
IEEE Network • September/October 200914 0890-8044/09/$25.00 © 2009 IEEE

etwork intrusion detection is performed by mon-
itoring network traffic and detecting the evi-
dence of attacks by scanning known signatures
(misuse detection) or recognizing anomalous

traffic behaviors (anomaly detection). Misuse detection has
been widely used for finding known attacks, and the low false
alarm rate is one of its biggest advantages. While misuse
detection is effective against known attacks, it cannot cope
with freshly devised attacks whose signatures are not yet
known. Anomaly detection, in contrast, has strength in detect-
ing unknown attacks. But the cost is that the false positive
probability is generally high. So typically, additional informa-
tion is applied to reduce false alarms in anomaly detection,
where the specific information to be used varies depending on
the given circumstances.

Existing anomaly detection mechanisms, as they are applied
to the problem of worm detection, can be classified into three
approaches: examining a sudden increase in new connection
attempts, examining a sudden increase in connection failures,
and examining a sudden increase in abnormal connection
attempts. The first approach detects unknown worms by
counting the number of new connection attempts [1]. For the
traffic under watch, it tracks the network-level activity infor-
mation in terms of distribution of source addresses, destina-
tion addresses, and ports, among others. If the information
suddenly changes, this scheme raises an alarm. The second
approach detects fresh worms by counting the number of con-
nection failures, typically signaled by Transmission Control
Protocol (TCP) reset packets, Internet Control Message Pro-
tocol (ICMP) destination unreachable messages, or TCP time-
outs. As general worm scans target a large population of hosts
to infect as many vulnerable hosts, scanning packets abound
when worms are active. But not a few of the connection
attempts produce connection failures [2]. So the approach
detects worms by monitoring such an indication. The third
approach detects novel worms by counting the number of
abnormal connection attempts, such as those not using
Domain Name System (DNS). This is because most legitimate
users trigger Internet-based services by domain names instead
of Internet Protocol (IP) addresses [3].

Recent advances in anomaly detection techniques that are
general enough to be applied to different circumstances
include the use of entropy, which is a measure of the irregu-

larity of network traffic [4]. Entropy-based approaches can
effectively detect excessive changes in network traffic. But
when a large number of flows are aggregated at a monitored
network, only attacks with big changes can be detected,
whereas low-intensity attacks are not recognized properly.
Another approach is attack visualization [5], which attempts
to display a particular pattern of image under the occurrence
of an attack in an intuitive way. Internet worms, distributed
denial of service (DDoS) attacks, and network scans can be
visualized as geometric shapes such as straight lines or rectan-
gles on a 3D graph [5], or as triangles or diamonds on parallel
coordinates [6]. Here also, only large-scale Internet attacks
can be displayed when their activities contribute a noticeable
amount of anomalous traffic.

In this article we attempt to devise a scheme that depends
less on attack traffic amount and more on attack traffic quali-
ty so that we can pinpoint the attack with higher sensitivity,
irrespective of relative attack traffic intensity. To this end we
propose a novel metric for anomaly, the rank of the traffic
matrix. A nice mathematical property of the matrix rank is
that it is extremely sensitive to the randomness in the given
matrix. Exploiting this fact and that the major modes of
attacks such as DoS or worms or scanning necessarily involve
randomness (or lack thereof) in the IP addresses, we devise
the desired anomaly detection scheme. The scheme first pop-
ulates a traffic matrix with ongoing network flows, and per-
forms simple matrix operations in order to exclude most
legitimate traffic. Then it computes the rank of the result
matrix, which is so sensitive that with even a slight hint of ran-
domness in the traffic it jumps close to the maximum.

Another pleasant property of the matrix rank sensitivity is
that it is statistically sound, so we can build interesting appli-
cations on it. One demonstrated in this article is an early
warning system for an imminent global worm epidemic. In the
age of all-automated attacks, the precious few tens of seconds
before the full inflammation of the epidemic is vital. For
instance, in one realistic situation we show that the matrix
rank already begins climbing when the worm-infected popula-
tion is barely noticeable, and that at only 3 percent infection
the rank hits the ceiling (well before the infection curve hits
the exponential ride). Again, the rank as an early indicator of
an imminent worm epidemic has a low false alarm rate thanks
to its mathematical property, and precautionary countermea-

NN

Hyundo Park, Hyogon Kim, and Heejo Lee, Korea University

Abstract
This article introduces a novel anomaly detection method that makes use of only
matrix operations and is highly sensitive to randomness in traffic. The sensitivity
can be leveraged to detect attacks that exude randomness in traffic characteristics,
such as denial-of-service attacks and worms. In particular, we show that the
method can be used to alert of the imminent onset of a worm epidemic in a statisti-
cally sound manner, irrespective of the worm’s scanning strategies.

