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SUMMARY  From the introduction of CodeRed and Slammer worms,
it has been learned that the early detection of worm epidemics is important
in order to reduce the damage resulting from outbreaks. A prominent char-
acteristic of Internet worms is the random selection of subsequent targets.
In this paper, we propose a new worm detection mechanism by checking
the random distribution of destination addresses in network traffic. The
proposed mechanism constructs a matrix from network traffic and checks
the rank of the matrix in order to detect the spreading of Internet worms.
From the fact that a random binary matrix holds a high rank value, ADUR
(Anomaly Detection Using Randomness check) is proposed for detecting
unknown worms based on the rank of the matrix. From experiments on
various environments, it is demonstrated that the ADUR mechanism ef-
fectively detects the spread of new worms in the early stages, even when
there is only a single host infected in a monitoring network. Also, we show
that ADUR is highly sensitive so that the worm epidemic can be detectable
quickly, e.g., three times earlier than the infection of 90% vulnerable hosts.
key words: Internet worm, early detection, randomness, traffic matrix,
rank

1. Introduction

An Internet worm is a malicious code that propagates
by replicating itself onto other computers. Such a self-
replicating malicious code scans vulnerable hosts on a net-
work, and replicates itself to vulnerable hosts without user
intervention. The first worm was the Morris worm, un-
leashed in 1988, since then, the number of incidents of In-
ternet worms has grown, and continues to grow drastically.
CodeRed and Nimda worms infected hundreds of thousands
of vulnerable computers in 2001. A range of targets, from
public institutes to personal users, suffered from the dam-
age caused by CodeRed and Nimda. The amount of damage
totaled millions of dollars [1]-[4].

With regard to the history of Internet worms, the Slam-
mer worm [5] is known as the fastest spreading worm. It
takes a mere 10 minutes, to infect 90 percent of vulnerable
hosts on the Internet. The number of infected hosts doubles
every 8.5 seconds. This speed is considerably faster than
CodeRed, which doubles every 37 minutes. The first step
toward countering a worm epidemic is “early detection.”
However, signature-based detection algorithms are not ef-
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fective for detecting new worms or polymorphic worms,
since they can always change codes. Anomaly-based ap-
proaches can be used for detecting such worms, at the ex-
pense of a higher degree of complexity and false alarms.

In this paper, a new method for detecting the spread of
Internet worms, which is named ADUR (Anomaly Detec-
tion Using Randomness check), is proposed. The ADUR
mechanism can detect a new worm by measuring the ran-
domness of destination addresses in network traffic, where
the randomness is formed when a worm propagates ran-
domly over the Internet. In checking the randomness of ad-
dress distribution, ADUR distinguishes between the state of
normal conditions and the state of worm epidemics. The
two main features of ADUR are the use of “matrix” repre-
sentations and exclusive-or (XOR) operations. Matrix rep-
resentations provide many benefits to implement particular
operations, regardless of network size and traffic volume.
The XOR operator diminishes the effect of normal traffic
and magnifies the effect of worm traffic, which results in re-
duced false alarms. In measuring the dynamics of the rank
of the traffic matrix, it is ensured that ADUR can detect a
future worm epidemic in the early stages of propagation.

The main contributions of this study can be divided into
three key areas. First, a novel approach is proposed to de-
tect unknown worms based on the randomness of worm traf-
fic. Second, we show that an anomaly detection algorithm
based on a matrix construction and its simple XOR opera-
tion greatly increases the flexibility and the accuracy of de-
tection. Finally, the algorithm provides additional benefits
such as indicating propagating directions and disclosing in-
fected subnet locations.

The subsequent sections of this paper are organized
as follows. In Sect.2, previous research on scan detection
and related work is discussed. In Sect.3, scanning meth-
ods of Internet worms, used for selecting a target host, are
explored. Section 4 describes the method of checking the
randomness of a binary matrix. In Sect. 5, the ADUR mech-
anism is proposed and the reason why it uses the XOR op-
erator is presented. The evaluation of the proposed ADUR
mechanism is presented in Sect. 6. Finally, the paper con-
cludes in Sect. 7.

