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Evaluation of Two Load-Balancing Primary-Backup

Process Allocation Schemes

Heejo LEE†, Jong KIM†, and Sung Je HONG†, Nonmembers

SUMMARY In this paper, we show two process allocation
schemes to tolerate multiple faults when the primary-backup
replication method is used. The first scheme, called multiple
backup scheme, is running multiple backup processes for each
process to tolerate multiple faults. The second scheme, called
regenerative backup scheme, is running only one backup process
for each process, but re-generates backup processes for processes
that do not have a backup process after a fault occurrence to keep
the primary-backup process pair available. In both schemes, we
propose heuristic process allocation methods for balancing loads
in spite of the occurrence of faults. Then we evaluate and com-
pare the performance of the proposed heuristic process allocation
methods using simulation. Next, we analyze the reliability of two
schemes based on their fault-tolerance capability. For the analysis
of fault-tolerance capability, we find the degree of fault tolerance
for each scheme. Then we find the reliability of each scheme using
Markov chains. The comparison results of two schemes indicate
that the regenerative single backup process allocation scheme is
more suitable than the multiple backup allocation scheme.
key words: primary-backup replication, multiple faults, fault-
tolerant multi-computer, load balancing process allocation, relia-
bility analysis

1. Introduction

Process allocation is important for multi-computer sys-
tems since it affects the performance of the system. In
multi-computer systems, a process is no longer a sin-
gle independent job. Either it has message dependen-
cies with other processes or it blocks the execution of
other processes by allocating useful system resources
such as cpu, memory, and disks. A careful allocation
of processes can minimize the overhead of inter-process
interactions. In a system with replicated processes to
tolerate a fault, process allocation affects the perfor-
mance and reliability of the system [1]–[7]. Not only
does the system’s performance degrade because of the
increment in the number of running processes, but the
system’s reliability also depends on the placement of
replicated processes in the system.

Process allocation in fault-tolerant multi-computer
systems has been studied by several researchers [1], [2],
[4]. Nieuwenhuis [1] studied on the transformation rules
which transform an allocation of non-replicated pro-
cesses into an allocation of replicated processes. The
transformed allocation is proven optimal in terms of re-
liability. Shatz and Wang [2] proposed a process alloca-
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tion algorithm which maximizes the reliability of non-
homogeneous systems. Bannister and Trivedi [4] pro-
posed a process allocation algorithm which evenly dis-
tributes the load of the system to all nodes. A common
assumption in all of the above research works is that
each replicated process is not only a complete replica
of the original process, but also has the same execution
load as the original. This kind of fault-tolerant process
is called an active process replica [8].

The fault-tolerant computing process model con-
sidered in this paper is the primary-backup process
model [9], which is commonly used in distributed ex-
perimental and commercial systems such as Delta-4
and Tandem [10], [11]. In this model, there are backup
copies for each process in the system. However, only
one process in the primary-backup processes is run-
ning actively at any time. The active process is called
the primary process and the non-active processes are
called the backup (or secondary) processes. The ac-
tive process regularly checkpoints its running state to
the backup processes. During the normal operation,
the non-active backup processes are either waiting for
a checkpointing message or saving a received check-
pointing message. When the node in which the primary
process is running becomes faulty, the backup process
takes over the role of the primary process. Thus, in
order to be able to tolerate faults, any two processes
from the same primary-backup processes should not
be executed on the same node. When there are more
than one backup processes, backup processes are se-
quentially numbered and the role of primary process is
taken over by the backup processes in succession. This
kind of fault-tolerant process is called a passive process
replica [11].

In the passive replica process model, the load of a
backup process is much less than that of its primary
process before fault occurrence, i.e., 5–10% of the load
of the primary process. But after a fault occurrence,
one of the backup processes takes over the role of the
primary process. The load of the backup process be-
comes the same as that of the original primary pro-
cess. Therefore, the process allocation algorithm in pas-
sive replica process model should consider different load
characteristics of the primary and backup processes for
balancing the load before and after a fault occurrence.