Is Early Warning of an
Imminent Worm Epidemic Possible?

PARK LAYOUT 9/9/09 12:09 PM Page 14

Authorized licensed use limited to: Korea University. Downloaded on October 12, 2009 at 01:02 from IEEE Xplore. Restrictions apply.

IEEE Network • September/October 2009 15

sures such as rate limiting can be introduced early on with less
risk.

The matrix rank works both ways. In the presence of too
much regularity in traffic, which is also a sign of attacks such
as sequential scanning, the rank value nose dives. High or low,
it signals abnormality, and renders the early warning system
work irrespective of the scanning strategies of the worm.

Finally, the proposed approach does not require any a pri-
ori domain knowledge or training session to differentiate
between normal and attack traffic patterns. Our experiences
with normal real-life Internet traffic without worm activity
show us that the rank hovers only in the middle range.

Matrix Rank as a Randomness Measure
Since a random binary matrix holds a high rank value [7], the
matrix rank has been widely used for testing the quality of a
random number generator such as the Diehard battery of
tests [8]. Incidentally, many interesting attacks also increase
the randomness in the source or destination IP address fields,
e.g. scanning activities of Internet worms or packet flooding
under a DDoS attack. The randomness either is intentionally
injected to evade detection or obfuscate traceback, or natural-
ly arises due to the distribution of attack launching locations
(compromised hosts) in the IP address space. The idea is thus
to apply the matrix rank measurement on the traffic matrix to
check if the traffic harbors attacks.

The rank of a matrix is the count of non-zero rows after
applying Gaussian elimination. In other words, the rank of the
matrix is equal to the number of leading 1s in the matrix after
the treatment. In the case of a random m1 × m2 binary matrix,
the probability of the matrix whose rank is r is as follows:

(1)

where 1 ≤ r ≤ min{m1,m2} [7]. From Eq. 1 we claim that

the rank value of a matrix is a reliable measure of random-
ness. For instance, if its rank is greater than or equal to 252, a
256 × 256 matrix is a random matrix with over 99.999 percent
probability. So with a sufficiently high rank value, the false
positive probability is extremely low. This is a highly desirable
property of the matrix rank when it is used for anomaly detec-
tion whose biggest weakness is the high false positive rate.

Traffic Matrix Construction
To make traffic amenable to randomness check, we translate
traffic into the form of a matrix. Specifically, IP addresses
need to be represented in the matrix as they take on the ran-
domness in the attack traffic. Also, to catch Internet worm
activity, we need to look at the destination IP address of the
passing traffic since the worms select subsequent targets ran-
domly [9]. Today’s Internet worms use a random number gen-
erator to maximize their propagation speed and at the same
time evade detection.1

In designing the traffic matrix construction scheme, we
need to consider the fact that the four octets in an IP address
could have separate dynamics depending on the particular
strategy employed by the worm in action. Internet worms have
used different scanning strategies. Let us denote each octet of
an IP address as IP1, IP2, IP3, and IP4, respectively, such that

IP = IP1.IP2.IP3.IP4. (2)

Slammer and CodeRed use the random scan strategy,
which selects all four octets (IP1, IP2, IP3, and IP4) of the next
target randomly. This strategy is also called a uniform scan.

CodeRed II, on the other hand, uses a scanning strategy
with local preferences, which is called a subnet scan. The
worm performs a random scan with probability 1/8. With
probability 1/2, it will stay with the same IP1. With probability
3/8, it will stay with the same IP1.IP2. Thus, the scanning strat-
egy of CodeRed II is fully random in IP3 and IP4, but partially
random in IP1 and IP2. Blaster selects one IP1.IP2 randomly,
then sequentially scans subsequent targets within the Class B
network until it selects another target network. So IP1 and IP2
are random, but the distribution of IP3 and IP4 is sequential.
Notice, however, from the perspective of the attacked network
the distribution of destination IP addresses of the scanned
traffic would likely look sequential, not random. Figure 1
illustrates the scanning strategies of these worms.

