
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010
1053

PAPER Special Section on Information and Communication System Security

Abnormal Policy Detection and Correction Using Overlapping
Transition

Sunghyun KIM†, Nonmember and Heejo LEE†a), Member

SUMMARY Policy in security devices such as firewalls and Network
Intrusion Prevention Systems (NIPS) is usually implemented as a sequence
of rules. This allows network packets to proceed or to be discarded based
on rule’s decision. Since attack methods are increasing rapidly, a huge
number of security rules are generated and maintained in security devices.
Under attack or during heavy traffic, the policy configured wrong creates
security holes and prevents the system from deciding quickly whether to
allow or deny a packet. Anomalies between the rules occur when there is
overlap among the rules. In this paper, we propose a new method to de-
tect anomalies among rules and generate new rules without configuration
error in multiple security devices as well as in a single security device.
The proposed method cuts the overlap regions among rules into minimum
overlap regions and finds the abnormal domain regions of rules’ predicates.
Classifying rules by the network traffic flow, the proposed method not only
reduces computation overhead but blocks unnecessary traffic among dis-
tributed devices.
key words: firewall, security policy, policy anomalies, network security,
ACL

1. Introduction

As new attacks are being created every day, new rules also
have been added in security devices. In security devices, the
firewall plays crucial role in network traffic management.
The basic function of a firewall is to screen network commu-
nications to prevent unauthorized access to or from a com-
puter network [1]. The firewall decision to filter out unde-
sired traffic is based on the security policy defined according
to a predefined set of rules.

Most firewall’s rule sets include a large number of rules
and have an order sensitive property. A rule consists of pred-
icates having protocol fields and appropriate action. Based
on the rule’s action, the firewall allows or denies the packet.
Though most firewalls have been improved to handle high
speed network traffic and a lot of rules, wrongly configured
rules not only downgrade performance, but generate secu-
rity holes. As Wool observed [2], most firewalls include var-
ious types of configuration errors, because rule management
is a complicated, complex and error-prone task for network
administrators and system managers.

Most rules are order-sensitive, so that the firewall finds
the first rule applied to packets among a set of rules. Though
there may be no anomaly in the current rules, minor modifi-
cation of rules’ predicates or rules’ order may deny normal

Manuscript received July 9, 2009.
Manuscript revised December 18, 2009.
†The authors are with Korea University, Seoul 136–713, South

Korea.
a) E-mail: heejo@korea.ac.kr

DOI: 10.1587/transinf.E93.D.1053

service or permit attack traffic, which can be the target for
a network attack. Also rule redundancy may downgrades
performance. Such abnormal problems such as redundancy,
shadowing, and spuriousness result from overlap of predi-
cates among rules in a single device or distributed devices.

Based on our observation of network traffic and over-
lap among rules, we propose a new method to remove ab-
normal relations among rules and provide new rules with-
out anomaly in distributed firewalls as well as in a single
firewall. The proposed method splits overlap regions from
rules’ predicates and finds abnormal overlap regions among
rules. It corrects abnormal relations among rules by remov-
ing subsequent rules’ overlap regions without changing the
meaning of the original rule set. The contribution of this
study is as follows:

• The proposed method detects anomalies in overlap re-
gions and generates complete rules without overlap
among rules. Since non-overlapping rules have no rela-
tion to the other rules, their order is worthless and they
can be deleted without influencing others.

• Classifying rules by in-out traffic, we reduced the com-
parison overhead among rules. In network communi-
cation, since incoming traffic is irrelevant to outgoing
traffic, it is unnecessary to compare rules for incoming
traffic with rules for outgoing traffic.

• The proposed method denies unnecessary network traf-
fic from a source network by detecting and correcting
abnormal rules in both sides of traffic flow. Corrected
rules make a source network accept traffic as much as
a destination network sends and a destination network
send traffic as much as a source network accepts.

The remainder of this paper is organized as follows.
§2 briefly outlines related work. §3 explains all types of
anomalies among rules. §4 describes the proposed method.
§5 presents an implemented application and experimental
results. In §6, we summarize our experience.

2. Related Work

A firewall is the network equipment that denies or accepts
a packet based on rules’ policy. As the number of rules
has increased, firewall policy can have some abnormal re-
lations among rules in distributed firewalls as well as in a
single firewall. There have been many challenges to find

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

1054
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

such anomalies and to maintain integrity of the security pol-
icy configuration.

Lui and Gupda [3]–[5] proposed three design princi-
ples for a firewall: consistency, which means that the rules
are ordered correctly; completeness which means that every
packet satisfies at least one rule in the firewall; and compact-
ness which means that the firewall has no redundant rules.
They developed Firewall Decision Diagram (FDD) to im-
plement them. They applied a sequence of five algorithms
to FDD to generate, to reduce, and to simplify the target
firewall rules for maintaining consistency, compactness, and
completeness of the original FDD.

Hamed et al. [6] provided a taxonomy for conflicts in
network security policy. They classified various conflict re-
lations and abnormal types within a single device or among
different devices. They implemented the Security Policy
Advisor (SPA) tool, which uses Ordered Binary Decision
Diagram (OBDD) [7] to present and to manipulate the pol-
icy expressions, for automatic discovery of security policy
conflicts among IPsec as well as firewalls.

Another useful application for security policy, Firewall
Policy Adviser (FPA), was proposed by Al-Shaer et al. [8]–
[10]. They presented a set of techniques and algorithms that
provide automatic discovery of firewall policy anomalies to
reveal rule conflicts and potential problems in legacy fire-
walls, and anomaly free policy editing for rule insertion,
removal, and modification. FPA constructs a policy tree
for firewall rules and state diagram for anomaly discovery
for rules. Traversing them, FPA searches the misconfigured
rules.