The load-balancing process allocation problem in
the passive process replica model has been dealt by Kim
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and Lee [5]. They proposed a heuristic algorithm which
balances the load among nodes before as well as after
a fault occurrence. One drawback of this work is that
only a single fault is considered. Hence, the number of
backup process is one. In that model, processes have
uneven primary-backup structure after the occurrence
of a fault due to the broken primary-backup pair. Some
processes have backup processes while others do not
have backup processes.

In this paper, we show two schemes for tolerat-
ing multiple faults in the passive replica model. One
is replicating multiple backup processes for each pro-
cess. The other is re-generating a backup process af-
ter the occurrence of a fault for keeping the primary-
backup process pair to tolerate the next consequent
fault occurrence before the full-recovery of the system.
Load-balancing is required to utilize system resources
evenly, thereby enhancing the performance of the sys-
tem. Heuristic process allocation methods are proposed
for each scheme, which balance the load before as well
as after each fault occurrence. The proposed algorithms
consider distribution of primary and backup processes
and the load increment to be added to each node in the
event of a fault occurrence.

We evaluate the performance of the proposed two
fault-tolerant allocation schemes to tolerate multiple
faults and compare each other. Also, the reliability
of two fault-tolerant process allocation schemes is also
analyzed. First, we analyze the maximum number of
tolerable faults for each scheme, which is called the de-
gree of fault tolerance. Then we evaluate the reliability
of each scheme using Markov chains.

This paper is organized as follows. The next sec-
tion describes the fault-tolerant multi-computer system
models considered in this paper and the formal defini-
tion of the load-balancing process allocation problem.
Section 3 discusses heuristic load-balancing process al-
location algorithms for two fault-tolerance schemes in
the passive replica model. In Sect. 4, we discuss the
performance of two heuristic algorithms proposed in
Sect. 3. The reliability of each scheme is evaluated in
Sect. 5. In Sect. 6, we summarize and conclude the pa-
per.

2. Fault-Tolerant Process Allocation

2.1 Notation

• n : number of nodes.
• m : number of processes before replication.
• pi : load of primary process i.
• bi : load of backup process i.
• ρ : maximum ratio of a backup process load to its

primary.
• ω: average load of nodes by primary processes be-

fore the fault occurrence.

• xk
ij : 1 if primary process i is allocated to node j

before k-th fault occurrence, 0 otherwise.
• yk

ij : 1 if backup process i which will become active
by the next fault on its primary is allocated to node
j before k-th fault occurrence, 0 otherwise.

• αk
j : 0 if k-th fault occurs on node j, 1 otherwise.

• τk
j : load increment to be added to node j when
the k-th fault occurs.

• R : degree of fault tolerance.
• P k(j): total load of node j after the k-th fault

occurrence.
• Pnon: set of processor’s loads with no faulty nodes.
• Pfk

: set of processor’s loads after k-th fault.
• Φ(P ): difference between the maximum and the

minimum load of load set P .
• Ψ : objective cost function to be used.

2.2 Fault-Tolerant System Model

The system model for tolerating multiple faults is an
extension of the system model for tolerating single fault
with the passive replica process model. Hence, to make
it easy to understand the system model for tolerating
multiple faults, we first describe the system model for
tolerating a single fault considered by Kim and Lee [5].

The fault-tolerant multi-computer system consid-
ered for tolerating a single fault consists of n nodes
(processors). To tolerate a fault, each process is repli-
cated and executed as a pair, referred to as a primary-
backup process pair. Primary processes can be allo-
cated to any node. However, there is one restriction on
the placement of backup processes. That is, a primary
process and its backup process cannot be allocated to
the same node. It is assumed that there are m pri-
mary processes running in the system and that the cpu
loads of the primary and backup processes are known
in advance. This assumption about the load require-
ment is not unrealistic since many on-line transaction
systems run the same processes continuously [10], [12].
Note that we assume the number of processes is a lot
larger than the number of processors, i.e., m � n.

The primary-backup process model is actually used
in experimental and commercial systems such as the
Tandem Nonstop system [10], [13]. In the Nonstop sys-
tem, every process has an identical backup process
which is allocated to a different node. The backup pro-
cess is not executed concurrently with the primary pro-
cess, but is in an inactive mode, prepared to assume the
function of the primary process in the event of a pri-
mary process failure. To guarantee that the backup
process has the information necessary to execute the
required function, the primary process sends periodic
checkpoint messages to its backup process.