2. Related Work
In general, algorithms to detect worms are divided into two

classes, signature based and anomaly based detection algo-
rithms. The signature based worm detection algorithm uses
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a pattern matching method with the information of previous
known worms. The anomaly based worm detection algo-
rithm uses various characteristics of worms.

The signature based worm detection algorithm is
widely used on most systems for detecting worms. This
system gathers the information of specific worms after the
worm propagates. For example, the CodeRed worm reveals
a pattern composed of specific values in network traffic.
This value can be the signature of the CodeRed worm [1]. If
this signature is detected on network traffic in the future, it
is a worm propagation state. These algorithms have the ad-
vantage of having a low probability of false-positive alarm.
However, they cannot handle an unknown worm properly.

Unlike signature based worm detection algorithms,
anomaly based worm detection algorithms detect new
worms using the activity characteristics of an Internet worm.
Thus, they can detect an unknown worm when the worm has
the same characteristics as Internet worms. The worm de-
tection algorithms can be divided into three categories. The
first method examines the sudden increase of new connec-
tion attempts. The second method examines the sudden in-
crease of connection failures. The third method examines
the sudden increase of abnormal connection attempts.

The first method detects a new worm by counting the
number of new connection attempts. Leckie et al. proposed
a probabilistic model to detect unusual access patterns by
analyzing the connection attempts [10]. In normal states,
this model obtains the probability distribution of source ad-
dresses, destination addresses and port numbers. Then, the
probability distribution is used as a base for determining a
worm epidemic.

The second method detects new worms by counting
the number of connection failures. Symptoms of connec-
tion failures include TCP_RST packets, ICMP destination
unreachable messages and TCP timeouts. The algorithm is
proposed by Vincent Berk et al. [8], [9] detect worms using
ICMP destination unreachable messages. The majority of
the Internet worms generate the target host IP address us-
ing a random generator so that the number of failed con-
nections between source and target hosts will increase in
the worm propagation state. One drawback of the algo-
rithm is the inability of detecting the Internet worm using
IP spoofing since the failure messages will not return to the
infected host. An algorithm, named threshold random work
(TRW), is proposed by Jung et al. [11]. TRW regards the
SYN packet in the initial connection of the TCP protocol
as a means of worm scanning. Abnormal traffic patterns
are found by a sequential hypothesis testing, using infor-
mation from the SYN packet. This method will not work
properly for detecting UDP worms. As well, if the worm
propagates rapidly over the Internet, connection failures in-
creases suddenly and a monitoring system applying TRW
consumes excessive memory due to the per-host recording
of TCP connections. And the TRW method is ineffective to
detect worms using distributed scans, such as Curious Yel-
low [14].

The third method detects new worms by counting the
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number of abnormal connection attempts. One approach re-
lies on the correlation of the DNS queries with outgoing
connections from an enterprise network [12]. The other ap-
proach is derived from the correlation of ARP (Address Res-
olution Protocol) activities from individual network attached
devices [13]. However, in a particular case, normal connec-
tions without DNS queries bring network traffic such as P2P
applications. In this case, DNS based detection algorithm
result in high false positives.

Previous research refers to algorithms requiring com-
plex computation or depending on the specific protocols.
Otherwise, most works require to select an appropriate
threshold to a certain location of a network. Here we de-
fine four main requirements to obtain a viable solution to
detect unknown worms in various network environments.

1. In order to operate on high-speed networks, an algo-
rithm should be light-weight.

2. In order to operate at any place of a network, an algo-
rithm should be location-free for transplantation.

3. In order to detect every possible worm, an algorithm
should not rely on a specific protocol, i.e., TCP or UDP.

4. In order to operate on any network environment, an al-
gorithm should not require any threshold value.

In this paper, a new anomaly worm detection mecha-
nism is proposed using a randomness check, named ADUR.
The ADUR mechanism fulfills the above conditions.

3. Scanning Methods of Active Worms

In this section, the scanning methods of Internet worms are
described and their relationship is presented for the random-
ness of worm traffics.