Yuan et al. [11] proposed FIREMAN (FIREwall Mod-
eling and ANalysis) implemented by modeling firewall rules
using binary decision diagrams (BDDs) that have been used
successfully in hardware verification and model checking.
FIREMAN performs symbolic model checking of the fire-
wall configurations for all possible IP packets, along all pos-
sible data paths. FIREMAN evaluates firewall configuration
as an entire set not just limited to relation between two fire-
wall rules.

Alfaro et al. proposed MIRAGE (MIsconfiguRAtion
manaGEr) [12], [13] that discovers anomalies in network
security policies deployed over firewalls and network in-
trusion detection systems (NIDSes). In their paper, they
consider not only the analysis of relations among rules, but
also a complete analysis of the entire set of rules. Pointing
out insufficient discovery of abnormal rules in previous re-
searches, they generate completely independent rule set by
removing rules’ overlap from original rules. They compared
all rules in all network path from the network topology.

Tongaonkar et al. [14] proposed a technique that aims
to infer the high-level security policy from low-level repre-
sentation. They generate flattened rules, i.e., rules without
priorities, which are equivalent to the given firewall rule set.
Since removal of priorities from a rule set generates a lot of
rules, they used grouping or merging method to reduce the
size and the complexity of the rule set. But it was developed
for a single device not for multiple devices.

Algorithms to find misconfigured security policy re-
quire high complexity. To reduce the complexity of finding
firewall’s abnormal rules, Pozo et al. [15] proposed Potential
Conflicts Graph (PCG) to diagnose the consistency of fire-
wall rule set. PCG isolates all inconsistencies among every
pair of rules and identifies the minimum number of conflict-
ing rules. However, it cannot diagnose the redundancy as
they stated. Lu et al. [16] proposed and implemented a com-
parison method for firewall rule tables to update or modify
rules. However, they did not provide the method to check
the integrity of the rule set itself.

Among previous researches, MIRAGE was the method
for both correction of policy anomaly and distributed fire-
walls. The proposed method is similar to MIRAGE in that
it generates complete rules without anomaly and overlap in
distributed firewalls as well as in a single firewall. But the
proposed method reduced the number of rules to be com-
pared using rule classification. In a single firewall, since
the proposed method classifies rule by in-out traffic, we can
avoid to compare a rule for incoming traffic with rules for
outgoing traffic.

In distributed firewalls, since all rules are classified ac-
cording to in-out traffic related to each firewall, we compare
a rule within corresponding rule group. Besides, the pro-
posed method is a more complete approach in that it blocks
unnecessary traffic from its source network. Corrected rules
by the proposed method in both sides allow traffic as much
as the source network and destination network attempt to ex-
change. Unlike the previous methods, the proposed method
does not need to search any data path or network path in
a network topology. It requires only network addresses in
rules. Also it is easy to distinguish which parts of rules have
what kinds of problems.

3. Rule Anomaly Problem

We define all abnormal relations among rules in view of the
predicates’ overlap in this section. Each rule in a firewall
has the form <predicates>→ <decision>. <predicates> are
boolean expressions over packets’ protocol fields, such as
source IP address, destination IP address, source port num-
ber, destination port number, and protocol type. <decision>
can be “deny” or “accept”. As rules have increased, it is
hard to maintain integrity and consistency among rules. Ta-
ble 1 and 2 show all possible relations between one rule and
others within a single firewall, intra-policy, and among dis-
tributed firewalls, inter-policy. There can be five relations
between two rules. Based on these relations, we can find
inter-policy anomalies across multiple security devices as
well as intra-policy anomalies in a single security device.

We denote one of rules by rx, ry and assume that rx

has the precedence over ry. Any correlation of two rules,
rx
⋂

ry � ∅, can be represented with three subsets such as
rx − ry, ry − rx and ry ∩ rx. These three subsets do not have
the intersection. Since rx − ry is a subset of rx, ry − rx is
a subset of ry, and ry ∩ rx is a subset of rx and ry both,
rx
⋂

ry � ∅ can be presented by subsets of completely dis-

KIM and LEE: ABNORMAL POLICY DETECTION AND CORRECTION USING OVERLAPPING TRANSITION
1055

Table 1 Intra-policy relations and anomalies. (rx[order] < ry[order])

Relation (a) rx = ry (b) rx � ry (c) rx � ry (d) rx ∩ ry � ∅ (e) rx ∩ ry = ∅

Permit/Permit
Redu.(ry) Part.Redu(ry) Redu.(ry) Part.Redu.(ry) Legitimate

Deny/Deny
Permit/Deny

Shad.(ry) Part.Shad(ry) Shad.(ry) Part.Shad.(ry) Legitimate
Deny/Permit

Table 2 Inter-policy relations and anomalies. (traffic goes from Fx
s to Fy

d)

Relation (a)Fx
s = Fy

d (b)Fx
s � Fy

d (c)Fx
s � Fy

d (d)Fx
s ∩ Fy

d � ∅ (e)Fx
s ∩ Fy

d = ∅

Permit/Permit Legitimate Part.Shad.(Fy
d) Part.Spur.(Fx

s)
Part. Spur.(Fx

s) Spur.(Fx
s)

Part. Shad.(Fy
d) Shad.(Fy

d)

Deny/Deny Redu.(Fy
d) Part.Redu.(Fy

d) Redu.(Fy
d)