In the fault-free situation, the cpu load of the
backup processes is much less than that of their respec-
tive primaries. The actual load of a backup process
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is determined by the interval and number of messages
checkpointed by the primary process. Each backup pro-
cess has a different percentage of the primary process’
cpu load. When a fault occurs, the backup processes of
the primary processes which were running on the faulty
node take over the role of the primary processes. The
backup process is executed continuously starting from
the last point at which it received a valid checkpointing
message from its primary process. Therefore, the cpu
load of the backup process becomes the same as that
of its primary.

A modification of the system model based on the
primary-backup process pair is required to tolerate mul-
tiple faults. We can consider two approaches for contin-
uous operation with the passive replica. The first ap-
proach is the multiple backup allocation scheme (MUL)
that makes R (< n) backup processes for each pri-
mary process to tolerate at maximum R faults such
as shown in Fig. 1 [9], [11]. In MUL, the R backup
processes are executed on different R nodes except the
node on which its primary is running. Each primary
process sends checkpointing messages to all R backup
processes. When a fault occurs, the role of the primary
process is taken over by the designated backup process
until no more backup process is available.

The second approach is the regenerative single
backup allocation scheme (REG) having only one
backup process for each primary process. After a fault
occurrence, the backup processes whose primaries were
running on the faulty node become the primaries. How-
ever, these processes do not have backup processes.
The primary processes which have their backups on
the faulty node also do not have backup processes. For
those processes not having backup processes after each
fault occurrence, backup processes are re-generated to
keep one backup process for each primary process. Fig-
ure 2 illustrates the process of REG for tolerating two
faults in a three node system.

2.3 Load Balancing Process Allocation Problem

In this subsection, we formally describe the load-

Fig. 1 MUL for tolerating multiple faults.

balancing process allocation problem. The load-
balancing process allocation problem is represented as a
constrained optimization problem. Let us assume that
there are n nodes and m processes in the system. One
prominent constraint is on the allocation of primary
and backup processes. To be able to tolerate a fault in
a node, a primary process and its backups should not
be allocated to the same node.

m∑
i=1

n∑
j=1

xk
ij =

m∑
i=1

n∑
j=1

yk
ij = m,

m∑
i=1

n∑
j=1

xk
ijy

k
ij = 0.

(1)

It should be noted that yi · yj = 1 if i = j and 0
otherwise.

When the k-th fault occurred in node s, the
load increment to be added to node j by the fault is
m∑

i=1

xk
isy

k
ij (pi − bi). Thus, the load increment (τjk) for

node j by the k-th fault is

a) REG with three nodes

b) REG after node 1 failure

c) REG after node 2 failure

Fig. 2 A running example of REG.
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τk
j =

n∑
s=1

[(
1− αk

s

) m∑
i=1

xk
isy

k
ij (pi − bi)

]
. (2)

The load of node j after the k-th fault, denoted as
P k(j), is the sum of the load before the fault occur-
rence and the load increment incurred before the k-th
fault. Therefore, the load of node j in MUL with R
replication is

P k
MUL(j) = P k−1

MUL(j) + τk
j

=
k∑

f=1

τf
j +

m∑
i=1

(
x1

ijpi +
R∑

l=1

yl
ijbi

)
.

The load of node j in REG is

P k
REG(j) = τk

j +
m∑

i=1

(
xk

ijpi + yk
ijbi

)
.

In REG, since the value yk
ij is decided after the (k−1)-

th fault occurrence, the load imbalance can be reduced
by adjusting P k

REG(j), which is done by choosing yk
ij .

This dynamic allocation capability in REG is used to
improve the performance when we allocate newly gen-
erated backup processes.

The commonly used metric for evaluating load-
balance between nodes is the standard deviation of the
processor loads [4]. Another metric that can be used
in the load-balancing process allocation problem is the
load difference between the node with the heaviest load
and the node with the lightest load [5]. The load differ-
ence, denoted as Φ, for the given set of process loads P
can be represented as follows:

Φ(P ) = max(P )−min(P ).

The set of process loads before any node failure is rep-
resented as Pnon and the set of process loads after any
one node failure is represented as Pf1. After the k-th
fault, the set of loads is represented as Pfk.

