
1962
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.6 JUNE 2006

LETTER

Optimal Scheduling for Real-Time Parallel Tasks∗

Wan Yeon LEE†a) and Heejo LEE††, Members

SUMMARY We propose an optimal algorithm for the real-time
scheduling of parallel tasks on multiprocessors, where the tasks have the
properties of flexible preemption, linear speedup, bounded parallelism, and
arbitrary deadline. The proposed algorithm is optimal in the sense that it al-
ways finds out a feasible schedule if one exists. Furthermore, the algorithm
delivers the best schedule consuming the fewest processors among feasible
schedules. In this letter, we prove the optimality of the proposed algorithm.
Also, we show that the time complexity of the algorithm is O(M2 · N2) in
the worst case, where M and N are the number of tasks and the number of
processors, respectively.
key words: optimal algorithm, real-time scheduling, feasible schedule,
bounded parallelism

1. Introduction

Multiple processors can be allocated for the execution of
a single real-time task [1]. Examples of real-time systems
making use of such parallel tasks include GISs (geographic
information systems), flight simulators, particle simulators
and systems dealing with atmospheric chemistry. Many
studies have been conducted on the subject of schedul-
ing real-time parallel tasks on multiprocessor systems [2]–
[7]. However, most of these studies [2]–[5] used heuristic
scheduling approaches, mainly due to the heavy complexity
of the optimal scheduling approach.

In this letter, we propose an algorithm designed to find
a feasible schedule of parallel tasks in real-time systems.
A feasible schedule guarantees that all tasks complete their
execution before their respective deadlines by making use
of processors available in the system. The proposed algo-
rithm can always find a feasible schedule of real-time paral-
lel tasks with the principle of consuming as few processors
as possible. The proposed algorithm is referred to as op-
timal in the sense that it always finds a feasible schedule
consuming the fewest processors among feasible schedules.
If the algorithm cannot find any feasible schedule, it implies
that there is no way to guarantee the deadlines of all tasks
using the given processors. The parallel tasks considered
in this study have the properties of flexible preemption, lin-

Manuscript received September 22, 2005.
†The author is with the Department of Computer Engineering,

Hallym University, Chunchon 200–702, South Korea.
††The author is with the Department of Computer Science and

Engineering, Korea University, Seoul 136–713, South Korea.
∗This work was supported by the Research Grant from Hallym

University, Korea and the ITRC program of the Korea Ministry of
Information & Communications under grant IITA-2005-(C1090-
0502-0020).

a) E-mail: wanlee@hallym.ac.kr
DOI: 10.1093/ietisy/e89–d.6.1962

ear speedup, bounded parallelism, and arbitrary deadlines.
In flexible preemption, it is allowed to suspend a task and
restart the task with a different number of processors with-
out incurring any additional costs. In linear speedup, the
speedup is linearly proportional to the number of allocated
processors. In bounded parallelism (or parallelism bound),
the speedup of parallel tasks can be maintained only up to
some bounded number of processors [8], [9].

Drozdowski [6] and Burchard et. al. [7] studied a simi-
lar scheduling problem but they assumed more severe con-
straints. Drozdowski’s algorithm [6] works for parallel tasks
with linear speedup, flexible preemption, bounded paral-
lelism, and arbitrary releases, but not for the tasks with ar-
bitrary deadlines. An extension of Drozdowski’s algorithm
can solve our problem [6], however, it is applicable only to
parallel tasks with continuous-time execution but not appli-
cable to those with discrete-time execution. Contrarily, our
algorithm works for parallel tasks with discrete-time execu-
tion. Burchard’s algorithm [7] works for non-parallel tasks
but not for parallel tasks. Hence, our algorithm can be more
practicable than the previous algorithms.

The proposed algorithm can be utilized in low-power
multiprocessor systems [10]. In the dynamic power man-
agement (DPM), unused components are turned off to re-
duce the power consumption. Whenever a set of real-time
tasks are given, our algorithm reserves the minimum num-
ber of powered-on processors, even though there are more
available processors. As well, the proposed algorithm is
useful for on-line systems with a fixed number of proces-
sors [11]. When the task arrives dynamically, the scheduler
is invoked to decide whether the new task can be scheduled,
along with the old tasks which were previously accepted, so
that the deadlines of all tasks are satisfied. Only when the
deadlines of all previous tasks are satisfied along with the
new task, the task is accepted. Then our algorithm can be
utilized to estimate the upper bound of the acceptance ratio
of real-time tasks in the on-line system.