Part. Spur.(Fx
s)

Legitimate
Part. Redu.(Fy

d)

Permit/Deny Spur.(Fx
s) Spur.(Fx

s) Part.Spur.(Fx
s)

Part. Spur.(Fx
s)

Redu.(Fy
d)

Part. Redu.(Fy
d)

Deny/Permit Shad.(Fy
d) Part.Shad.(Fy

d) Shad.(Fy
d) Part.Shad.(Fy

d) Legitimate

joint sebset and exactly matching sebset. For the same rea-
son, inclusive relation, rx � ry or rx � ry, can be presented
with completely disjoint subset and exactly matching sub-
set. Therefore, all relations of two rules can be presented by
exactly matched relation and completely disjoint relation.
There is little difference in terms of defining conflicts or
anomalies [3,4,9,10,13]. Based on previous researches, we
redefined policy anomaly simply and clearly in this section.

3.1 Intra-Policy Anomaly

Intra-policy anomalies occur among rules in a single secu-
rity device. Table 1 shows all anomalies in a single firewall.
Overlaps among rules make abnormal relations. That is, if
there was no overlap among rules, anomalies cannot occur
except for irrelevance that is irrelevant with device’s traffic.
If we present correlation and inclusive relation among rules
with exactly matched subset and completely disjoint subset,
anomalies occur only in Table 1’s (a). When rx and ry are ex-
actly matched, such as rx = ry, anomalies like the followings
occur:

Intra-shadowing This occurs when any packet which
matches the preceding rule rx also matches the subsequent
rule ry, and rx has a different decision from ry. For exam-
ple, when rx denies a packet but ry allows that packet, ry is
useless.

Intra-redundancy This occurs when any packet which
matches the preceding rule rx also matches the subsequent
rule ry, and rx has the same decision with ry. For example,
when rx denies a packet and ry also denies that packet, ry is
useless.

3.2 Inter-Policy Anomaly

Inter-policy anomalies occur among rules in distributed se-
curity devices. We define a zone as a network address di-
rectly connected to the security device. Let Fs denote the
source zone security device and Fx

s denote one rule of Fs.
Let Fd denote the destination zone security device and Fy

d

denote one rule of Fd. We assume that network traffic flows
from Fs to Fd and that each device has the default policy or
the device policy. Table 2 shows all anomalies among rules
between Fx

s and Fy
d. If we represent correlation and inclu-

sive relation among rules with exactly matched subset and
completely disjoint subset, anomalies occur in Table 2’s (a)
and (e). Unlike intra-policy, overlaps among rules can be
a normal or abnormal relations depending on rules’ action
such as the following:

Inter-shadowing This happens when the source device
with Fx

s blocks any packet but the destination device with Fy
d

allows the packet. Fy
d is unnecessary.

Inter-redundancy This happens when the source de-
vice with Fx

s blocks any packet but the destination device
with Fy

d blocks that packet again. Fy
d is unnecessary.

Inter-spuriousness This happens when the source de-
vice with Fx

s allows any packet but the destination device
with Fy

d blocks that packet. Fx
s is unnecessary.

4. Resolving Policy Anomaly and Overlaps

We propose a new method to solve the policy anomaly based
on set theory. As described above, we represent all rela-
tions among rules with exactly matched relation or com-
pletely disjoint relation. For that purpose, we devised an ar-
ray data structure, termed RPA (Rule Predicate Array). Each
rule within RPA has only exactly matched or unrelated rela-
tion one another. RPA is used to find and correct the policy
anomaly.

4.1 Rule Predicates Array

In a single firewall, given a set of rules, i.e., R =

{r1, r2, . . . rn}, let F = { f1, f2,, fm} denote the set of m
protocol fields presented in R. Let Pfi = {p1

fi
, p2

fi
, p3

fi
,}

denote the set of the predicates associated with fi in R.
Vfi = {v1

fi
, v2

fi
, v3

fi
, . . .} denotes the set of distinct compara-

tive values extracted from Pfi used in R in ascending order.
We can describe one rule of R, rx, such as following:

1056
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

rx = pi
f1
∧ p j

f2
∧pk

fm
(1)

A predicate used in R can be presented as pj
fi
= fi⊗vk

fi
, where

⊗ is an operator used in the predicate(=,≤,≥,etc.). There-
fore, Eq. (1) can be described as following:

rx = f1 ⊗ vi
f1
∧ f2 ⊗ v j

f2
∧ . . . fm ⊗ vk

fm
(2)

As seen in Eq. (2), one rule consists of conjunctive pred-
icates of protocol fields. Let dom(fi) denote fi’s domain.
When k constant values exist, dom(fi) can be divided into
(2k + 1)’s interval regions and constant regions at most. Ac-
cording to predicates’ comparative values, domain of proto-
col field fi can be divided into constant regions and interval
regions. That is, dom(fi) can be divided into (2k + 1)’s re-
gions, where k = |Vfi |, such as following:

dom(fi) = {v1
fi
> d1

fi
, d2

fi
= v1

fi
, v1

fi
< d3

fi
< v2

fi
,

d4
fi
= v2

fi
, . . . , d2k

fi
= vk

fi
, vk

fi
< d2k+1

fi
} (3)