The load-balancing process allocation problem is
the problem of finding values of xk

ij and yk
ij for all pos-

sible i, j, and k, that minimize the multiple cost func-
tions Φ(Pnon), Φ(Pf1), Φ(Pf2 ), . . . , Φ(PfR) in R fault
tolerant systems with the constraint given in Eq.(1).
There are two main approaches to solve an optimization
problem that involves multiple objective functions [14].
One approach is to solve the problem a number of times
with each objective in turn. When solving the problem
using one of the objective functions, the other objec-
tive functions are considered as constraints. The other
approach is to build a suitable linear combination of
all the objective functions and optimize the combina-
tion function. In this case, it is necessary to attach a
weight to each objective function depending on its rela-
tive importance. In this paper, the second approach is
used to formulate the load-balancing process allocation
problem.

We define an objective function Ψ as

Ψ = w0 ·Φ(Pnon) +
R∑

k=1

wk ·Φ(Pfk
), (3)

where wk (0 ≤ k ≤ R) is the relative weight of im-
portance before and after a fault occurrence. If we
assume that the weights have the same value in two
fault-tolerant systems, i.e. w0 = w1 = w2 = 1, the
objective function is

Ψ = Φ(Pnon) + Φ(Pf1) + Φ(Pf2). (4)

The objective function of the load balancing pro-
cess allocation problem, Ψ, is defined as the sum of
the load differences before and after the occurrence of
faults. An optimal allocation is an assignment of pro-
cesses that minimizes the objective cost function Ψ.
The load-balancing process allocation problem in fault-
tolerant systems was proved as NP-Hard in [5]. Hence,
we propose heuristic approximation algorithms which
are cost-effective and result in well balanced processor
loads before and after the occurrence of multiple faults.

3. Heuristic Process Allocation Algorithms

3.1 Basic Primitives for Load Balancing Process Al-
location

In this section, it is assumed that processes are allo-
cated one by one, and, once allocated, processes are
not reallocated to other nodes. The summary of basic
primitives of load balancing process allocation which
were discussed in [5] is as follows.

1. A process should be allocated to the node with the
minimum load first in order to minimize Φ.

2. Processes with more load should be allocated prior
to processes with less load in order to minimize Φ.

3. When two ordered sets with equal cardinality are
merged to one set with equal cardinality such a
way that the maximum from one set is combining
with the minimum from the other set, the Φ of
the merged set is less than or at least equal to the
minimum Φ of two ordered sets.

The proposed heuristic algorithm, which satisfies
the above allocation primitives, works in two stages. In
the first stage, primary processes are allocated using a
standard load balancing algorithm. We use a greedy
method which allocates the process with the heaviest
load to the node with the lightest load. As shown in
the above summaries 1 and 2, this greedy method min-
imizes Φ. In the second stage, backup processes are
allocated considering the load increment to be added
to each node in the event of a fault. Let us assume
that the algorithm is currently working on node j. The
backup processes whose primary processes are assigned
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to node j are divided into (n−1) groups having approx-
imately equal incremental load in the event of a fault
in node j. These (n−1) groups of backup processes are
allocated to (n−1) nodes, excluding node j. The detail
of the process allocation algorithms for each scheme is
described in the next two subsections.

3.2 Process Allocation Algorithm for MUL

The process allocation algorithm for MUL is formally
described below.

Process Allocation Algorithm for MUL

Stage 1: Allocate primary processes

1. Sort primary processes in descending order of cpu
load.

2. Allocate each primary process to the node with
the minimum load from the heaviest load to the
lightest.

Stage 2: Allocate backup processes
Do the following steps for each node.

1. Compute the load difference between each primary
process and its backup process for all primary pro-
cesses assigned to the node.

2. Sort, in descending order, the backup processes us-
ing the load difference.

3. Divide the backup processes into (n − 1) groups
having an approximately equal incremental load by
assigning each R backup processes to the R groups
with the smallest load, in the order of the sorted
list in the previous step.

4. Compute the actual backup process load of each
group.

Do the following for the n(n− 1) backup groups which
are generated by the above steps.

