year since 2000. Among 40 vulnerabilities released in 2006 and
2005, there are 28 vulnerabilities (13 in 2006 and 15 in 2005) which are applicable
to Windows system. Out of 28, we selected 16 remotely exploitable vulnerabilities

212 M. Kwon, K. Jeong, and H. Lee

Table 1. The 16 remotely exploitable vulnerabilities in Windows system among critical
Internet security vulnerabilities (SANS Top-20 lists) released by SANS Institute in 2006
and 2005

on Windows system except for vulnerabilities overlapped or applied to a specific
application. We assumed that 16 vulnerabilities to be arisen in our system. Those
are shown in Table 1.

We simulated PROBE using vulnerability information on Microsoft Windows
XP Professional SP2. Figure 9 presents a system process tree that shows pro-
cesses used in our simulation. We need weight of Process Information such as
Winsock, GDI, Advapi, Storage, CTime, Path, and Company to calculate weight
of each edge between a parent process and a child process. We use these weights
to calculate Leaf-Node Path, Shell-Leaf Path, and Twins Path in PROBE’s 3
phases. In each phase, the weights of Process Information have a same value
within its phase. By using these weights of Process Information, each process
calculates three edge weights. The first one is Leaf-Node value. If its value is
close to 1, the process has a high possibility that it is an abnormal process. The
second value is Shell-Leaf. If a process relationship is Shell-Leaf, the value is
close to 0. It means that an abnormal behavior of a process has 1. The third
value is Twins. It checks how much the two processes are similar. If they are
totally different, it has a value close to 1. Thus, if all three weight values exceed
a predefined threshold, the process is regarded as an abnormal process. We can
see the results of PROBE simulation in Fig. 10. All attacks were detected except
for “attack 4” and it shows false-negative. This happens because the process
used vulnerabilities in “services.exe”. PROBE does not detect an intrusion in
case of an attack which uses a vulnerability of a known shell. Also, there is a
false-positive case. Because yahoo widget is not known as a process which roles
as a shell, it causes a false alarm.

Therefore, PROBE detects most of intrusions which utilize remotely
exploitable vulnerabilities except for attacks via normal processes. Thus, PROBE
shows desirable host-based intrusion prevention capabilities. By investigating

PROBE: A Process Behavior-Based Host Intrusion Prevention System 213

Fig. 9. A system process tree that shows process relationships used in our simulation

IIS

att
ac

k5
mys

ql

att
ac

k6

att
ac

k4
fir

efo
x

fir
efo

x-u
pd

ate

In
ter

ne
t E

xp
lor

er

att
ac

k1

ed
on

ke
y

att
ac

k7

med
ia

pla
ye

r

att
ac

k8

MS p
pt

att
ac

k3

ru
nd

ll3
2

att
ac

k2

Process

W
ei

gh
t

Leaf-Node Shell-Leaf Twins

Fig. 10. The result of our simulation. Among 8 attack cases, 7 attacks are detected.
There happened one false-negative case and one false-positive case.

more Healthy Path Rule to strengthen PROBE, we will be able to reduce false-
positive and false-negative rate, and achieve a much better result than now.

5 Discussion

5.1 Benefits of PROBE

When an unauthorized user wants to have access to a system, the user utilizes
bugs or design flaws in the system. The flaw or weakness in the system makes
an opportunity to force it to conduct unintended operations by malicious users

214 M. Kwon, K. Jeong, and H. Lee

and vandals. Especially, the unknown attacks occur when prevalent signatures
of attacks are not able to identify the attacks. It takes a great deal of time until
patches to be applied and signatures to be updated. Fighting the unknown attack
is one of the greatest challenges facing the security industry today[11]. Thus, we
need to adopt an anomaly detection approach to reduce a false-negative effect
against unknown attacks.

Additionally, PROBE has very low process monitoring overhead and memory
requirements. The existing studies[2,3,4] for anomaly detection need enormous
traces of system calls which should be monitored to discriminate between nor-
mal and abnormal characteristics. In contrast to the earlier approach based on
system call behavior (normal database size of sendmail-1318, lpr-198, and ftpd-
1017, which is the unique sequence of system calls for each of the process to be
stored in each process database)[4], we only use 7 process information to deter-
mine a normal process and an abnormal process. Thus, it is light-weight and
practical solution for intrusion prevention. Also, Fig. 11 shows the PROBE’s
elapsed time of API calls in comparison with existing mechanisms. We can see
that PROBE has the highest efficiency in processing by comparing the elapsed
time of API calls. Our evaluation of PROBE demonstrates that it exhibits low
process monitoring overhead and memory requirements. PROBE rapidly and
efficiently detects novel attacks at exceedingly low memory and processing time.
When compared with existing intrusion detection methods which use system
call sequences, PROBE differs in that we use a much simpler way to detect
intrusions. For a program, the theoretical sets of system call sequences will be
huge. Complete attack prevention is not realistically attainable due to system
complexity. Thus, we rely on examples of normal system process runs rather
than normal databases of all unique sequences during traces of system calls. An
advantage of our approach is that we do not have to build up the set of nor-
mal system call patterns for the database. We simply compare with predefined
process creation rules by tracing processes of a system. Therefore, PROBE is an
efficient solution for detecting intrusions.

5.2 PROBE Limitations and Future Work

PROBE is a network-based intrusion prevention system that uses system
processes to detect attacks which use security vulnerabilities by looking for in-
trusions performing programs without passing through legal process creation
procedure. System damage due to an attack is caused by running programs that
execute system processes. Thus, we restrict our attention to running system
processes. Intrusions are detected when a process behaves out of its characteris-
tics of normal system processes. The Path Rule between processes is defined to
represent the ongoing behavior of the process creation.