In order to demonstrate the rapid spreading of an In-
ternet worm, we can use an analytical model, such as the
model of analytical active worm propagation (AAWP) [19].
In the AAWP model, the number of infected hosts at time
i is shown in Eq. (1), where N is the number of vulnerable
hosts, T is the address space used by the worm spreading, s
is the scanning rate and »; is the number of infected hosts at
time 1.

niy1 = n; + [N —ny] (1 - (1 - %) i) (D

In Eq. (1), it is assumed that the starting time is 0, i.e.,
i = 0. The value of ny is equal to the initial hitlist size. Fig-
ure 1 shows the distribution of infected hosts as a function
of time tick. Even with a different hitlist size, the number
of infected hosts increases drastically when the value of n
passes a certain point, e.g., 10,000 in Fig. 1. This is caused
by the fact that, as the propagation proceeds, the number
of scanning packets also increases along with the increased
number of infected hosts. Thus, the number of infection
is accelerated by finding remaining susceptible hosts more
rapidly.

There are various scanning methods for worm propa-
gation [6], [7], [15]. We can classify scanning methods onto
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Various scanning methods of Internet worms.

| Scanning method |

Description

Example |

Random scanning

Target hosts are chosen randomly.

CodeRed II [1], Slammer [5]

Hitlist scanning

The list of vulnerable hosts is used. Outgoing connec-
tions increase suddenly.

Warhol [16]

Topological scanning

The information of target is gathered on the infected
host. Outgoing connections increase suddenly.

Morris [17]

Local scanning

Most targets are selected within the local network.
Failed messages for connection requests increase.

CodeRed [18], Nimda [2]

12

Infected hosts

Permutation scanning This is to avoid the overlapping of scanning ranges. Warhol [16]
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Fig.1  The number of infected hosts as a function of time tick when ng =
1,100, 1000 and 10000, respectively.

five categories as shown in Table 1: random scanning, hitlist
scanning, topological scanning, local scanning and permu-
tation scanning. One easy way of spreading a worm code is
by generating random IP addresses for next targets. How-
ever, this random scanning has a few limitations such as
slow spreading during the early stages of infection and mul-
tiple probes of single hosts. Other scanning methods can
overcome these general inefficiencies of random scanning.

A hitlist scanning worm has a list of IP addresses of
vulnerable hosts. The vulnerable hosts are not likely to form
a particular distribution pattern but can be distributed ran-
domly. Thus, the scanning traffic of a hitlist worm may
have the randomness property in destination addresses. A
Topological scanning worm gathers the information of tar-
get hosts at an infected host. The sequence of target ad-
dresses, gathered on the infected host, also has the random-
ness in the destination address distribution. A local scanning
worm selects random target addresses mainly within the lo-
cal network. Permutation scanning is to divide the scanning
ranges among infected worms in order to avoid the overlap-
ping of scanning ranges. Eventually, the traffic generated
by the permutation scanning worms contains the random-
ness property since the vulnerable hosts may not have a ten-
dency to form a specific distribution but can be distributed
randomly.

Thus, conventional worm propagation strategies pro-
duce the “randomness” in the address distribution of tar-
get hosts. This implies that the spreading of worms can be
monitored by measuring the randomness of destination ad-
dresses in network traffic. In this study, an attempt is made

to measure the degree of randomness in traffic, in order to
catch the fast spreading of high-speed worms.

4. Matrix Rank as a Randomness Metric

Many approaches have been suggested for testing the ran-
domness, and a cost-effective approach is checking the
linear-dependency among fixed-length substrings of its orig-
inal sequence. In order to check the linear-dependence
among rows or columns of a matrix, the rank of a matrix
can be used [21]. Diehard [22] battery of tests can be an
example, which is widely used for testing the quality of a
random number generator.