1. Sort all n(n − 1) backup groups using the actual
loads in descending order.

2. Sort the n nodes using their current loads in as-
cending order.

3. Allocate each backup group to the node with the
minimum load. However, if the backup group has
a corresponding primary process in this node or if
one of the backup groups which are already allo-
cated to this node comes from the same node as
the backup group to be allocated, choose the node
with the next-to-the-minimum load.

The allocation of backup processes is the most im-
portant part of this algorithm. For each node, the
backup processes are first divided into (n − 1) groups
using the load difference between each primary process
and its backup. This load difference is the amount of
load increment to be incurred upon the occurrence of a

fault. Next, the algorithm computes the actual load of
each group before a failure using the actual load of the
backup processes. The total number of backup groups
is n(n − 1). Each group is assigned to a node depend-
ing on its computed actual load. When we allocate each
backup group, we check whether there is a pre-allocated
backup group which comes from the same node as the
to-be allocated backup group. In such a case, we select
the node with the next-to-the-minimum load.

The purpose of dividing the backup processes into
(n − 1) groups for each node is to guarantee that each
node has an approximately equal amount of load in-
crement. Hence, the system will have a balanced load
when a fault occurs. The purpose of computing the
actual load of each group and assigning groups based
on their actual loads is to guarantee that each proces-
sor’s load is balanced before the occurrence of a fault.
Therefore, we can balance the processor load before as
well as after the occurrence of faults.

3.3 Process Allocation Algorithm for REG

The allocation algorithm for REG is as follows.

Process Allocation Algorithm for REG

The algorithm is exactly the same as the algorithm
for MUL except the third step at the stage 2.

3. Divide the backup processes into (n − 1) groups
having an approximately equal incremental load
by assigning each backup process to the group with
the smallest load, in the order of the sorted list in
the previous step.

The key idea of the two-stage allocation is the al-
location of backup processes for balancing the loads by
an equal load increment in non-faulty nodes. After a
fault occurrence, the backup processes whose primary
processes were running on the faulty node become pri-
mary processes. These converted primary processes do
not have backup processes. Also, the primary processes
which were running their backup processes on the faulty
node lose their backup processes. Backup processes for
these primary processes should be re-generated to tol-
erate the next fault.

Regenerated backup processes are distributed to
balance the load dynamically with consideration of cur-
rent load states of non-faulty nodes. The idea of two-
stage allocation is to distribute newly generated backup
processes. The allocation of regenerated backup pro-
cesses after the k-th fault occurrence is a decision pro-
cedure for the value yk+1

ij which is the same as xk+2
ij .

Therefore, the following equation should hold.

xk+1
ij = yk

ij , for any i,j,k

The proposed dynamic allocation algorithm for allocat-
ing new backup processes after the k-th fault occurrence
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works as follows.

Dynamic Allocation of
Regenerated Backup Processes

1. Find backup processes whose primary has no
backup process.

2. Sort the backup processes in descending order us-
ing the load difference, i.e., (pi − bi).

3. Allocate each backup process i whose primary is
running in node j (xk+1

ij = 1) to the node s (�=
j) with minimum P k(s) +

∑m
i=1 xk+1

ij yk+1
is (pi − bi)

among (n− k − 1) nodes for minimizing Φ(Pfk+1 ).

Backup processes are allocated to balance loads
after the occurrence of next (k + 1)-th fault. The allo-
cation of backup processes does not break the currently
balanced load since the allocated backup processes have
small loads, but also guarantees the load balance for the
next fault.

4. Performance Evaluation

In this section, we compare the two proposed schemes
in order to find which scheme is more suitable for tol-
erating multiple faults with good performance.

We compare the performance of both heuristic al-
gorithms using simulation. For the convenience of sim-
ulation, we let the number of faults that can be tol-
erated be two, i.e., R = 2. Other parameters used in
the simulation are as follows. To keep the total load
of each node below 100%, the load of the primary pro-
cesses is chosen randomly in the range of 0.5 to 2.5
times 100 · (n − 2)/m based on a uniform distribution.
The load of the backup processes is also chosen ran-
domly between 5–10% of the load of their primaries,
also based on a uniform distribution.