In Eq. (3), dom(fi) can be divided into two subsets,
{d2

fi
, d4

fi
, . . . d2k

fi
} and {d1

fi
, d3

fi
, . . . , d2k+1

fi
}. {d2

fi
, d4

fi
, . . . , d2k

fi
} is

constant regions and the same to Vfi , which is the set of fi’s
comparative values of used in R. {d1

fi
, d3

fi
, . . . , d2k+1

fi
} is inter-

val regions between two constant regions. Based on values
of fi, Pfi is determined and depending on Pfi , matched rules
among r1, r2, . . . rn are determined. In one of fi’s domain re-
gions, we denote the domain bitmap to represent the result
of each rule in R by s j

fi
, i.e., s j

fi
=x1 · x2 · x3 . . . · xn, where

n is the number of rules. We let S fi = {s1
fi
, s2

fi
, . . . , s2k+1

fi
}

denote the set of R’s domain bitmap in each region of
dom(fi). {s2

fi
, s4

fi
, . . . , s2k

fi
} can be pre-computed by Vfi . Also

{s1
fi
, s3

fi
, . . . , s2k+1

fi
} can be obtained with random value in

each interval domain region. Let α denote one of result
bitmaps which show the result of each rule in R. α can be
obtained from each domain bitmap in all protocol fields’ do-
main region as following:

α = si
f1

& s j
f2

& · · · & sk
fm

(4)

In distributed firewalls, when one firewall has a rule set, R,
we can find rules related with R in the other firewalls. We
denote them W = {w1,w2, . . .wp}. After gathering compara-
tive values from predicates used in R and W, we split domain
regions of each protocol field like Eq. (3). In one of fi’s do-
main regions, we denote the domain bitmap to represent the
result of each rule in W by t j

fi
, i.e., t j

fi
=x1 ·x2 ·x3 . . .·xp, where

p is the number of rules in W. Let T fi = {t1
fi
, t2

fi
, . . . , t2k+1

fi
} de-

note the set of W’s domain bitmap in each region of dom(fi).
T fi can be pre-computed by the same way to obtain S fi in all
split regions of dom(fi). Let β denote one of result bitmaps
in W. In a similar way to obtain α like Eq. (4), β can be ob-
tained from each domain bitmap in all protocol fields’ do-
main region as following:

β = ti
f1

& t j
f2

& · · · & tk
fm

(5)

Rule Predicates Array (RPA) is an array data structure hold-
ing the result bitmaps according to divided domain regions

Fig. 1 Structure of RPA (Rule Predicate Array).

Table 3 Eample of firewall rules.

ID SIP SP DIP DP Act.
r1 1.1.1.4 * 2.1.1.[1-255] * A
r2 * * 2.1.1.4 * A
r3 1.1.1.[1-4] * 2.1.1.4 80 D
r4 1.1.1.100 [1-1024] 2.1.1.[1-255] * D

of a protocol field fi. We described the structure of RPA in
Fig. 1 and defined RPA in Definition 1.

Definition 1 (Rule Predicates Array): Given a set of
rules R={r1, r2, . . . rn} and W={w1,w2, . . .wp}, let Vfi de-
note a set of distinct comparative values extracted from all
predicates of a protocol fields fi in R and W, i.e. Vfi =

{v1
fi
, v2

fi
, . . . , vk

fi
}. Rule Predicates Array for fi RPAfi with k

distinct constants is defined as an array of (2k + 1) regions.
Each RPA has following entries:
• Region identifier(rif): An identifier indicates whether its
corresponding region is a constant region or an interval re-
gion. If RPAfi [j], the jth of RPAfi , is constant, it holds one
element of Vfi . Otherwise, RPAfi [j].ri f = null, implying
that RPAfi [j − 1].ri f < RPAfi [j].ri f < RPAfi [j + 1].ri f .
• Zone domain bitmap(zdb[1..n]): A bitmap stores the pre-
computed R’s result of its corresponding domain region. In
the jth region RPAfi [j], the kth bit of the bitmap is set to
0, i.e., RPAfi [j].zdb[k] = 0, if rk’s predicate for fi whose
comparative value falls within the region RPAfi [j] cannot
satisfy the predicates for fi. Otherwise, the kth bit is set to 1.
i.e., RPAfi [j].zdb[k] = 1.
• Others domain bitmap(odb[1..p]): A bitmap stores the
pre-computed W’s result of its corresponding domain re-
gion. It is set by the same way as zone domain bitmap.

4.2 Intra-Policy Detection and Correction

Due to their deployment, the security device can see only
two types of network traffic. One is incoming traffic, which
has home network in source address field and has external
network address in destination address field. The other is
outgoing traffic which has the opposite source and destina-
tion address against incoming traffic. Therefore, we clas-
sified all rules into two groups, rules for incoming traffic
and rules for outgoing traffic. We denote them by Rin and
Rout, respectively. If there is any rule not included in Rin and
Rout, we detect it as an irrelevance anomaly, which is caused
by the rule that is irrelevant to traffic of the device. After
classifying rules, we check the integrity of Rin and Rout, re-
spectively. That results in reduction of the number of rules
to be compared.

We explain only the detection and correction process
for outgoing rules because the other is the same process. We

KIM and LEE: ABNORMAL POLICY DETECTION AND CORRECTION USING OVERLAPPING TRANSITION
1057

have four outgoing rules in Table 3. Using the rules’ pred-
icate, we made four RPAs for each protocol field, such as
source address (SIP), destination address (DIP), source port
(SP), and destination port (DP). As described Algorithm 1,
we extract distinct comparative values from the rules’ pred-
icates and divide domain like Eq. (3). Each zone domain
bitmap is set by S etBitmap which returns a domain bitmap
of Rout in certain domain region. In the algorithm, v j

fi
+ 1

means that interval region between v j
fi

and v j+1
fi

. We merge
the regions having the same bitmap to reduce the array size.
Rules share or exclusively possess certain domain regions in
RPA. Since RPA cuts the domain of each protocol field into
the minimum region, all rules have only two cases, overlap
and non-overlap. Therefore, correlation and inclusive rela-
tion among rules are removed in RPA.