A straightforward method to compute the rank of a ma-
trix is by counting the number of non-zero rows after ap-
plying the Gaussian elimination method to the matrix. In
other words, the rank of the matrix is equal to the number
of leading 1’s on the matrix [20]. In the case of a random
m X n binary matrix, the rank of the matrix has the following
probability:

r—1 (1 _ 2i—n) (1 _ 2i—m)
r<n+m-—r>—nm
2 E)[ (1-=2n) @
where rank r = 1, 2, ..., min(m, n) [21]. From Eq. (2), the
distribution of probability for a given random matrix can be
obtained. In the case of 64x64 random binary matrices, the
distribution of probabilities for the rank of a random matrix
is shown in Fig. 2.

For further discussion, it is assumed that the traffic ma-
trix is 64 X 64 without loss of generality. Larger networks
can use a larger matrix. If one 64x64 random matrix is
provided, the probability that the rank exceeds 60 is over
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99.995% from Eq. (2). This implies that, if the 64x64 bi-
nary matrix is a random matrix, the rank has a high prob-
ability of being greater than 60. In this way, the rank of a
matrix can be used to determine the randomness of element
distribution.

Fig. 3 shows the rank distributions of various types of
random matrices. The values are inserted into the elements
on matrices randomly and the characteristics of each ma-
trix are guaranteed at the same time. In Fig. 3, a symmetric
matrix, a skew-symmetric matrix, a banded matrix with a
half bandwidth 1 and 5 and a symmetric banded matrix with
a half bandwidth 1 and 5 have a high rank value. The or-
thogonal elements of each matrix contain the randomness
property. As well, the rank of a banded matrix becomes
greater than 60 when the half bandwidth is greater than 5.
This result demonstrates that not only a fully random matrix
for all entries but also a matrix with random elements in the
designated area contains the property of randomness. For
example, if a matrix is a symmetric random binary matrix,
the rank becomes greater than 60.

5. Anomaly Detection Using Randomness Check

We propose an anomaly-based worm detection algorithm,
which is called ADUR (Anomaly Detection Using Ran-
domness check). This section describes the ADUR mecha-
nism, which includes matrix representation of network traf-
fic and the XOR operation of two consecutive matrices. It is
demonstrated how to express network traffic on a matrix and
how to use the XOR operation in order to diminish the effect
of normal traffic and magnify the effect of worm traffic.

897
Table 2  Four states depending on the rank of traffic matrix.
[ State | Description |
Calm Both R (M;) and R (M) remains in a small range.
Flowing R(M 1) suddenly increases but R (M) remains steady
in a small range.
Ebbin R (Mj) remains steady in a small range, however
g R (My) suddenly increases.
Flooding | Both R (M) and R (M) suddenly increase.

5.1 System Design

The ADUR mechanism is to detect the spreading of Internet
worms through checking the randomness of traffic. Traf-
fic data can be classified into two categories based on their
direction: incoming and outgoing. ADUR checks two di-
rections respectively, in order to obtain more accurate attack
information such as either entering or departing the network.
Checking the randomness of traffic can be accomplished by
measuring the rank of the matrix representing network traf-
fic for a given period of time.

Let M; denote the matrix marked with incoming traffic.
Let M, represent the matrix marked with outgoing traffic.
R (M) and R (M) represent the rank of matrix M; and M,
respectively. Then, the value of R (M;) and R (M) can be
used to determine whether the worm is active. There are four
states depending on the ranks R (M;) and R (M) of traffic as
shown in Table 2: calm, flowing, ebbing and flooding. In the
calm state, the ranks of incoming and outgoing traffic matri-
ces remain in a small range. Calm state implies that there is
no suspicious activity so that the network is in normal state.
In the flowing state, the rank of incoming traffic matrix in-
creases, while the rank of outgoing traffic matrix remains in
a small range. The flowing state implies that the network
is under attack from external networks, which are infected
by an Internet worm. In the ebbing state, only the rank of
outgoing traffic matrix increases, which implies that the net-
work is already infected by an Internet worm. The flooding
state is the combination of both flowing and ebbing states.