Figure 3 shows the load difference Φ between the
minimum and the maximum load before and after the
occurrence of one and two faults. The simulation result
is obtained for n = 16. When there is no fault, the
two schemes show almost identical results. The load
difference becomes larger when a fault occurs. However,
the results of two schemes are in a very close agreement.
The load difference becomes much larger for MUL due
to the uneven distribution of primary processes. From
the figure, we can conclude that the load difference of
MUL becomes larger than REG as the number of faults
increases.

Figure 4 shows the objective cost function Ψ of
both schemes when the number of processes varies from
100 to 500. The simulation results are obtained for
n = 8 and 16. The Ψ in Fig. 4 is relatively high since we
merely added the load differences of no-fault, one-fault,
and two-fault cases (wo = w1 = w2 = 1). Regardless
of the number of processes before replication, the Ψ of

Fig. 3 Load difference Φ in both model.

Fig. 4 Ψ vs. the number of processes.

REG is less than the Ψ of MUL. From this figure, we
can also know that the performance of REG is superior
to that of MUL.

In Fig. 5, the effect of the number of nodes to the
objective cost function is shown. The number of pro-
cesses is fixed to 200 or 400. The best balanced state
in both schemes with respect to the specified number
of processes is obtained for different number of nodes.
When the number of processes is 200, a system with
10 nodes can achieve the best balanced state in both
models by the proposed algorithms. However, when
the number of processes is 400, a system with 16 nodes
shows the best balanced state in both models. In this
experiment, REG also outperforms MUL.

In previous simulations, we assumed that backup
processes have 5–10% of the load of their primary pro-
cesses. In this simulation, we compare the performance
of both models by varying the load ratio ρ of backup
processes from 10–100% of their primaries. As shown in
Fig. 6, when the load ratio ρ is small, the performance
of MUL is slightly less than REG. However, when the
load ratio increases, the performance of MUL degrades
linearly. On the contrary, REG performs well irrespec-
tively to the load ratio ρ. As the load ratio ρ increases,
the performance of REG improves.
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Fig. 5 Ψ vs. the number of nodes.

Fig. 6 Ψ vs. the load ratio ρ.

5. Reliability Evaluation

In this section, we evaluate and compare the relia-
bility of two different fault-tolerant process allocation
schemes. The most popular reliability evaluation tech-
nique is using Markov chains, which is used in this pa-
per. The evaluation is conducted in two steps. First,
we find the maximum number of tolerable faults, which
is called the degree of fault tolerance, for each scheme.
Next, we model two schemes using Markov chains and
evaluate the models with the Hybrid Automated Reli-
ability Predictor (HARP) [15].

5.1 Degree of Fault Tolerance

To tolerate a fault occurred, there are two conditions
to be satisfied. They are the availability of backup pro-
cesses and the system capacity. A fault occurred can
be tolerated if backup processes are available for all the
primary processes on a faulty node and the capacity
of the system is enough to handle the transformation
of backup processes to primary processes. From the
condition of backup process availability, we know that
backup processes are available until the R-th fault in
MUL with R replicated process allocation and until the

(n − 1)-th fault in REG. From the condition of system
capacity, the load of any node should not exceed 100%
after a fault occurrence †. From these conditions, we
can estimate the maximum number of tolerable faults
for each scheme.

The total load of processes in MUL varies as a
fault occurs, while the total load of processes in REG
remains constant. As the number of faults increases,
the total load of processes in MUL decreases due to
the lost backup processes. To find the degree of fault
tolerance in MUL, we have to know the average number
of backup processes remained after a fault occurrence.

Lemma 1: In MUL with R replication, the average
number of backup processes remained among R back-
ups after the k-th fault occurrence (1 ≤ k ≤ R) is
((n − k)R − k)/n.
Proof: Initially, there are m primary processes and
mR backup processes. When a fault occurs, all pri-
mary and backup processes on a faulty node are van-
ished. However, the role of the primary processes on
the faulty node is taken by the corresponding backup
processes on non-faulty nodes. Therefore, after the k-th
fault occurrence, still m primary processes are running
on (n − k) non-faulty nodes. But, the total number
of backup processes in the system becomes less than
mR since some of backup processes are vanished and
some are transformed to primaries. The average num-
ber of backup processes vanished until the k-th fault
occurrence is k

nmR and the average number of backup
processes that become primary processes on non-faulty
(n− k) nodes is k

nm. Therefore, the average number of
backup processes after the k-th fault occurrence is

mR −
(

k

n

)
mR −

(
k

n

)
m =

(
n − k

n
R − k

n

)
m.