For example, RPAS P in Fig. 2 is created as follows.
First, we gather the predicates’ comparative values from
rules like 1, 1024, and 65535 because “any” means all do-
main regions of source port, from 1 to 65535. Therefore,
dom(S P) is divided into three regions like 1-1023, 1024, and
1025-65535. Since all rules’ predicates are matched in the
domain region 1-1023 and 1024, their bitmap have “1111”.
But since r4’s predicate is not matched in the domain region
1024-65535, its bitmap has “1110”. Two regions are merged
because the bitmaps in 1-1023 and 1024 are the same.

Algorithm 2 shows the process of the anomaly detec-

Algorithm 1 CreateIntraRPA(fi, Rout)
Require: Rout = {r1, r2, ..rn}
Ensure: RPA fi

Extract V fi = {vi
f1
, v j

f2
, . . . vk

fm
} from Rout

k ← |V fi |
Create (2k + 1)’s size of RPA for fi
v0

fi
⇐ 0

for j = 0 to k do
if v j

fi
� v j−1

fi
+ 1 then

RPA fi [2 j].ri f ⇐ v j
fi

RPA fi [2 j + 1].ri f ⇐ null

RPA fi [2 j].zdb⇐ SetBitmap(v j
fi
,Rout)

RPA fi [2 j + 1].zdb⇐ SetBitmap(v j
fi
+ 1,Rout)

end if
end for

Algorithm 2 ResolveIntraPolicy(rx)

Require: rx : f1 ⊗ vi
f1
∧ f2 ⊗ v j

f2
∧ . . . fm ⊗ vk

fm
Ensure: NL : linked list of normal rules, AL : linked list of abnormal rules

Extract vi
f1
, v j

f2
, . . . vk

fm
from rx

Create m-element of Array, Azdb and VT = {vi
f1
, v j

f2
, . . . vk

fm
}

for t = 0 to m do
Azdb[t]⇐ RPA ft [VT [t]].zdb)
rbmap⇐ rbmap & Azdb[t]

end for
if GetHighestNonzeroPosition(rbmap) = x then

InsertList(NL,VT, rbmap)
else

InsertList(AL,VT, rbmap)
end if

Fig. 2 Anomaly detection and correction of abnormal rules using RPAs
for rules in Table 3. (“X” means “Don’t Care Bit” and colored rows have
anomaly.)

Table 4 Rewritten rules without overlap.

ID SIP SP DIP DP Act.
r1 1.1.1.4 * 21.1.1.[1-255] * A
r2 1.1.1.[1-3] * 2.1.1.4 * A

1.1.1.[5-255] * 2.1.1.4 * A
r3 Removed
r4 1.1.1.100 [1-1024] 2.1.1.[1-3] * D

1.1.1.100 [1-1024] 2.1.1.[5-255] * D

tion and correction of each rule. From the conjunctive com-
bination of each zone domain bitmap in all RPAs, as Eq. (4)
means, we can find which rules apply to which domain re-
gions of the protocol fields in a result bitmap. In the algo-
rithm, GetHighestNonzeroPosition returns the position of
the highest non-zero bit in the result bitmap. If the position
of the highest non-zero bit in rx’s result bitmap is not x, the
preceding rule is applied in that domain region because of
the priority among rules. Otherwise, rx is the first rule to be
applied to that domain region. Finding the first rule to be ap-
plied in rx’s domain region, we split rx into normal rules and
abnormal rules. Split rules are merged to reduce the number
of rules. We merge two rules when result bitmaps are the
same and all protocol field’s domain regions except one are
the same and the exceptional one is consecutive each other.

Fig. 2 also shows the process of anomaly detection and
correction for rules in Table 3. We exclude r1 because r1 is
the highest priority rule. In the case of r4, RPAS IP.zdb is
“0101”, RPAS P.zdb is “1111”, and RPADIP.zdb is “1001”
or “1111”. Therefore, we obtain four result bitmaps. In the
upper two rules and the lower two rules, three values are the
same and one value is consecutive with the other, they can
be merged. In merged result, “0001” has not any problem
because r4 is the first rule to be applied in that domain re-
gion. But “0101” has a shadowing problem because r2 and
r4 apply the same domain region with different decisions.
Likewise, R3 has a redundant anomaly in all domain regions.
We can rewrite R2, R3, and R4 with rows which have corre-
sponding rule applied for the first time. The new generated
rules are corrected from original rules without overlap and
anomaly. Final results are presented in Table 4. If there are

1058
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

Table 5 Final rules without anomaly.

ID SIP SP DIP DP Act.
r1 1.1.1.100 [1-1024] 2.1.1.[1-3] * D
r2 1.1.1.100 [1-1024] 2.1.1.[5-255] * D
r3 1.1.1.[1-255] * 2.1.1.[1-255] * A

Fig. 3 Example of firewall deployment.

rules with different action, we choose only rules with the
same action and add default rule, as in Table 5. The pro-
posed method creates many rules because it splits rules to
make non-overlapping states. Our method for distributed
security devices is similar to the intra-policy method.