Below, for convenience, we call the uniform scan and sub-
net scan simply random scan, as they have randomness in
some parts of IP addresses. We use the classification of ran-
dom vs. sequential for the scanning strategies of Internet
worms.

Let us consider a 256 × 256 binary matrix, which requires
only a small memory space (8 kbytes) to store. The matrix can
represent 65,536 distinct destination IPs at maximum. In
order to preserve the randomness in the IP addresses used by
a worm, we need to map the IP addresses to the correspond-
ing bit in the matrix in a clever manner. Given i and j for the
row and column index, respectively, we define the mapping as

i = IP1 ⊕ IP3, j = IP2 ⊕ IP4, (3)

2
1 2 1 2

1 2

1 2 1 2
1 2

0

1
r m m r m m

i

r i m i m

i
() ()()

(

+ − −

=

− − −

−
∏ − −

− rr)
,

� Figure 1. The randomness in IP addresses depending on scan-
ning strategy.

1) Uniform scan (Slammer, Code Red)

Random

Random scan

IP1 IP2 IP3 IP4

2) Subnet scan (Code Red II)

Random Fixed

IP1 IP2 IP3 IP4

Sequential scan (Blaster)

Sequential Fixed

IP1 IP2 IP3 IP4

1 Although not addressed in this article, the same idea can be applied to
DDoS attack detection. The difference is that source, not destination,
addresses should be used in the matrix construction. The randomness in
the source IP address arises due to random infection by malicious codes
such as botnets, or the source IP address spoofing for traceback obfusca-
tion [10].

PARK LAYOUT 9/9/09 12:09 PM Page 15

Authorized licensed use limited to: Korea University. Downloaded on October 12, 2009 at 01:02 from IEEE Xplore. Restrictions apply.

IEEE Network • September/October 200916

where ⊕ denotes the bitwise exclusive
OR (XOR) operation. Notice that
high randomness is preserved in the
scanning strategies adopted by the
aforementioned real-life worms. In
the case of sequential scan worms, on
the other hand, the mapping function
performs a permutation due to the
XOR, but once the mapping selects
each row (XORed IP3), it fills the
row with 1s in a permuted sequence
(XORed IP4). In the end the row has
all-1 entries, which contributes little
to the rank. So the lack of random-
ness is also preserved.

Other conceivable scanning strate-
gies, albeit not used by real-life worms
yet, might require different mapping
functions or even multiple matrices.
But the focus of this article is on illu-
minating the potential of the matrix
rank as a high-quality attack indica-
tor, so we simply assume in the dis-
cussion below that the mapping has
been done in a randomness-preserv-
ing way.

Once the mapping is defined, the construction of the traffic
matrix is easy. At the beginning of each unit period, the traffic
matrix is filled with zeros. Then for each destination IP
address in the passing flow, the corresponding entry is over-
written with value 1. The matrix continues to be filled with 1s
this way until the unit period ends. Here, the length of the
unit period would depend on the working environment, but
typical values are on the order of seconds, such as 1 s, 10 s,
and so on.

Traffic Filtering Matrix Operations
As a traffic matrix construction is completed for a given unit
duration, legitimate traffic should be as much removed from
the matrix representation as possible for precise attack detec-
tion. One major advantage of our approach for the sake of fil-
tering comes from the use of a matrix, which simplifies the
operation. Specifically, the bitwise XOR operation on two
traffic matrices from consecutive time units eliminates most
legitimate flows, and mainly suspicious traffic remains at the
result matrix. Also, we can pan out long-lived legitimate flows
by the bitwise AND operation on two consecutive matrices.

Let Mt denote the matrix constructed during time unit t.
Then Mt ⊕ Mt–1 represents the matrix after the XOR opera-
tion of the corresponding entries in Mt and Mt–1. The XOR
operation is to remove the overlapping entries, which are usu-
ally not malicious. For instance, when there are four legiti-
mate flows, and one packet per unit time is generated by a
worm, the XOR operation on the simplified 4 × 4 matrices
will return the filtering result as follows:

Note that the rank of matrix Mt ⊕ Mt–1, R(Mt ⊕ Mt–1), is likely
to be smaller than R(Mt) unless there is a surge of new legiti-
mate flows at time t. In contrast, we will have a higher rank

after the XOR operation if random scan traffic increases, that
is, R(Mt ⊕ Mt–1) >R(Mt).