Thus the average number of backup processes remained
for each primary is ((n−k)R−k)/n among R replicated
backup processes. ✷

Theorem 1: When
∑m

i=1 pi = ωn and
∑m

i=1 bi =
ρωn, the degree of fault tolerance of MUL is bounded by
�(√(100 + (n + 1)ρω)2 + 4(100− ω)ρωn− (100 + (n+
1)ρω))/2ρω�.
Proof: Let R be the number of replicated backup
processes for each primary. To tolerate the k-th fault
(1 ≤ k ≤ R), the maximum load on non-faulty nodes
should be less than 100%.

max(Pfk
) ≤ 100 (5)

Let Rk be the average number of backup processes for
each primary after the k-th fault occurrence. Then, the
following should be satisfied.

1
n − k

m∑
i=1

(pi + Rkbi) ≤ 100− α (6)

†We consider that nodes have a severely degraded per-
formance if their load exceeds 100%.
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where α is defined as max(Pfk
) − avg(Pfk

) and is ap-
proximated to 1

2Φ(Pfk
). α has a non-negative value

(i.e., α ≥ 0) and is dependent on the process alloca-
tion algorithm and the load distribution of primary and
backup processes. The better the allocation algorithm
is used, the closer α is to zero.

Since Rk is ((n−k)R−k)/n from Lemma 1, Eq.(6)
becomes as follows.

ωn

n − k
+ (

R

n
− k

n(n − k)
)ρωn ≤ 100− α (7)

From Eq.(7), k is bounded by

k ≤ (100− α − ω − Rρω)n
100− α + (R + 1)ρω

. (8)

As R increases, the upper bound of k in Eq.(8) de-
creases. Since it is meaningless to have R larger than
k, we have to find the maximum of k by letting R = k.
Since k has the maximum when α = 0, Eq.(8) becomes
as follows.

k ≤ (100− ω − kρω)n
100 + (k + 1)ρω

(9)

From Eq.(9), the range of k is determined by 0 ≤ k ≤
(
√

(100 + (n + 1)ρω)2 + 4(100− ω)ρωn − (100 + (n +
1)ρω))/2ρω. ✷

Theorem 2: When
∑m

i=1 pi = ωn,
∑m

i=1 bi = ρωn,
the degree of fault tolerance of REG is bounded by
�(1− (1 + ρ) ω

100 )n�.
Proof: After the k-th fault occurrence (1 ≤ k ≤
n − 1), the maximum load on each of the (n − k) non-
faulty nodes should be less than 100%. Since the total
load of primary and backup processes is

∑m
i=1(pi + bi),

the following should be satisfied.

1
n − k

m∑
i=1

(pi + bi) ≤ 100− α (10)

where α has the same meaning as in the proof of Theo-
rem 1. From the load condition of primary and backup
processes, Eq.(10) becomes as follows.

(1 + ρ)ωn ≤ (n − k)(100− α) (11)

From Eq.(11), k is bounded by

k ≤ (100− α − (1 + ρ)ω)n
100− α

. (12)

In Eq.(12), as α increases, the maximum value of k
decreases. Since α ≥ 0, the maximum value of k is
bounded by �(1− (1 + ρ) ω

100 )n�. ✷

Let RMUL represent the degree of fault tolerance of
MUL and RREG the degree of fault tolerance of REG.
For example, RMUL = 2, but RREG = 3 when ω =
50, ρ = 0.1, and n = 8. Also, when ω = 50, ρ = 0.1,
and n = 16, then RMUL = 3 and RREG = 7. Usually,
the degree of fault tolerance of REG is bigger than that
of MUL in the same workload condition.