5.2 Traffic Matrix Design

Matrix representation is described as follows, which can be
used for both incoming and outgoing traffic. Each IP address
is divided into four octets such as

1P, .IP,.IP5.1P4 3)

where the length of each octet is one byte. Matrix expression
consists of two operations. The first one is placement. The
second is storing information. When a packet is captured in
a monitoring network, the packet is mapped into a specific
location of a matrix, which is determined by the destination
address of the packet. A placement function is described in
Eq. (4).

i=Ps/16) x4 A
j= (P4 (mod 16)) x 4 “)
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packets on the network
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|| first 4bit of IP
last 4bit of 1P
first 4bit of 1P,
last 4bit of IP,

i=(IP,/ 16) X 4
j = (P4 (mod 16)) X 4

64X64 traffic matrix

Fig.4  Constructing matrix M by mapping a packet to submatrix m.

Next, a part of information in the packet is stored onto
the matrix. Since Internet worms are likely to change the last
two octets more frequently than the first two octets, the last
two octets can be stored to capture the dynamics of worm
traffic. In case of outgoing traffic, the destination address
of a packet can be used for storing such information onto
the matrix. In case of incoming traffic, the source address is
used instead of the destination address. Figure 4 illustrates
the information stored on a 4x4 submatrix, where the traffic
matrix is 64x64. Furthermore, the 4x4 submatrix consists
of four 1x4 submatrices, i.e. m, my, ms, my. The contents
of 1x4 submatrices are described in Eq. (5).

m; = first 4bit of IP3
my = last 4bit of IP; )
ms = first 4bit of 1P,
my = last 4bit of 1P,

There are other ways to generate traffic matrix by us-
ing a different placement function and storing different parts
of information. However, they should have two conditions
to form an effective traffic matrix. First, the traffic matrix
must involve the characteristic of network traffic generated
by a random generator. Namely, both source and destina-
tion IP address must be incorporated on a method of matrix
generation. Second, the traffic matrix, e.g., m X n matrix,
must be a square matrix, i.e., m = n, and large enough, i.e.,
m > 10 [21].

In Eq. (5), both m3 and m4 are meaningful in the traffic
matrix. There are three reasons to construct a traffic matrix
with both m3 and my4. The first reason is that we can not
construct a square traffic matrix efficiently without both m;
and my. In a /24 network, there is 256 hosts, so that 256 sub-
matrices are required in a 64x64 traffic matrix. If the size
of a submatrix is 2x4, 256 submatrices can be located in a
32x64 matrix, which is not a square matrix. But if the size
of a submatrix is 4x4, we can construct a 64x64 square ma-
trix. The second reason is that we can not detect the Internet
worm infected at a host or a /24 network. It is not always
true that there is no way to construct a square traffic matrix
without both m3 and my, if we have enough hosts (> 256).
For example, we construct a square matrix with the traffic
of two /24 networks. A upper half of a traffic matrix can be
used for one network and the rest can be used for the other
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network. In this case, if a /24 network or a host is infected
by a worm, the ADUR can not detect the worm since only a
half of the matrix has a randomness. It implies that the rank
value of the matrix will not become over 60. The third rea-
son is that the attack location cannot be provided when we
made a matrix without m3 and my4. For example, in case of
constructing a square matrix with two networks, the ADUR
can not localize one network as the attack location. When
the rank of a matrix is over 60, it means that both networks
were infected by a worm and ADUR cannot decide one net-
work as an attack location. It implies the loss of one benefit
of ADUR, which will be discussed at Sect. 6.5, thus we need
to use both m3 and my for constructing a traffic matrix.

5.3 XOR Operator on Matrix Sequence

Not only suspicious traffic but also legitimate traffic must
be considered properly. Simple XOR operation is greatly
effective for this purpose. Let M, denote the matrix at time
t. Equation (6) presents the XOR operation on a sequence of
matrices, which dramatically reduces the effect of legitimate
traffic on the rank of traffic matrix.

R(M':) = R(M; & M) (6)

Let M; denote the result of the XOR operation of two
consecutive matrices, M; and M,;_;. Then, the XOR opera-
tion eventually removes most portions of legitimate traffic in
the matrix M; because legitimate traffic lives longer than one
time unit so the portion of legitimate traffic is eliminated by
the XOR operation. Experimental results in the next section
show that the XOR operation on the consecutive matrices
is a key factor for amplifying the spreading behavior of an
Internet worm.