In this letter, we deal with the problem of scheduling a
set of M tasks on N identical processors. To formulate the
problem, processor n is denoted as Pn and task m is denoted
as Tm. The deadline of Tm is denoted as dm, the total amount
of computation of Tm to be executed before dm is denoted as
cm, and the parallelism bound of Tm is denoted as bm. Then,
the parallel execution time of Tm with cm on n processors is
�cm/n� where n ≤ bm, and it is assumed that �cm/bm� ≤ dm.
This letter is organized as follows: In Sect. 2, we describe
the proposed algorithm with at most O(M2 · N2) steps. In

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers

LETTER
1963

Sect. 3, we prove its optimality and conclude this paper in
Sect. 4.

2. Proposed Algorithm

The proposed algorithm uses the Earliest Deadline First
(EDF) rule when determining the scheduling order of tasks.
Tasks are sorted in increasing order of their deadlines and
stored in a list T = [T1, T2, · · · , TM]. For each task, the al-
gorithm should determine the starting time, the suspending
time, the restarting time, and the number of processors used
for its execution whenever it starts or restarts. When several
processors are available for the execution of a task, the algo-
rithm first allocates the processor with the smallest index to
the task. The algorithm prefers to use the processors with a
smaller index, which is similar to the one-dimensional pack-
ing algorithm using the minimum bins [12], [13]. Only af-
ter fully utilizing Pn from the time when it becomes avail-
able up to the deadline, does the algorithm use Pn+1 to al-
locate the remaining computation. Then, the algorithm exe-
cutes T1, T2, · · · , Tm before their respective deadlines using
the minimum number of processors for each m. We refer to
the proposed algorithm as Opt-Algorithm and the following
notation is used for its formulation.

• Θ: the remaining amount of computation after the par-
tial scheduling of each task

• Φ: the time upper bound after which the processor can-
not be utilized for the execution of each task due to the
deadline or the parallelism bound

• ηx
m: the number of processors allocated for the execu-

tion of Tm at the time instant τx

• ηx =
∑M

m=1 η
x
m: the total number of processors allocated

for the execution of T1, T2, · · · , TM at the time instant
τx

In order to describe Opt-Algorithm precisely, we use
another algorithm described in Fig. 1, called Scheduling-
Algorithm, which finds a feasible schedule using N pro-
cessors for the tasks in T . This Scheduling-Algorithm al-
lows Opt-Algorithm to find the feasible schedule using the
fewest processors, which is described in Fig. 2. Scheduling-
Algorithm initializes the values of η and ηm in line 2 and
schedules tasks one by one during the FOR loop in lines 3-
20. For the scheduling of each task Tm, the algorithm first
tries to use P1 to allocate the total computation of Tm during
the WHILE loop in lines 5-19 (n = 1). If the total compu-
tation is not allocated completely at the end of the WHILE
loop, the algorithm next uses P2 to allocate the remaining
computation of Tm within the same WHILE loop from lines
5 to 19 (n = 2). This procedure is repeated until the re-
maining computation is allocated completely (Θ = 0). In
the WHILE loop, the algorithm searches for the start time
τs and the end time τe of Pn in lines 6-7. τs is the scheduled
time for Pn to start the execution of Tm. The time when Pn

becomes available after executing other tasks is assigned to
the variable τs. τe is the time at which Pn is scheduled to
finish the execution of Tm. If Pn can completely allocate the

Scheduling-Algorithm(T, N)
2 ηx ← 0 from time τx = 0; ηx

m ← 0 from time τx = 0 for each m;
3 FOR each Tm from the head to the tail of T
4 Θ← cm; Φ← dm; n← 1;
5 WHILE (Θ > 0)
6 τs ← the smallest time when Pn becomes available;
7 τe ← min(Φ, (Θ + τs));
8 reserve Pn for the execution of Tm from time τs to time τe;
9 ηx

m ← ηx
m + 1 from time τx = τs to time τx = τe;

10 ηx ← ηx + 1 from time τx = τs to time τx = τe;
11 IF ηx

m = bm starting from the time point τx

12 Φ← τx;
13 ENDIF
14 Θ← Θ − (τe − τs);
15 IF n = N and Θ > 0
16 return FALS E;
17 ENDIF
18 n← n + 1;
19 ENDWHILE
20 ENDFOR
21 return TRUE;
END of Algorithm

Fig. 1 Description of Scheduling-Algorithm.

