
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.9 SEPTEMBER 2016
2385

LETTER

Detecting Violations of Security Requirements for Vulnerability
Discovery in Source Code∗

Hongzhe LI†, Jaesang OH†, Nonmembers, and Heejo LEE†a), Member

SUMMARY Finding software vulnerabilities in source code before the
program gets deployed is crucial to ensure the software quality. Existing
source code auditing tools for vulnerability detection generate too many
false positives, and only limited types of vulnerability can be detected au-
tomatically. In this paper, we propose an extendable mechanism to reveal
vulnerabilities in source code with low false positives by specifying se-
curity requirements and detecting requirement violations of the potential
vulnerable sinks. The experimental results show that the proposed mech-
anism can detect vulnerabilities with zero false positives and indicate the
extendability of the mechanism to cover more types of vulnerabilities.
key words: software vulnerability, security sinks, security requirements

1. Introduction

Despite the best efforts made by security communities and
experts, the number of software vulnerabilities is still in-
creasing rapidly on a yearly basis, leaving great threats to
the safety of software systems. According to the Common
Vulnerabilities and Exposures (CVE) database [1], the num-
ber of CVE entries has increased from around 1000 CVEs
yearly in 2000 to over 8000 yearly in 2015. The discovery
and removal of vulnerabilities from software projects have
become critical issue in computer security. Nowadays, be-
cause of enormous amount of code being developed as well
as limited human resources, it is becoming harder and harder
to audit the entire code and accurately address the target vul-
nerability.

Security researchers have devoted themselves into de-
veloping static analysis tools to find vulnerabilities [2], [3].
The large coverage of code and access to the internal struc-
tures makes these approaches very efficient to find potential
warnings of vulnerabilities. However, they often approxi-
mate or even ignore runtime conditions, which leaves them
a great amount of false positives.

Recently, more advanced static analysis methods have
been proposed [4]–[6]. They either encode insecure cod-
ing properties such as missing checks, un-sanitized variables
and improper conditions into the analyzer for vulnerability
discovery, or they model the known vulnerability properties

Manuscript received February 1, 2016.
Manuscript revised May 22, 2016.
Manuscript publicized June 13, 2016.
†The authors are with the Korea University, South Korea.
∗This work was supported by Institute for Information & Com-

munications Technology Promotion (IITP) grant funded by the
Korea government (MSIP) (No. R0190-16-2011, Development of
Vulnerability Discovery Technologies for IoT Software Security).

a) E-mail: heejo@korea.ac.kr
DOI: 10.1587/transinf.2016EDL8035

and generate search patterns to detect unknown vulnerabil-
ities. Even though these approaches can find vulnerabili-
ties using search patterns and exclude the majority of code
needed to be inspected, they still require security-specific
manual efforts to verify the vulnerability at the very end.
Recently, an automated approach is proposed [7] but it is
limited to buffer overflow vulnerabilities. In other words,
the previous methods cannot be extended to detect new vul-
nerability types.

In this paper, we propose an extendable mechanism to
reveal typical types of vulnerabilities in source code with
low false positives by specifying security requirements and
detecting requirements’ violations of the potential vulnera-
ble sinks. In the beginning, a 3-element model {Sink, Ar-
gument(s), Requirement} is proposed to specify the security
requirements of potential vulnerable sinks. Subsequently,
we set security probes at each security sink in source code
based on the specification table (see Table 1) and get ready
to monitor the program execution and detect a vulnerability
when the security requirement of a sink is being violated.
Finally, the instrumented program source is passed to the
concolic (CONCrete + symbOLIC) testing engine [8], [9]
to detect any violation of security requirements and verify
the existence of an actual vulnerable sink, which dramat-
ically reduce the false positives. In this work, four pop-
ular types (buffer overflow, integer overflow, format string
and divide-by-zero) of potential vulnerable sinks are dis-
cussed and specified and the mechanism can be extended
to cover more types of vulnerabilities by adding {Sink, Ar-
gument(s), Requirement} entries in the specification table.
We perform experiments with 400 test cases (100 cases for
each type of vulnerability) from Juliet Test Suite [10]. The
results show that our mechanism gets a detection result with
Precision = 100% and Recall = 97.3% with zero false pos-
itives. A real program case (Cpio) is also discussed to show
practicability of the proposed mechanism.

2. Proposed Mechanism

Discovery of vulnerabilities in a program is a key process to
the development and management of secure systems. Cur-
rent static analysis techniques can detect vulnerabilities in a
fast and scalable way but they generate too many false posi-
tives. What’s more, most of current methods can only detect
limited types of vulnerabilities. In this work, we propose an
extendable mechanism to reveal typical types of vulnerabil-
ities in source code with low false positives by specifying

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers

2386
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.9 SEPTEMBER 2016

Table 1 The specification of security requirements.