4.3 Inter-Policy Detection and Correction

Anomaly detection and correction for multiple devices is a
little more complicated than for a single device. As you can
see in Table 2, we have to consider not only rules’ decision
but default decision or device policy. A “zone” is network
address directly connected to the firewall’s interface and rep-
resent firewall’s subnetwork. We assume that one firewall
can have multiple zones, but a zone is allocated to one fire-
wall. We classify firewalls into two types by network flow.
One is the gateway firewall which is charged with entire net-
work traffic between the external network and the internal
network. The other is the zone firewall which is charged
with the subnetwork traffic between its own zone and the
other zones or the external zone.

We assume that each firewall has non-overlapping rules
due to our intra-policy method. All rules have the same de-
cision and are classified into incoming rules and outgoing
rules. Figure 3 shows a simple example of a network dia-
gram deploying three zone firewalls and one gateway fire-
wall. For simplicity, we generalize port predicates using
“any” type. All rules have “accept” action after applying
our intra-policy method. We denote each zone in the net-
work by z1, z2, .., zn. Also let zint denote the internal net-
work address and zext denote the external network address.
Fz1 , Fz2 , . . . , Fzn denote the set of packets allowed in each

zone firewall. We denote the set of packets allowed in gate-
way firewall by Fgw. Let Fd=zi

z j
denote the traffic set heading

for zi in Fzj . Likewise, Fd=zi
gw denote the traffic set heading

for zi in Fgw. Fd=zi
z j

is outgoing traffic in Fzj , while Fd=zi
gw is

internal traffic in Fgw. The ideal state is that the other fire-
walls have to permit as many as packets that are accepted
by zi. That is, the zone firewall zi’s incoming traffic is the
same as the other firewalls’ outgoing traffic heading for zi as
follows:

Fd=zi
zi
=

n∑

j=1

Fd=zi
z j
+ Fd=zi

gw (i � j) (6)

The gateway firewall ought to have all zone firewall’s traffic
heading for internal and external addresses as follows:

Fd=zext
gw =

n∑

j=1

Fd=zext
z j
, Fd=zint

gw =

n∑

j=1

Fd=zint
z j

(7)

In a firewall Fzi , let Wout denote the set of the other fire-
walls’ rules heading for Fzi , i.e. Wout = {w1,w2, ..wp}. As
Algorithm 3 describes, RPAs for Fzi are created with one
firewall’s incoming rules(Rin) and the other firewalls’ rules
heading for Fzi (Wout). Just as in the intra-policy method,

Algorithm 3 CreateInterRPA(Rin, Wout)
Require: Rin = {r1, r2, ..rn}, Wout = {w1,w2, ..wp}
Ensure: RPA fi

Extract V fi = {vi
f1
, v j

f2
, . . . vk

fm
} from Rin and Wout

k ← |V fi |
Create (2k + 1)’s size of RPA for fi
v0

fi
⇐ 0

for j = 0 to k do
if v j

fi
� v j−1

fi
+ 1 then

RPA fi [2 j].ri f ⇐ v j
fi

RPA fi [2 j + 1].ri f ⇐ null

RPA fi [2 j].zdb⇐ SetBitmap(v j
fi
,Rin)

RPA fi [2 j + 1].zdb⇐ SetBitmap(v j
fi
+ 1,Rin)

RPA fi [2 j].odb⇐ SetBitmap(v j
fi
,Wout)

RPA fi [2 j + 1].odb⇐ SetBitmap(v j
fi
+ 1,Wout)

end if
end for

domain region of each protocol field are sliced into a mini-
mum overlap in RPAs as Eq. (3) describes. However, since
RPAs are created by two rule sets, Rin and Wout, RPAs for
Fzi have two domain bitmaps in each domain region, one
for Fzi and one for the other firewalls. From Eq. (4) and
Eq. (5), we obtain two result bitmaps in each domain re-
gion as Algorithm 4 represents. Comparing them, we can
find which firewall has anomaly. As a result, Fzi ’s incoming
rules are compared with the other firewalls’ outgoing rules
heading for Fzi in each split domain region as Eq. (6) de-
scribes. Likewise, RPAs for Fgw can be used to detect and
correct anomaly among gateway firewall and zone firewalls
as Eq. (7) describes.

KIM and LEE: ABNORMAL POLICY DETECTION AND CORRECTION USING OVERLAPPING TRANSITION
1059

Fig. 4 Detection and correction of abnormal rules among one zone fire-
wall and the other firewalls. (Colored rows have anomaly.)

Fig. 4 presents the process of detection and correction
of Fz1 ’s incoming rules and the other firewalls’ outgoing
rules heading for Fz1 in Fig. 3. Since the rules’ policy is
“accept”, the normal case is that both Fz1 ’s result bitmap(α)
and the other firewalls’ result bitmap(β) must have the same
bitmap state; all zero bits or only one bit set to 1. All zero
bits means that since there is no rule in that domain region,
the default policy is applied. From the first row of bitmap
combination table in Fig. 4, we know that Fz1 ’s r1 has shad-
owing anomaly because a packet denied by other firewall
is allowed by Fz1 ’s r1 in source addresses [2.1.1.1 − 4] and
destination address [1.1.1.1− 4]. Likewise, if only the other
firewalls’ result bitmap has a bit set to 1, it means spurious-
ness anomaly because a packet allowed by other firewall is
denied by Fz1 . Since the rules’ policy is “accept”, there is
no redundancy among rules as described Table 2.