Opt-Algorithm(T)
2 FOR each N′ from N′ = 1 to N′ = min(N,

∑i=M
i=1 bi)

3 IF Scheduling-Algorithm(T, N′)
4 return N′;
5 ENDIF
6 ENDFOR
7 return FALS E;
END of Algorithm

Fig. 2 Description of Opt-Algorithm.

remaining computation of Tm, then (Θ + τs) is assigned to
τe, otherwise Φ is assigned to τe. After the time Φ, Pn can-
not be used anymore for the execution of Tm, because the
deadline or the parallelism bound of Tm would be violated
after this point. Because Pn is allocated for the execution of
Tm from time τs to time τe, the values of ηm and η during
this period increase by one in lines 9-10. If this increment
of ηm makes it equal to the value of bm starting from some
time point, then the value of Φ is updated in lines 11-13 by
replacing it with the time value corresponding to this time
point. The value denoting the remaining amount of compu-
tation after the reservation of Pn is updated in line 14. If
n = N and Θ > 0 in lines 15-17, the algorithm determines
that scheduling Tm has failed, because all of the processors
are occupied but there is still computation remaining to be
done. Otherwise, the WHILE loop is performed again after
increasing the value of n by one in line 18.

The values of η and ηm with regard to each τx are main-
tained in linked lists, such as shown in Fig. 3. The values of
η and ηm are recorded along with the time point, τx, in the
lists, only when they are found to have changed. The ele-
ments in the lists consist of the number of allocated proces-
sors and the time point, and are sorted in increasing order
of the time point, τx. These lists are initialized with an ele-
ment, [0,0], in line 2 of Fig. 1. Then, the update of ηm along
time τx or the insertion of a new ηm in a linked list can be

1964
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.6 JUNE 2006

Fig. 3 Linked lists maintaining η and ηm with regard to each τx .

Fig. 4 A working example of Scheduling-Algorithm.

performed in O(M) steps, because each list stores the num-
bers of processors allocated to at most M tasks. Thus, the
operations in line 2 require O(M) steps and the operations
in lines 9-10 require O(1) steps. The FOR loop in lines 3-
20 performs M iterations and the WHILE loop in lines 5-19
performs at most N iterations. The sorting operation of M
tasks requires O(M · log M) time complexity. Therefore, the
total time complexity of Scheduling-Algorithm is O(M2 ·N)
in the worst case.

Figure 4 shows a working example of Scheduling-
Algorithm. The total computation of T1 is first allocated
to P1 from time 0 to d1, which is denoted as t1

1. Next, the re-
maining computation is allocated to P2 from time 0, which
is denoted as t2

1. The total computation of T2 is first allo-
cated to P1 from time d1 to d2, which is denoted as t1

2. Next
the remaining computation of T2 is allocated to P2, denoted
as t2

2, and allocated to P3 from time 0 to d1, because b2 = 2,
which is denoted as t3

2. Then, T3 can be scheduled in a sim-
ilar manner. In this example, Scheduling-Algorithm fails to
find a feasible schedule. After d1, the remaining amount of
computation of T3, denoted as tF

3 , cannot be assigned to P3,
P4 or P5, since assigning tF

3 to these processors exceeds the
parallelism bound of T3.

Opt-Algorithm described in Fig. 2 increases the num-
ber of processors, N′, by one during the FOR loop in lines 2-
6 until Scheduling-Algorithm finds a feasible schedule using
N′ processors. When the algorithm finds a feasible sched-
ule using N′ processors and stops its operation, N′ is the
minimum number of processors to satisfy the deadlines of
the tasks in T . Since there is always a feasible schedule
when N′ =

∑i=M
i=1 bi, Opt-Algorithm must be finished even

if N � ∞. The FOR loop requires at most O(N) iterations
(N′ ≤ min(N,

∑i=M
i=1 bi)) and thus the total time complexity

of Opt-Algorithm is O(M2 · N2) in the worst case.