5.2 Reliability Modeling

The system with MUL or REG replication method is
modeled using a continuous time Markov chain. The
processing nodes have identical and exponential distri-
bution in failure time with mean 1

λ . We assume that
there is no repair. When a node failure is detected,
backup processes whose primary processes were run-
ning on a faulty node take over the role of their pri-
maries within 1

µ1
time on average. In REG, lost backup

processes are regenerated within 1
µ2

time on average.
Usually, the time to generate processes takes longer
than the time to switch backup processes to primaries.
Thus 1

µ1
≤ 1

µ2
. Hence, the average fault-tolerance la-

tency of MUL and REG are 1
µ1

and 1
µ1

+ 1
µ2

, respec-
tively. It is also assumed that if another fault is oc-
curred during the period of tolerating previous fault, it
causes a system failure. This kind of faults are called
as “near-coincident” faults. We assume a perfect fault
detection and reconfiguration.

The R-resilient system with MUL is modeled such
as shown in Fig. 7 and the R-resilient system with REG
is modeled such as shown in Fig. 8. The degree of fault
tolerance, R, is measured on previous subsection. State
Si represents the state that has (n−i) operational nodes
in the system. State FBi represents the fault benign
state after the i-th fault occurrence and state RGi rep-
resents the state of regenerating lost backup processes.

5.3 Reliability Evaluation Using HARP

The reliability of the system modeled in the previous
subsection is evaluated using HARP [15]. For a sys-
tem with n = 8, ω = 50, and ρ = 0.1, the degree
of fault tolerance of MUL is RMUL = 2 and that of
REG is RREG = 3. The reliabilities for each alloca-
tion model for different µ2 values are shown in Fig. 9

Fig. 7 State transition diagram of MUL.

Fig. 8 State transition diagram of REG.
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for 10000 hours (about one year) when λ = 10−4 and
µ1 = 100. The lower solid line represents the reliabil-
ity of MUL. The upper dotted line is the reliability of
REG when µ2 = 100, which is overlapped with the lines
when µ2 = 10 and 1. In a system with 10−4 node fail-
ure rate and one hour fault-tolerance latency, the effect
of near-coincident faults is negligible.

For a system with n = 16, ω = 50, and ρ = 0.1, the
degree of fault tolerance of MUL is RMUL = 3 and that
of REG is RREG = 7. The reliabilities when λ = 10−4

and µ1 = 100 are shown in Fig. 10. From Figs. 9 and
10, we can see that the system with REG can maintain
much higher reliability than the system with MUL. We
also experimented when node failure rate is 10−5. The
reliability distributions for each scheme show similar
behaviors like previous figures with 10−4 node failure
rate.

From the reliability evaluation, we get the follow-
ing results.

• In the situation that the life time of nodes is sev-
eral years (λ = 10−4–10−5) and the fault-tolerance
latency is less than hours, the possibility of system
failure due to a near-coincident fault is negligible.

Fig. 9 Reliability of a 8-node system with λ = 0.0001 and
µ1 = 100.

Fig. 10 Reliability of a 16-node system with λ = 0.0001 and
µ1 = 100.

• The reliability of a system is highly dependent on
the degree of fault tolerance.

• The degree of fault tolerance of REG is much larger
than that of MUL, especially when the number of
nodes in a system increases, or when the total load
of processes decreases.

• The system with REG is more reliable than the
system with MUL at the same workload condition.

6. Conclusion

In this paper, we considered a load-balancing process
allocation for fault-tolerant systems that balances the
load before as well as after the occurrence of faults.
We showed two schemes which tolerate multiple faults
in the passive replica model. The first scheme is called
the multiple backup process model (MUL) and the other
scheme is called the regenerative single backup process
model (REG). Heuristic allocation algorithms are pro-
posed for both schemes, and the performance of each
scheme is evaluated using simulation in terms of load
imbalance after process allocation. The regenerative
single backup process model has less overhead and bet-
ter performance than the multiple backup allocation
method.

Since the reliability enhancement is the main con-
cern of fault-tolerant system design, the reliability of
the systems with each scheme is evaluated under vari-
ous environments. From the reliability evaluation, the
system with REG maintains much higher reliability
than the system with MUL. Especially, as the num-
ber of nodes in a system increases or as the total load
of processes decreases, the system with REG is much
reliable than the system with MUL. It is also shown
that the effect of near-coincident faults is negligible.

From the extensive comparison of the system with
each scheme in terms of performance and reliability, the
regenerative single backup process allocation scheme is
more suitable for the fault-tolerant system with passive
replica than the multiple backup allocation scheme.
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