6. Evaluation of ADUR

In order to evaluate the effectiveness of ADUR, the exper-
imental results are presented with real traffic. The traffic
data is used the packet trace captured at a university net-
work in July 29, 2004. For the purpose of creating a worm
epidemic, various types of random scanning packets have
been injected into the trace.

6.1 Effect of XOR Operation

The ADUR mechanism eliminates the effect of legitimate
connections on the rank of traffic matrix, by the use of the
XOR operation on consecutive matrices. Figure 5 presents
the values of the rank “before” and “after” XOR operation
on two consecutive matrices. Since the matrix after the XOR
operation holds only the information of new connections on
the network, which includes suspicious traffic but excludes
legitimate traffic, the rank greatly reduces compared with
the matrix before the operation. In other words, the rank
will increase sharply when a new worm spreads over the
network.
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Fig.6  The rank of traffic matrix when randomly generated connections
are added incrementally.

6.2 Rank and Random Connection

Figure 6 shows the rank as a function of the number of ran-
dom connections. In this experiment, we inject one addi-
tional connection per one time unit, after passing the 20-
th time tick. When more than 25 random connections are
added, the rank becomes greater than 60. This demonstrates
the rapid transition from the “calm” state to the “ebbing”
state, by initial connection attempts of an Internet worm.
Since conventional worms generate thousands of new con-
nections per second, ADUR can detect new worms in an
early stage of worm propagation.

6.3 Effect of Window Size

Traffic matrix M is constructed by traffic gathered for a
given time period, called “window size,” then the matrix
rank is measured after passing every window size. This unit
time is counted as one time tick in this paper. Here, an ex-
periment is conducted for measuring the effect of window
size.

Figure 7 presents the rank of traffic matrix with three
different window sizes. Each graph represents the rank in
a different window size using the same traffic data. As the
window size increases, the amount of traffic for construction
matrix M also increases. It implies that the rank of M will
increase as the window size increases. However, this incre-
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Fig.8 The faster response of the ADUR mechanism than the speed of
worm infection.

ment is quite limited in a certain boundary, e.g. 20 as pre-
sented in Fig. 7. Contrarily, adding random connections will
greatly increase the range of the rank. It demonstrates that
the ADUR mechanism is robust to the window size, which
shows the possibility of applying ADUR to heavy traffic and
high-speed networks.

6.4 The Dynamics of Rank

In order to evaluate the effectiveness of ADUR, the dynam-
ics of ranks are measured as the worm proceeds. Figure 8
shows the number of infected hosts on the Internet and the
dynamics of the rank of a traffic matrix. The number of
packets monitored is determined by the size of a monitoring
network. Namely, the number of incoming packets on a /24
network is determined by the ratio 28/23? of the number of
total packets generated by the AAWP model.

The rank is much sensitive so that it responds quicker
than the speed of infection. Two different networks, i.e.,
/24 and /16 networks, were considered as a monitoring net-
work. Monitoring larger networks can provide better look-
ing glasses that result in earlier detection. By monitoring a
/16 network, the worm can be detectable at 400 unit time,
where less than 1% infection is achieved. Even in a small
network such as a /24 network, the symptom can be caught
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Fig.9 Rank distribution for a /16 network, where only one host is in-
fected by Slammer. This graph exposes the location of the infected subnet.

rapidly such as 650 unit time, where only 20% of hosts in
the network are infected, as presented in Fig. 8. This implies
that the ADUR mechanism is effective even by monitoring
a small network.