3. Proof of Optimality

We first show that there is no feasible schedule whenever
Scheduling-Algorithm fails to find a feasible schedule. This

(a) (b)

Fig. 5 The values of ηx and ηy after scheduling a task.

means that Scheduling-Algorithm always finds a feasible
schedule if there are feasible schedules to be found. Next,
we prove the optimality of Opt-Algorithm by showing that
there is no feasible schedule using fewer processors than the
schedule found by Opt-Algorithm. This implies that Opt-
Algorithm always finds a feasible schedule using the fewest
processors.

Lemma 1: ηx ≥ ηy if τx < τy.

Proof: Scheduling-Algorithm prefers to use Pn before using
Pn+1 for any n. In order to schedule Ti, the algorithm first
utilizes P1 starting from the time when P1 becomes available
to the time di. After using P1, the algorithm next tries to
use P2 starting from the time when P2 becomes available.
Similarly, after using Pn, the algorithm next utilizes Pn+1

starting from the time when Pn+1 becomes available, which
is shown in Fig. 4. Thus, ηx ≥ ηy when τx < τy. �

Lemma 2: If 0 < ηx
i and 0 ≤ ηy

i < bi such that τx < τy after
Scheduling-Algorithm successfully completes the schedul-
ing of Ti, then ηx = ηy or ηx = (ηy + 1) for each i.

Proof: Scheduling-Algorithm prefers to use Pn before us-
ing Pn+1 for any n. Only after Scheduling-Algorithm has
utilized Pn fully, does it use the next processor Pn+1 to al-
locate the remaining computation of Ti. Therefore the algo-
rithm uses each processor Pn until time τy, such that τy = di,
and n is assigned to ηy once the use of Pn is completed. If
there is no remaining computation, then ηx = ηy. Other-
wise, Pn+1 executes the remaining computation up to some
time point, τx (τx < τy). Then, ηx = (ηy + 1). Hence,
ηx = ηy or ηx = (ηy + 1) if 0 < ηx

i and 0 ≤ ηy
i < bi such

that τx < τy after Scheduling-Algorithm successfully com-
pletes the scheduling of Ti. This situation is illustrated in
Fig. 5 (a), as an example of the scheduling of Ti. �
η

y
i > bi or ηx < ηy is not allowed by the assumption of

the parallelism bound or by Lemma 1, respectively. Thus,
the contraposition of Lemma 2 is that, if ηx ≥ (ηy + 2) after
scheduling Ti successfully, then ηy

i = bi or ηx
i = 0 such that

τx < τy for each i.

Lemma 3: If ηx = N, ηy < N, ηx
k < bk, and ηy

k = bk such
that τx < τy when Scheduling-Algorithm fails to schedule
Tk, then ηy

i = bi such that ηx
i > 0 and i < k for each i.

Proof: Scheduling-Algorithm may fail to schedule Tk after
successfully scheduling Tk−1. Among many possible fail-
ure cases, we consider the failure case in which some two

LETTER
1965

time points τx and τy such that τx < τy have the condi-
tions of ηx = N, ηy < N, ηx

k < bk, and ηy
k = bk. In this

case, let us assume that ηy ≤ ηx ≤ (ηy + 1) after schedul-
ing Tk−1 successfully (before starting to schedule Tk). If
ηx = ηy before scheduling Tk, then ηx

k = η
y
k after scheduling

Tk, because Pηy+1, Pηy+2, · · · and PN are used sequentially to
schedule Tk both at time τx and at time τy. If ηx = (ηy + 1)
before scheduling Tk, then ηx

k = (ηy
k − 1) after scheduling

Tk because Pηy+1 is used to schedule Tk at time τx but not
at time τy. Pηy+2, Pηy+3, · · · and PN are used sequentially to
schedule Tk both at time τx and at time τy. Thus, ηx

k = η
y
k or

ηx
k = (ηy

k−1) after scheduling Tk. In summary, the conditions
at time τy are ηx

k ≤ ηy
k < bk, ηy < N and τy < dk. Under these

conditions, however, Scheduling-Algorithm does not fail to
schedule Tk at time τy, because there are available proces-
sors and the deadline or the parallelism bound of Tk is not
violated. Hence, the assumption that ηy ≤ ηx ≤ (ηy + 1)
after successfully scheduling Tk−1 is a contradiction of the
other assumption, namely that Scheduling-Algorithm fails
to schedule Tk. Also, ηx < ηy is not allowed by Lemma 1.
Therefore, if ηx = N, ηy < N, ηx

k < bk, and ηy
k = bk when

Scheduling-Algorithm fails to schedule Tk, then ηx ≥ (ηy+2)
after scheduling Tk−1 successfully. Figure 5 (b) shows this
case.