3-element model
Type Sink Argument(s) Requirement Description

Buffer overflow
strcpy(dst,src) dst, src dst.space > src.strlen

Space of dst should be bigger
than the string length of src

memcpy(dst,src,n) dst, n (dst.space ≥ n) ∧ (n ≥ 0)
Space of dst should be bigger or
equal to the positive integer n

Integer overflow

unsigned addition
x, y (LONG64)x+y < 0x00000000ffffffff

The result value should be less
x + y than max value represented

unsigned multiply
x, y (LONG64)x*y < 0x00000000ffffffff

The result value should be less
x * y than max value represented

Format string
printf(format, . . .) formats, params # formats = # params-1

Number of formats should be
equal to the number of params-1

sprintf(dst,format, . . .) formats, params # formats = # params-2
Number of formats should be
equal to the number of params-2

Divide-by-zero
Division

y y <> 0
The value of y

x / y should not be zero

Fig. 1 General overview of our approach.

security requirements and detecting requirement violations
of the potential vulnerable sinks.

Before the detailed description of the proposed mecha-
nism, the general process is illustrated in Fig. 1. Our mech-
anism mainly consists of three phases which are Sink spec-
ification, Probes insertion, and Violation detection. In the
phase of sink specification, we classify the security sinks
which are considered to be potential vulnerabilities into the
four categories: buffer overflow, integer overflow, format
string and divide-by-zero. These types are reported as the
most dangerous vulnerabilities according to SANS†. A 3-
element model {Sink, Argument(s), Requirement} is pro-
posed to specify the security requirement of each sink. In the
second phase, we set security probes at each security sink in
source code based on the specification table (see Table 1)
and get ready to monitor the program execution and detect
a vulnerability when the security requirement of a sink is
being violated. In the last phase, we leverage concolic exe-
cution technique to detect the violation of security require-
ments and verify the existence of an actual vulnerable sink,
which dramatically reduce the false positives.

2.1 Sink Specification

Since most of vulnerabilities are caused by attacker con-
trolled data falling into a security sink [11], it is crucial to

†SANS: CWE/SANS TOP 25 Most Dangerous Software Er-
rors, https://www.sans.org/top25-software-errors/.

first understand security sinks. Here, we classify the secu-
rity sinks according to typical types of vulnerabilities, i.e.,
buffer overflow, integer overflow, format string and divide-
by-zero respectively.

• Sinks for buffer overflow: In security sensitive func-
tions, the sensitive data is used as argument to be
copied in a destination buffer. When destination buffer
cannot hold the sensitive data, buffer overflow oc-
curs. These functions include strcpy, strcat, strncpy
and memcpy.
• Sinks for integer overflow: Arithmetic operations such

as: unsigned add32 and multiply32. If the operation
results in a value larger than the maximum value to be
represented. The integer overflow occurs.
• Sinks for format string: In format string functions, the

number of formats doesn’t match the number of argu-
ments to be formatted. Attacker can take use of this
vulnerability to take control of the system. These func-
tions include printf, scanf and sprintf.
• Sinks for divide-by-zero: The division operations. If

the denominator argument is zero, this operation be-
comes into a divide-by-zero vulnerability.

Security sinks become into vulnerabilities when inap-
propriate data being used in the sinks. In order to use these
sinks in a secure way, we must follow the security require-
ments of each sink. In this paper, we provide a 3-element
model {Sink, Argument(s), Requirement} to specify the se-

LETTER
2387

Fig. 2 Probes insertion for different types of sinks.

curity requirements of sinks. In the model, Sink(s) are the
statements or instructions in the source code described and
classified above. Arguments are data holding entries which
are related to the sink’s safety. Requirements are rules ap-
plied to Argument(s). The rule defines the appropriate as-
signment of data to the Argument(s) used in the sink to en-
sure the sink safety. On the contrary, if the security require-
ment rules are being violated (inappropriate data assigned),
a sink becomes into a vulnerability. For example, the buffer
overflow sink strcpy(dst,src); Arguments are dst and src; the
Requirement is: dst.space > strlen(src). Table 1 shows the
3-element specification of security requirements regarding
to different types of sinks.

Due to the space limitation, we do not list all the sinks
regarding to each type in the table. Nevertheless, the speci-
fication table can be extended to cover more types of vulner-
abilities by adding more sink specification items according
to our 3-element model. After the classification and specifi-
cation of security sinks, we identify the security sinks as po-
tential vulnerabilities using a fast pattern matching approach
and prepare to instrument the source code to set the security
probes.