We distinguish normal rows or abnormal rows from

Algorithm 4 ResolveInterPolicy(GRPA)
Require: GRPA = {RPA f1 ,RPA f2 , . . . ,RPA fm }
Ensure: NL : linked list of normal rules, AL : linked list of abnormal rules

Create m-element of Array, Asize[1..m] =
{|RPA f1 |, |RPA f2 |, . . . , |RPA fm |}

for i = 0 to Asize[1] do
for j = 0 to Asize[2] do

. . .
for k = 0 to Asize[m] do

zbmap = RPA f1 [i].zdb & RPA f2 [j].zdb &
. . . & RPA fm [k], zdb

obmap = RPA f1 [i].odb & RPA f2 [j].odb &
. . . & RPA fm [k], odb

if zbmap � 0 or obmap � 0 then
if zbmap � 0 and obmap � 0 then

InsertList(NL,RPA f1 [i].ri f ,RPA f2 [j].ri f ,
. . . ,RPA fm [k], ri f , zbmap, obmap)

else
InsertList(AL,RPA f1 [i].ri f ,RPA f2 [j].ri f ,

. . . ,RPA fm [k], ri f , zbmap, obmap)
end if

end if
end for
. . .

end for
end for

Table 6 Final rules without abnormal relations.

ID SIP SP DIP DP Act.
Fz1 ’s r1 2.1.1.[5-10] * 1.1.1.[1-10] * A
Fz1 ’s r2 3.1.1.[1-10] * 1.1.1.[5-10] * A
Fz1 ’s r3 4.1.1.[1-10] * 1.1.1.[1-10] * A
Fz2 ’s r1 2.1.1.[5-10] * 1.1.1.[1-10] * A
Fz3 ’s r1 3.1.1.[1-10] * 1.1.1.[5-10] * A
Fgw’s r1 4.1.1.[1-10] * 1.1.1.[1-10] * A

combination with each domain region in RPAs. Since this
process splits rules, we merge split rules to reduce the size
of rules as the intra-policy method does. Fz1 ’s incoming
rules and the other firewalls outgoing rules heading for Fz1

are newly rewritten as in Table 6. We can obtain complete
and consistent rules if we repeat this process in all firewalls.
These rules allow only network traffic as much as the source
and destination network attempt to exchange.

5. Implementation and Experiments

We implemented the proposed method in a software pro-
totype called PAR (Policy Anomaly Resolver) to verify in
a real network environment. PAR has been developed us-
ing C++ on a Windows XP machine (1 Gbyte Memory and
Core 2 2.13 GHz CPU). PAR parses ACL rules and forms
four RPAs as described above. We used two different ACL
rule sets from one Korea online game company’s two dif-
ferent internal switches for our experiments. Table 7 shows
the characteristics of two ACL rule sets in detail. “ACL1” is
rules for outgoing traffic while “ACL2” is rules for incoming
traffic. “#SIP, #SP, #DIP, and #DP” means that the number
of distinct comparative values extracted from the predicates
of corresponding protocol fields.

The experiments for intra-policy method are presented
in Table 8. Our intention is to show the effectiveness of
the proposed method in view of two aspects, detection and
correction. First, we found how many anomalies were ex-
isted in rule sets. Since overlaps occur the anomaly, “ACL2”
is much better managed rule set than “ACL1”. In “ACL1”
which has 3770 overlaps, 40 rules were removed because
they had complete anomaly. But in “ACL2” which has 9
overlaps, no rule had complete anomaly. Next, when over-
laps among rules were removed, “ACL1” generated 68%
more rules than original rules and one rule was split up to
13 new rules at maximum. On the other hand, “ACL2” gen-
erated only 2.3% more rules and one rule was split only 2
at most. Depending on degree of overlaps, the number of
new generated rules were various but they were acceptable
degree.

The performance of the proposed method was closely
related to overlaps among rules. The execution time in Ta-
ble 8 means the sum of each rule’s execution time. In as-
pect of performance, the size of RPA, which is the num-
ber of split domain region of protocol field, does not have
great influence on execution time. The major factors for
performance are the number of overlaps and the boundary
of overlaps among rules. The number of overlaps affects

1060
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

Table 7 The number of rules and distinct values of protocol fields in two
ACL files.

ID rules #SIP #SP #DIP #DP overlap
ACL1 277 38 45 95 13 3770
ACL2 388 191 15 62 21 9

Table 8 Results of detection and correction for intra-policy.

ID exec. # rewritten # removed # max.
(sec.) rules rules split rules

ACL1 3 439 40 13
ACL2 1.1 395 0 2

the number of split rules because the subsequent rules are
split to avoid overlap. Likewise, the boundary of overlaps
affects both the number of combined results and the num-
ber of split rules. For example, if all predicates of a rule
have only a constant IP address and port number, the com-
bined result has only one. But if a predicate of a rule has
wide IP addresses or port numbers like “any”, which covers
all the domain regions of the corresponding protocol field,
the combined results are generated as many as the number
of split domain regions. “ACL1” includes 723 rules having
one “any” predicate, 95 rules having two “any” predicates,
and 6 rules having three “any” predicates. “ACL2” includes
193 rules having one “any” predicate, 30 rules having two
“any” predicates, and 3 rules having three “any” predicates.
As a result, “ACL1”, which has 40% less rules than “ACL2”,
needed about 3 times process time because of overlaps.

6. Conclusions

Security policy has a critical role for network protection.
Policy maintenance is a complex and error-prone task, as
recognized by many people. The policy anomaly problem
is caused from overlap among rules. We proposed a new
method not only to detect rule anomaly but also to rewrite
new rules. The proposed method removes all anomalies
among rules in multiple devices as well as in a single de-
vice. It uses a special array data structure which replaces in-
clusive overlap and correlated overlap with exactly matched
overlap or non-overlap.