By the contraposition of Lemma 2, if ηx ≥ (ηy+2) after
scheduling Ti successfully, then ηy

i = bi or ηx
i = 0 such that

i < k for each i. Consequently, if ηx = N, ηy < N, ηx
k < bk,

and ηy
k = bk such that τx < τy when Scheduling-Algorithm

fails to schedule Tk, then ηy
i = bi such that ηx

i > 0 and i < k
for each i. �

Theorem 1: There is no feasible schedule if Scheduling-
Algorithm fails to find a feasible schedule on N processors.

Proof: When all processors are occupied but there is
still some computation of Tk remaining to be scheduled,
Scheduling-Algorithm fails to schedule Tk at some time
point τz (ηz = N). The failed conditions of Scheduling-
Algorithm in line 11 of Fig. 1 are ηz = N and τz = dk

or ηz
k = bk. When Scheduling-Algorithm fails to sched-

ule Tk at time τz, we assume that there is a feasible sched-
ule which satisfies the deadlines of T1, T2, · · · , Tk simulta-
neously. We refer to this feasible schedule as New Schedule
and the failed schedule of Scheduling-Algorithm as Orig-
inal Schedule. Compared with the Original Schedule, the
New Schedule must use some additional processors in order
to schedule Tk successfully. Hence, Tk must additionally use
some processors reserved for the execution of a previously
scheduled task Ti (i < k and di < dk).

In this case, let us check whether both Ti and Tk can be
scheduled in the New Schedule when Scheduling-Algorithm
fails to schedule Tk at the time τz (when ηx = N and τz =

dk or ηy
k = bk such that τx < τz < τy). If Tk uses some

processors reserved for the execution of Ti when ηx = N
and τz = dk, then Ti cannot satisfy its deadline because there
are no available processors to compensate for the additional
processors required for the execution of Tk before di (di <
dk, τz = dk and τx = N such that τx < τz). If Tk uses some

Fig. 6 The case where Scheduling-Algorithm fails to find a feasible
schedule.

processors reserved for the execution of Ti when ηx = N,
η

y
k = bk and ηy = N, then Ti cannot satisfy its deadline,

because there are no processors available to compensate for
the additional processors required for the execution of Tk

either before or after di.
If Tk uses some processors reserved for the execution

of Ti when ηx = N, ηy
k = bk and ηy < N such that τz < τy,

then Ti may use some of the available processors in order to
compensate for the processors used for the execution of Tk

from time τz to time di. Unless ηx
k < bk such that τx < τz, it

is not possible to allocate some additional processors previ-
ously reserved for the execution of Ti to Tk. In other words,
only when ηx

k < bk such that τx < τz, is it possible to allo-
cate some additional processors previously reserved for the
execution of Ti to Tk. In summary, the conditions in this
case are ηx = N, ηy < N, ηx

k < bk, and ηy
k = bk such that

τx < τz < τy. Figure 6 shows this case. In order to execute
Tk before dk, Tk must use some of the processors reserved
for the execution of a previously scheduled task Ti at time
τx (ηx

i > 0), because no other processors are available before
τz. Therefore, Ti has to be executed with fewer processors
than the original allocation at the time τx. In order to com-
pensate for the loss of its previously scheduled processors,
Ti must use more processors than the original assignment
after the time τz, if such processors are available. However,
the additional processors available at time τy cannot be al-
located to Ti, because ηy

i = bi such that ηx
i > 0 and i < k

by Lemma 3. If ηy
i = bi, the additional available processors

cannot be allocated to Ti at the time τy due to the parallelism
bound of Ti.