Even after the XOR, some legitimate flows will leave their
traces in the matrix, such as those that newly start at t and
those that terminate at t – 1. In order to exclude even these,
we perform the following matrix operations:

M′t = MXOR(t) ⊕ (MXOR(t) ⋅ Mt–2), (4)

where MXOR(t) represent the XOR operation of two consecu-
tive matrices Mt and Mt–1, that is,

MXOR(t)= Mt ⊕ Mt–1.

Then MXOR(t) ⋅ Mt–2 retains the terminating legitimate traffic
at t and t – 1, which M′t purges. Figure 2 pictorially depicts the
filtering mechanism.

Starting connections at time t may or may not be legiti-
mate, which we cannot decide until t + 1 so that they are not
excluded from M′t. The Venn diagram representation of M′t is
given in Fig. 3a. It shows that the flows that span t – 2 and t –
1 as well as those that span t – 1 and t are being eliminated as
they are likely legitimate.

Figure 3b visually illustrates the effect of the operation in
Eq. 4, on a /16 campus network traffic trace where the aver-
age number of clients and packets are 132 and 1847 during
the time span of 187 s (of which only three consecutive sec-
onds worth of traffic was used to generate the figure). In the
figure we obtain R(Mt) = 99 and R(M′t) = 53. As the figure
demonstrates, the use of the filtering operation causes the
rank to decrease significantly across the entire trace, where
the refined rank value carries more meaningful information as
to the traffic randomness quality. One of the charms of this
simple matrix filter is that it is stateless. We do not need pro-
tocol-specific information such as TCP/IP headers or packet
contents for anomaly detection. We believe that the stateless-
ness of the proposed scheme contributes to its usability.

Ranks from Normal Real-Life Traffic
In order to demonstrate that the rank value of normal traffic
indeed remains under that of the random matrix, we comput-

0 0 1 0

1 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

0 1 1 0

1 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⊕

00 0

0 0 0 0

1 0 0 0

0 0 1 0

0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

� Figure 2. The mechanism of filtering and rank measurement for anomaly detection.

Random scan

XOR

AND

1 sec

Mt-2

1 sec

Mt-1

1 sec

Mt

XOR

Rank = Medium

High

Low

Normal traffic

Sequential scan

PARK LAYOUT 9/9/09 12:09 PM Page 16

Authorized licensed use limited to: Korea University. Downloaded on October 12, 2009 at 01:02 from IEEE Xplore. Restrictions apply.

IEEE Network • September/October 2009 17

ed R(M′t) for some publicly available real-life traces (Fig. 4).
We first ensured that there had been no worm epidemic or
strong worm activity reported during the given trace collection
time. Also, we included traces that contain a flash event, an
extremely concentrated traffic spurt, to check if the random-
ness-based anomaly detection works under such instability.

The first trace is from two trans-Pacific T-3 links connect-
ing the United States and a Korean Internet gateway between
9:36 a.m. and 9:55 a.m. on December 14, 2001. From this
trace we extract two 90-s subtraces that contain a flash event
situation, called JScript and WinUpdate, respectively. The
first one shows numerous clients sending a huge number of
requests to a server to download newly issued versions of Java
scripts for their personal Websites and blogs.2 The second one
contains requests to a Microsoft Windows update Website
that attracted a huge number of requests when an accumulat-
ed patch to Windows Internet Explorer was released.

The second trace is from the CAIDA archive,3 and records
the traffic from an Internet service provider (ISP) located at
the Equinix data center in Chicago, Illinois connected to Seat-
tle, Washington through an OC-192 pipe. We extract two 20-s
subtraces in this traffic, denoted CAIDA01 and CAIDA02.
The average numbers of new connections and packets per sec-
ond of CAIDA01 and DAIDA02 are 19, 2, and 988, 729,
respectively. And the total number of packets during 20 s is
19,754 and 14,588, respectively. The number of new connec-
tions has been manually obtained by counting the TCP SYN
packets. So the number of new connections is much smaller
than the number of total packets. We notice that the rank
value generally rises with traffic intensity, but even the OC-
192 traffic does not push it near the rank of a random matrix.