We implemented the proposed method into application
called PAR (Policy Anomaly Resolver) and tested real rule
sets. Since PAR can produce new rules without order depen-
dency and anomaly, deletion or order change of certain rule
does not effect the other rules. In case of rule addition or rule
modification, we can check whether it causes any problem
with the other rules in advance. Since the proposed method
resize rules as much as source and destination need, the
proposed method blocks unnecessary traffic and allows traf-
fic as much as source and destination attempt to exchange.
The proposed method supports consistency and complete-
ness but not compactness in firewall design principals. Be-
sides, it has disadvantages in processing time and memory
requirement for a large scale rules due to the combination of
divided domain regions. Therefore, we are studying ways to
reduce the complexity and the size of rules to be rewritten.

Acknowledgments

This work was supported by the MKE (Ministry of Knowl-
edge Economy), Korea, under the ITRC program super-
vised by the NIPA (National IT Industry Promotion Agency)
(NIPA-2009-(C1090-0902-0016)) and National IT Industry
Promotion Agency (NIPA) under the program of Software
Engineering Technologies Development and Experts Edu-
cation. Additionally supported by the IT R&D program of
MKE/KEIT (2008-S-026-02, The Development of Active
Detection and Response Technology against Botnet).

References

[1] R. Strasberg and Gondek, The Compelete Reference Firewalls,
MacGrawHill, Nov. 2002.

[2] A. Wool, “A quantitative study of firewall configuration errors,”
Computer, vol.37, no.6, pp.62–67, June 2004.

[3] M.G. Gouda and X.Y.A. Liu, “Firewall design: Consistency, com-
pleteness, and compactness,” 24th Int. Conf. Distributed Computing
Systems (ICDCS), 2004.

[4] A.X.L. Mohamed and G. Gouda, “Structured firewall design,” Com-
put. Netw., vol.51, no.4, pp.1106–1120, 2007.

[5] A.X. Liu and M.G. Gouda, “Diverse firewall design,” IEEE Trans.
Parallel Distrib. Syst., vol.19, no.9, pp.1237–1251, Sept 2008.

[6] H. Hamed and E. Al-Shaer, “Taxonomy of conflicts in network se-
curity policies,” IEEE Commun. Mag., vol.44, no.3, pp.134–141,
2006.

[7] R. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. Comput., vol.35, no.8, pp.677–691, Aug. 1986.

[8] E.S. Al-Shaer and H.H. Hamed, “Modeling and management of fire-
wall policies,” IEEE eTrans. Netw. Serv. Manage., vol.1-1, April
2004.

[9] R.B. Ehab Al-Shaer, H. Hamed, and M. Hasan, “Conflict classifica-
tion and analysis of distributed firewall policies,” IEEE J. Sel. Areas
Commun., vol.23, no.10, pp.2069–2084, 2005.

[10] E.S. Al-Shaer and H.H. Hamed, “Discovery of policy anomalies
in distributed firewalls,” IEEE INFOCOM, pp.2605–2616, March
2004.

[11] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapatra,
“Fireman: A toolkit for firewall modeling and analysis,” IEEE
Symp. Security and Privacy, 2006.

[12] F.C.J.G. Alfaro and N. Boulahia-Cuppens, “Complete analysis of
configuration rules to guarantee reliable network security policies,”
Int. J. Infomation Security, pp.103–122, Oct. 2008.

[13] J.A.F. Cuppens and N. Cuppens-Boulahia, “Detection and removal
of firewall misconfiguration,” Network and Information Security,
pp.154–162, 2005.

[14] N.I. Alok Tongaonkar and R. Sekar, “Inferring higher level policies
from firewall rules,” Proc. 21st conference on Large Installation Sys-
tem Administration Conference, 2007.

[15] R.M.G.S. Pozo and R. Ceballos, “Fast algorithms for consistency-
based diagnosis of firewall rule sets,” Third International Conference
on Availability, Reliability and Security, 2006.

[16] J.H.L. Lu, R. Safavi-Naini, and W. Susilo, “Comparing and debug-
ging firewall rule tables,” Int. J. Infomation Security, pp.143–151,
Dec. 2007.

KIM and LEE: ABNORMAL POLICY DETECTION AND CORRECTION USING OVERLAPPING TRANSITION
1061

Sunghyun Kim received the B.S. degree
in Computer Science from Pukyung University,
Korea, in 1994, and the M.S. degree in Com-
puter Science from Yonsei University, Korea, in
2006. Currently, he is a Ph.D. candidate in Com-
puter Science and Engineering, Korea Univer-
sity. His research interest includes network se-
curity and security policy.

Heejo Lee is an associate professor at the
Division of Computer and Communication En-
gineering, Korea University, Seoul, Korea. Be-
fore joining Korea University, he was at Ahn-
Lab, Inc. as a CTO from 2001 to 2003. From
2000 to 2001, he was a postdoctorate at the De-
partment of Computer Sciences and the security
center CERIAS, Purdue University. Dr. Lee re-
ceived his B.S., M.S., Ph.D. degrees in Com-
puter Science and Engineering from POSTECH,
Pohang, Korea. Dr. Lee serves as an editor of the

Journal of Communications and Networks. He has been an advisory mem-
ber of Korea Information Security Agency and Korea Supreme Prosecutor’s
Office. With the support of Korean government, he worked on construct-
ing the National CERT in the Philippines (2006) and consultation on cyber
security in Uzbekistan (2007) and Vietnam (2009). More information is
available at http://ccs.korea.ac.kr