It is important that intrusion detection systems are capable of detecting
attacks against the Windows NT operating systems because of its growing
importance in government and commercial environments[12]. There are lists
of Windows NT attacks developed for the 1999 DARPA Intrusion Detection
Evaluation[12]. These attacks categorize with groupings of the possible attack

PROBE: A Process Behavior-Based Host Intrusion Prevention System 215

Fig. 11. We measured the elapsed time of API calls (milliseconds). PROBE is compared
with existing intrusion detection mechanisms: signature scanning (misuse detection),
syscall trace (system call traces), and selected syscall trace (partial system call traces).
We tested under 3 attack environments: attack1 (Remote-to-User attack which estab-
lishes backdoors), attack2 (Remote-to-User attack which is a trojan horse that allows
a remote attacker to control a system), and attack3 (Remote-to-User attack which uses
a buffer overrun vulnerability). Under these attacks, we can see that PROBE executes
intrusion detection at a low processing time.

types: Denial-of-Service, Remote-to-User, and User-to-Super-user. Table 2 shows
a description of each attack category and document the individual Windows NT
attacks in each category. These attacks spawn processes which deviate from
normal process execution. PROBE can detect intrusions which use system or
software bugs or exploits such as vulnerabilities in the victim computer or tro-
jan programs to establish backdoors on the victim system. Most attacks create a
new process which deviates from normal process behavior even in case of adding
a user to penetrate into the system by exploiting a vulnerability on a system.
Thus, it does not pass through normal process creation procedure.

The major problem is that system’s behaviors change with time. As a result,
the system’s behavior can deviate more from the Path Rule initially determined.
To solve the problem of false-negative by the unknown attacks, we followed
anomaly detection approach. However, it has a limitation to discriminate be-
tween attack and non-attack. To protect against newly discovered attacks, we

Table 2. Windows NT Attacks Developed for the 1999 DARPA Intrusion Detection
Evaluation

216 M. Kwon, K. Jeong, and H. Lee

need more Path Rule to evolve. Certain intrusions which can only be detectable
by examining other aspects of a process’s behavior, and so we might need to
consider them later. Future work will focus on extending PROBE to find other
abuses of privilege and to find an error in configuration of a system. Also, we
intend to expand our base of intrusions and gather more data for more processes
running in real environments, so we can get more realistic and accurate estimates
of false-positive and false-negative.

6 Conclusions

Our system, PROBE is a host-based intrusion prevention system which is in-
stalled on a particular host and detect attacks targeted to that host only. For
the purpose of protecting a system against host-based attacks, we proposed pro-
cess behavior-based protection approach. PROBE is designed to detect security
vulnerabilities in a host without monitoring every system calls. It only finds out
the characteristics of process relationship between a parent process and a child
process. Thus, it can detect unknown attacks by judging a behavior of process
creation relationship. Also, it is a light-weight solution, and shows practical and
accurate result for intrusion prevention. Our approach was evaluated on a test
set of SANS Top-20 Internet Security Attack Targets. The results demonstrate
that our approach can effectively identify the behavior of abnormal processes.
Future work will focus on extending PROBE to reduce false-positive by analyz-
ing process relationships and find out more accurate results. By using PROBE,
we expect to secure our systems against unknown system vulnerabilities of new
kinds of exploits.

Acknowledgments

This work was supported by Defense Acquisition Program Administration and
Agency for Defense Development under the contract UD060048AD and the ITRC
program of the Korea Ministry of Information & Communications.

References

1. Sequeira, D.: Intrusion Prevention Systems: Security’s Silver Bullet? In: Business
Communications Review (March 2003)

2. Forrest, S., Longstaff, T.A.: A Sense of Self for Unix Processes. In: IEEE Sympo-
sium on Security and Privacy, pp. 120–128 (1996)

3. Forrest, S., Hofmeyr, S.A., Somayaji, A.: Computer Immunology. Communications
of the ACM 40, 88–96 (1997)

4. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion Detection using Sequences of
System Calls. Journal of Computer Security 6, 151–180 (1998)

5. Kim, H.A., Karp, B.: Autograph: Toward Automated, Distributed Worm Signature
Detection. In: Proceedings of the 13th Usenix Security Symposium (August 2004)

PROBE: A Process Behavior-Based Host Intrusion Prevention System 217

6. Newsome, J., Karp, B., Song, D.: Polygraph: Automatically Generating Signatures
for Polymorphic Worms. In: IEEE Security and Privacy Symposium (May 2005)

7. Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.A.: Behavior-based
Spyware Detection. In: 15th Usenix Security Symposium (August 2006)

8. Cunningham, R.K., Lippmann, R.P., Webster, S.E.: Detecting and Displaying
Novel Computer Attacks with Macroscope. IEEE Transactions on Systems, Man
and Cybernetics (July 2001)

9. Russinovich, M.E., Solomon, D.A.: Microsoft Windows Internals. 4 edn., Microsoft
Press (December 2004)

10. SANS: SANS Top20 Lists (November 2006), http://www.sans.org/top20/
11. Henry, P.A.: Day zero threat mitigation, Seminar: Fighting the Unknown Attack

(May 2006), http://www.pisa.org.hk/event/fighting-unknown-attack.htm
12. Korba, J.: Windows NT Attacks for the Evaluation of Intrusion Detection Systems

(June 2000)

http://www.sans.org/top20/
http://www.pisa.org.hk/event/fighting-unknown-attack.htm

	Introduction
	Related Work
	The PROBE Mechanism
	Windows NT Boot Process
	Design
	Three-Phase PROBE Mechanism

	Evaluation
	Discussion
	Benefits of PROBE
	PROBE Limitations and Future Work

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