2.2 Setting Security Probes in Source Code

In this part, we set the security probes which is used to detect
vulnerabilities in source code by instrumenting the source
code. Based on our specification table, for each sink in the
source code, we insert security probes (assertions) right be-
fore the sink. The condition of the assertion depends on
the Requirement column in the table. After setting up these
probes, the program is able to detect a violation of the se-
curity requirement by reporting “assertion failure” message
when the program is executed with abnormal input. Fig-

ure 2 (1) to (4) illustrate the insertion of security probes for
each type of sink in the source code respectively. As we can
see, the probes are actually security constraints (SCs) which
ensure the safety usage of security sinks. Any invalid usage
of the sink will be caught by the probes and reported as a
vulnerability.

2.3 Violation Detection (Vulnerability Verification)

After we set security probes in the source code, we have
prepared a program equipped with vulnerability detection
probes. We apply concolic (concrete + symbolic) execution
technique in our mechanism execute the instrumented pro-
gram and generate inputs to make the violation of security
constraints of sinks. The general principle of the verification
is to find inputs which satisfy all the program constraints
(PCs) but violate the security constraints (SCs) as shown in
Fig. 1.

Symbolic execution and concolic execution have been
widely used in software testing and some have shown good
practical impact, such as KLEE [9] and CUTE [12]. Our
approach for concolic testing to verify potential vulnera-
ble sinks can be described as follows. The program is first
executed with concrete input data. During the execution,
symbolic path constraints over the symbolic values at each
conditional branch are collected. When the execution termi-
nates, a new symbolic path formula is generated by negating
one of the collected constraints. Then, the new set of con-
straints are sent to a SMT constraint solver [13] to solve the
constraints and the solver generates the next input value to
traverse another execution path. The program is iteratively
executed with newly generated input in order to traverse dif-
ferent paths of the program. A vulnerability is verified when
the false branch of the assertion statement is executed and
the “assertion failure” message pops up at a certain execu-
tion.

3. Experimental Results

We have implemented our mechanism by developing a pro-
totype system. We choose CREST-BV [14] as a basic con-
colic execution engine because of its good performance in
test input generation speed.

Dataset: For the experiment, we collected 400 test
cases from Juliet Test Suite [10]. Juliet Test Cases were
created by US National Security Agency (NSA) and they
are widely used for testing the effectiveness of software vul-
nerability detection and analysis tools. In each test case,
there are good sinks and bad sinks which provide us ground
truth for our evaluation. For example, in the test case file
named CWE121 Buffer Overflow CWE131 memcpy 01.c,
there are one good sink which is not vulnerable and one bad
sink which is actually a vulnerability. The 400 test cases
consist of four different types of sinks. Table 2 shows the
distribution of test cases and the number of good and bad
sinks regarding to each type.

Detection result: The evaluation metrics of our system

2388
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.9 SEPTEMBER 2016

Table 2 Test cases from Juliet Test Suite.

Type
of # of # of

test cases bad sinks good sinks

Buffer overflow 100 100 138
Integer overflow 100 100 145

Format string 100 100 128
Divide-by-zero 100 100 181

Total 400 400 592

Table 3 Detection result.

Type
of # of # of execution
TPs FPs FNs time(s)

Buffer overflow 93 0 7 26.53
Integer overflow 96 0 4 22.31

Format string 100 0 0 15.24
Divide-by-zero 100 0 0 17.39

Sum 389 0 11 81.47

Fig. 3 CVE-2014-9112 vulnerability from Cpio-2.6.

tested on Juliet Test Cases are shown in Table 3. For the
vulnerability detection (detection of bad sinks), we measure
the number of true positives (TP), false positives (FP), false
negatives (FN), precision and execution time regarding to
each type of sink.

According to the table, we get zero false positives on
all four types of sinks and we only get a few false nega-
tives (missing vulnerabilities) in buffer overflow and integer
overflow types. In our method, not all the vulnerabilities can
be recognized because of complex code structure for some
cases. This can be solved by improving our system to cor-
rectly analyze the complex code structure that we cannot
handle now. We then calculate the precision (T P

T P+FP) and
recall (T P

T P+FN) value for the overall detection result. As a
result, our system gets the Precision of 100% which means
zero false positives and the Recall of 97.3% on the whole
data set.

Even though we only consider four basic types of vul-
nerability here, the mechanism can be easily extended to
cover more types such as null pointer de-reference vulnera-
bility by extending security specifications.