6.5 Detecting the Slammer Worm Using ADUR in a /16
Network

The effectiveness of ADUR is measured in real network traf-
fic. The traffic is gathered in a university network and worm
traffic is injected into the network, by one host being in-
fected with the Slammer worm. The rank distribution is pre-
sented in Fig. 9. This is the situation where one host located
in an unused network is infected. Figure 9 demonstrates the
case where the infection of the subnet 48, which means the
third octet is 48 in a /16 network. In Fig.9, the size of a
traffic matrix is 256x64x64. There are several ways to con-
struct a traffic matrix and a 256x64x64 matrix is an exam-
ple. The rank of normal traffic is less than forty. However,
the rank of the traffic with a single host infection becomes
greater than sixty. It shows that, even though only one host
is infected by a worm, the ADUR mechanism can be useful
to detect such infection and provide additional information
such as infected subnet locations.

6.6 Detecting Non-random Scanning Worms

One can doubt whether ADUR can work properly for detect-
ing worms which do not scan randomly. One way against
random scanning is sequential scanning, which selects the
target IP addresses sequentially.

Figure 10 shows the rank of the traffic matrix when a
worm scans a /24 network sequentially and ADUR do not
acquit XOR operation. In this case, the rank is fixed at 5.
The worm generates a /24 IP addresses sequentially for next
targets, of which the third octet is unchanged but the forth
octet is changing sequentially. When expressing these IP
addresses on the traffic matrix, two identical rows are ex-
pressed 16 times repeatedly due to the fixed third octet. If
Gaussian elimination is executed on the traffic matrix, 59
rows will become zero. This means that only five rows
among 64 rows remain after Gaussian elimination. The first
four elements of the five rows are 0000, 0001, 0010, 0100
and 1000, respectively. Since the forth octet is changing
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Fig.10  The rank of traffic matrix when infected by sequential scanning
worm.
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Fig.11  The rank of a traffic matrix when a network is infected by a se-
quential scanning worm.

sequentially, all rows excepting the five rows will become
zero by Gaussian elimination. Therefore, only the five rows
among 64 rows contributes the rank, which results in the
fixed rank of five. Note that the row whose first four el-
ements are 0000 is not always all zero’s. Since the rest
of 60 elements in the row are from 0001 to 1111, the row
starting with 0000 not always eliminated but contributes the
rank. The rows starting with 0001, 0010, 0100 and 1000
can express other 59 rows since they are the basis of the
rows. Therefore, the rank of the traffic matrix by a sequen-
tial worm is fixed at 5, and further decreases when applying
the XOR operation.

Figure 11 shows the rank of a traffic matrix when a se-
quential scanning traffic is injected into the normal traffic at
a /24 network in a university campus. In Fig. 11, the sequen-
tial scanning traffic is injected after 20th time tick. And val-
ues of rank before 20th tick are the state of a /24 normal net-
work. In Fig. 11, the rank is measured at three different time
intervals, which are 0.1, 1 and 10 seconds. The sequential
scanning traffic is stored on the traffic matrix sequentially.
And the normal traffic is injected on a traffic matrix per a
time tick uniformly. For example, if there are 100 normal
connections per a time unit, a normal connection is injected
on a traffic matrix at one over 100 of a time unit uniformly.
Connections in the normal traffic can be overwritten by the
sequential scanning traffic, and vice versa. As a result, the
rank under a sequential worm attack is sustained at less than
or equal to 5. Even though the amount of traffic stored in
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Fig.13  Packet generator using the AAWP model.

the matrix increases, the rank is sustained at the low value,
as shown in Fig. 11. Thus, the sudden decrement of the rank
into a small range, i.e. 5, can be regarded as a metric for
sequential worm detection.

6.7 Evaluation on Real Networks

We have implemented the ADUR mechanism as an appli-
cation program, which is shown in Fig. 12. Also, we have
applied the ADUR program to real network environments
where the size of a monitoring network is a /24 network on a
university campus. The ADUR program expresses the rank
of incoming traffic, shortly in-rank, and the rank of outgo-
ing traffic matrix, shortly out-rank. As well, bits per second
(bps) and packets per second (pps) are also shown in the pro-
gram. The top-left graph of the program shows in-rank and
out-rank, and the top-right graph shows bps and pps. The
detailed information is located under the lower part of the
ADUR program’.