From the above-mentioned facts, the New Schedule
cannot satisfy the deadlines of both Ti and Tk. Thus, the
assumption on feasibility of the New Schedule is a con-
tradiction. Hence, there is no feasible schedule that sat-
isfies the deadlines of T1, T2, · · · , Tk simultaneously when
Scheduling-Algorithm fails to schedule Tk. This means that
there is no feasible schedule if Scheduling-Algorithm fails
to find a feasible schedule. �

Theorem 2: Opt-Algorithm always finds a feasible sched-
ule using the fewest processors.

Proof: When Opt-Algorithm stops its operation after find-

1966
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.6 JUNE 2006

ing a feasible schedule using N′ processors, let us assume
that there is a feasible schedule using N′′ processors such
that N′′ < N′. Then, it is a contradiction of Theorem 1
since it means that Scheduling-Algorithm may not find the
feasible schedule using N′′ processors before finding the
feasible schedule using N′ processors. Consequently, Opt-
Algorithm always finds out a feasible schedule using the
fewest processors. �

4. Conclusion

This paper presents two polynomial-time algorithms, called
Scheduling-Algorithm and Opt-Algorithm, for the real-time
scheduling of parallel tasks on multiprocessors, where the
tasks have the properties of flexible preemption, linear
speedup, bounded parallelism, and arbitrary deadlines. We
prove that Scheduling-Algorithm always finds a feasible
schedule if there are feasible schedules on given processors,
and Opt-Algorithm always finds a feasible schedule using
the fewest processors. We also show that the time com-
plexities of Scheduling-Algorithm and Opt-Algorithm are
O(M2 · N) and O(M2 · N2) in the worst case respectively,
where M is the number of tasks and N is the number of pro-
cessors.

References

[1] U. Sailer, A. Wohnhaas, and U. Essers, “Parallel simulation of me-
chanical systems for real-time applications,” Systems Anal. Mod-
elling Simulation, vol.16, pp.197–202, 1994.

[2] O. Kwon, J. Kim, S.J. Hong, and S. Lee, “Real-time job schedul-
ing in hypercube systems,” Proc. Int’l Conf. Parall. Process. (ICPP),
vol.26, pp.166–169, 1997.

[3] W.Y. Lee, S.J. Hong, and J. Kim, “On-line schduling of scalable
real-time tasks on multiprocessor systems,” J. Parall. Dist. Comput.,
vol.63, no.12, pp.1315–1324, 2003.

[4] M. Bertogna, M. Cirinei, and G. Lipari, “Improved schedulabil-
ity analysis of EDF on multiprocessor platforms,” Proc. Euromicro
Conf. Real-Time Sys. (ECRTS), vol.17, pp.209–218, 2005.

[5] S. Baruah and N. Fisher, “The partitioned multiprocessor schedul-
ing of sporadic task systems,” Proc. IEEE Real-Time Syst. Symp.
(RTSS), vol.26, pp.321–329, 2005.

[6] M. Drozdowski, “Real-time scheduling of linear speedup parallel
tasks,” Inf. Process. Lett., vol.57, pp.35–40, 1996.

[7] A. Burchard, J. Liebeherr, Y. Oh, and S.H. Son, “New strategies for
assigning real-time tasks to multiporcessor systems,” IEEE Trans.
Comput., vol.44, no.12, pp.1429–1442, 1995.

[8] K. Sevcik, “Characterizations of parallelism in applications and their
use in scheduling,” Perform. Eval., vol.17, pp.171–180, May 1989.

[9] H. Lee, J. Kim, S.J. Hong, and S. Lee, “Processor allocation and
task scheduling of matrix chain products on parallel systems,” IEEE
Trans. Parallel Distrib. Syst., vol.14, no.4, pp.394–407, 2003.

[10] L. Benini, A. Dogliolo, and G.D. Micheli, “A survey of design tech-
niques for system-level dynamic power management,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol.8, no.4, pp.299–316,
2000.

[11] S. Baruah, J. Haritsa, and N. Sharma, “On-line scheduling to maxi-
mize task completions,” Proc. IEEE Real-Time Syst. Symp. (RTSS),
vol.15, pp.228–236, 1994.

[12] D. Johnson, “Fast algorithm for bin packing,” J. Comput. Syst. Sci.,
vol.8, pp.272–314, 1974.

[13] E. Coffman, M. Garey, and D. Johnson, “Bin packing with divisible
time sizes,” J. Complexity, vol.3, pp.406–428, 1987.