Real case: Cpio-2.6 (CVE-2014-9112). We also
demonstrate the effectiveness of our mechanism to detect
a vulnerability in a real open source project. Figure 3
shows the vulnerability (CVE-2014-9112) in program Cpio-
2.6 which is a program to manage archives of files. This

vulnerability is caused by an integer overflow at line 8, the
numeric operation can cause an integer overflow and results
in zero byte allocation for “link name”. This will again re-
sult in a buffer overflow which is at line 10 when the pro-
gram is trying to write “c filesize” number of bytes to zero
space buffer. We apply our mechanism to detect this in-
teger overflow vulnerability by setting the security probe
“assert((unsigned long)c filesize + 1 < 0x00000000ffffffff)”
based on the sink specification table (Table 1) and gener-
ating an input which makes “ f ilesize c = 0x f f f f f f f ” to
report a requirement violation and trigger this vulnerability.

From the above results, our mechanism detects four
popular types of vulnerabilities with zero false positives.
The mechanism can be extended to cover more types of
vulnerabilities by adding more 3-element sink specification
items. Meanwhile, the real case study indicates the practi-
cability of our mechanism to work in real world projects.

4. Conclusion

In this paper, we propose an extendable mechanism to re-
veal vulnerabilities in source code with low false positives
by specifying security requirements and detecting require-
ments violations of the potential vulnerable sinks. Security
requirements of sinks are specified by a 3-element model
{Sink, Argument(s), Requirement} which makes it extend-
able to cover more types of vulnerability. We consider the
detection of a vulnerability as detecting the violation of se-
curity requirements. The experiments conducted with Juliet
Test Suite and a real project show that the proposed mecha-
nism can detect vulnerabilities with low false positive rate
and indicate the extendability of the mechanism to cover
more types of vulnerabilities.

In future work, we will extend the specification method
to cover more complicated vulnerability classes that maybe
require more complicated security requirements.

References

[1] M. group, “Common Vulnerabilities and Exposures (CVE),”
https://cve.mitre.org/, Accessed Jan. 2016.

[2] Wheeler and David, “Flawfinder,” http://www.dwheeler.com/
flawfinder/, Accessed Dec. 2015.

[3] D. Evans and D. Larochelle, “Improving security using extensible
lightweight static analysis,” IEEE Softw., vol.19, no.1, pp.42–51,
2002.

[4] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck, “Chucky:
exposing missing checks in source code for vulnerability discovery,”
ACM CCS, pp.499–510, ACM, 2013.

[5] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck, “Automatic in-
ference of search patterns for taint-style vulnerabilities,” IEEE S&P,
pp.797–812, 2015.

[6] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S.
Fahl, and Y. Acar, “Vccfinder: Finding potential vulnerabilities in
open-source projects to assist code audits,” ACM CCS, pp.426–437,
ACM, 2015.

[7] H. Li, J. Oh, H. Oh, and H. Lee, “Automated source code instrumen-
tation for verifying potential vulnerabilities,” IFIP SEC, vol.471,
pp.211–226, IFIP, 2016.

[8] J. Burnim and K. Sen, “Heuristics for scalable dynamic test gener-
ation,” IEEE Trans. Autom. Sci. Eng., pp.443–446, IEEE Computer

http://dx.doi.org/10.1109/52.976940
http://dx.doi.org/10.1145/2508859.2516665
http://dx.doi.org/10.1109/sp.2015.54
http://dx.doi.org/10.1145/2810103.2813604
http://dx.doi.org/10.1007/978-3-319-33630-5_15
http://dx.doi.org/10.1109/ase.2008.69

LETTER
2389

Society, 2008.
[9] C. Cadar, D. Dunbar, and D.R. Engler, “Klee: Unassisted and au-

tomatic generation of high-coverage tests for complex systems pro-
grams.,” USENIX OSDI, pp.209–224, 2008.

[10] T. Boland and P.E. Black, “Juliet 1.1 c/c++ and java test suite,” Com-
puter, vol.45, no.10, pp.88–90, 2012.

[11] S.D. Paola, “Sinks: Dom Xss Test Cases Wiki Project,” http://code.
google.com/p/domxsswiki/wiki/Sinks, Accessed Jan. 2016.

[12] K. Sen, D. Marinov, and G. Agha, “Cute: a concolic unit testing
engine for c,” ACM FSE, vol.30, no.5, pp.263–272, 2005.

[13] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in
TACAS, vol.4963, pp.337–340, Springer, 2008.

[14] M. Kim, Y. Kim, and G. Rothermel, “A scalable distributed con-
colic testing approach: An empirical evaluation,” IEEE ICST,
pp.340–349, IEEE, 2012.

http://dx.doi.org/10.1109/ase.2008.69
http://dx.doi.org/10.1109/mc.2012.345
http://dx.doi.org/10.1145/1095430.1081750
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1109/icst.2012.114