A packet generator is developed for injecting worm
traffic into normal traffic, which is shown in Fig. 13. The
generator produces the worm traffic following the AAWP
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MF)-G4 ke
in-rank
NJ‘\
b
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Fig.15 In the flowing state, only in-rank increases because the monitor-

ing network is attacked by other network where is infected by the worm.
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A
e
. T . ﬁ'r
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Fig.16  In the ebbing state, only out-rank increases because the

monitoring network is infected by the worm.

model, and also has the function to replay the traffic of Slam-
mer worm. The generator can realize the worm traffic ac-
cording to the state of a network.

Figure 14 presents the monitoring network in a calm
state. The traffic is generated in order to evaluate under
portscanning and P2P file transmission. In the portscanning
state, only the pps increases. In the P2P file transmission
state, only bps increases. However, two ranks are remaining
unchanged. It shows that the ADUR has no effect where the
traffic on the monitoring network has no randomness, even
under heavy traffic such as portscan and P2P applications.

Figure 15 shows the flowing state. If the Internet is un-
der worm epidemics but the local network is not infected
yet, the infection attempts from external networks increase
the rank of incoming traffic. In Fig. 15, it is shown that
ADUR can detect the state of worm flowing properly.

The ebbing state is shown in Fig. 16. In the ebbing
state, the out-rank increase because the local network is in-
fected by the worm. Figure 17 presents the flooding state,
where in-rank and out-rank increase drastically. This situa-
tion is also produced by the traffic generator we developed.

"The application program of ADUR can be obtainable at
http://ccs.korea.ac.kr/ADUR.
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We show that ADUR can detect the worm epidemic effec-
tively. Also, the current spreading situation is clearly iden-
tified among four different states of worm infection.

Instead of artificial traffic using the AAWP model, a
real worm traffic is captured and replayed for evaluating the
ADUR mechanism. Figure 18 is the state where only one
host on the monitoring network is infected by the Slammer
worm. The host, infected by Slammer, generates a number
of random IP addresses. As a result, the increased random
outgoing traffic raises out-rank. It is shown that ADUR can
detect the Internet worm even when only one host is infected
in a monitoring network.

6.8 ADUR Sensitivity

We have measured the sensitivity of ADUR compared with
the infection speed of a worm. In Fig. 19, the 7' is the time
when the rank is greater than 60 on the traffic matrix. The
T, is the time when the number of infected hosts is greater
than 90 percent of all vulnerable hosts. The s is the scan rate
per second of the worm. The N is the number of vulnera-
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Fig.20 T, over 7.

ble hosts on the Internet. In Fig. 19, it can be seen that the
ADUR can rapidly detect worm propagation.

In Fig. 20, if the scan rate is low and the number of vul-
nerable hosts is high, the ADUR can detect the early stage.
If the number of vulnerable hosts on the Internet is ten mil-
lion and the scan rate is ten per second, the ADUR can detect
worm propagation using the AAWP model after fifty three
hosts on the Internet are infected by the worm.

From this evaluation, we show that ADUR is highly
sensitive so that an Internet worm can be detectable three
times faster than the wide spreading over the majority of
vulnerable hosts (90% hosts).

7. Conclusion and Future work

In this paper, we proposed an unknown worm detection al-
gorithm, named ADUR. The proposed mechanism measures
the degree of randomness on the distribution of destination
addresses in order to detect a worm which scans target hosts
randomly. Matrix expression of network traffic and simple
XOR operation on two consecutive matrices provide a worm
spreading indicator by measuring the rank of the matrix.
This paper demonstrates that the ADUR mechanism can de-
tect unknown worms in the early stages of worm spreading,
robust to the size and speed of a network and the volume of
traffic.

In the future, research will be conducted relating to var-
ious methods of traffic matrix generation and the proposed
system will be extended to cope with many other attacks on
the Internet, such as IP spoofing DoS attacks, DDoS attacks
with distributed agents, mass-mailing virus and messenger
spam senders. In addition, the method for calculation of the
rank of the traffic matrix will be improved, in order to sim-
plify the implementation on a real system. In addition, this
mechanism will be executed in high speed networks and an
attempt will be made to experiment with greater number of
instances.
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