Sensing Imminent Worm Epidemics
Now, let us examine the dynamics of the traffic matrix rank in
the face of worm activity. For simplicity of illustration, let us
assume random scanning worms. Let N denote the vulnerable

population size for this particular worm, and L the
monitoring network size (in number of IP addresses).
Furthermore, let α denote the infection ratio, so αN is
the number of infected hosts in the vulnerable popula-
tion. Finally, let the scan rate of worm β be the number
of scans per second per worm.

Suppose we see some global worm epidemic on a
scale comparable to Slammer, which we simulate here.
In the simulation we set N = 106, β = 103, and L =
216. Note that the value of β is not excessive consider-
ing that the scan rate of the Slammer worm was
observed to be 26,000 scans/s at maximum, and approx-
imately 4000 scans/s/worm on average [11]. Figure 5
gives the simulation results, and shows how sensitive
the rank is compared to the number of infected hosts.
When only 3, 5, and 10 percent of vulnerable hosts are
infected at 1000, 600, and 300 times the scan rate of
the Internet worm, respectively, the rank value already
approaches the maximum, exceeding 252. Thus, we get
a rank over 252 when α =0.03 when N = 106, β = 103,
and L = 216.

In the given setting we can definitely detect an epi-
demic if a total of more than 32 million scanning pack-
ets crisscross the Internet per observation interval.
Then approximately 488 scans hit a /16 network, and
the rank value will always exceed the randomness
threshold. At this point, the ratio of the infected hosts
would be 32/β. So if the scan rate β of a single worm is
over 32 but not large, the detection time can get large
in terms of the infected population. But then the time

interval to monitor the network in our approach can be flexi-
bly changed, such as to 10 s, to cope with the problem. For
example, if the Internet worm scans only 10 hosts/s, if we
elongate the monitoring interval to 10 s, the proposed method
can detect the Internet worm when 32 percent of total vulner-
able hosts are infected by the Internet worm.

In the above particular example, the instance of the rank
rising to an otherwise impossible value is just before the epi-
demic explodes into its exponential growth phase. In today’s
world of all automated attacks, human intervened counter-
measures are getting too slow to stop an epidemic. For
instance, Slammer effectively grew to a full epidemic within 10
minutes. The buffer time of a few tens of seconds, hard won
by the early warning indicator such as the traffic matrix rank
we propose in this article, could be precious to automatically
deploy precautionary countermeasures such as rate limiting.
Such damping efforts could prevent an epidemic or at least
procrastinate its development so that a more adequate pre-
scription can be injected.

Figure 6a shows the rank values as a function of scan rate β
for the cases of two different scanning worms. The rank is
measured when 10,000 hosts were infected (α = 0.01), where
worm epidemics are injected into the real network trace cap-
tured in the gateway of a /16 university campus network. In
the case of a random scan worm, the rank increases dramati-
cally as the scan rate increases. In the case of a sequential
scan worm, the rank suddenly drops after β =1000. This prop-
erty enables us to detect non-uniform scan worms such as
Blaster by monitoring a single block of address space, whereas
previous worm monitoring approaches are effective only when
their monitoring address space is largely distributed [12]. In
essence, as the worm activity intensifies, it drives the matrix

� Figure 3. The effect of matrix operations with XOR and AND: a) the
region of M′t with respect to Mt, Mt-1, and Mt-2; b) the effect of matrix
operations on the traffic matrix in a /16 network.

(a)

(b)

AND

XOR Mt-1

Mt-2

Mt’

M’t M6

Mt-1 Mt-2

Mt

XOR

2 http://files.cometsystems.com

3 http://caida.org

PARK LAYOUT 9/9/09 12:09 PM Page 17

Authorized licensed use limited to: Korea University. Downloaded on October 12, 2009 at 01:02 from IEEE Xplore. Restrictions apply.

IEEE Network • September/October 200918

rank either extremely high or extremely low, a clear indica-
tion. Otherwise, the rank hovers at non-extreme values, as
shown in the figure.

In Fig. 6a, randomly scanning packets drives the matrix
rank extremely high, whereas sequentially scanning packets
drives it extremely low. The reason for the latter is the work
of Gaussian elimination in computing the matrix rank. If all
elements of some rows become 1 (e.g., by a sequentially scan-
ning worm), such rows except one become all 0 after Gaussian
elimination, as shown below in a simplified example.

Therefore, if a sequential scanning worm propagates on the
Internet, the matrix rank dips extremely low.

The rank shrinking effect by the sequential scanning worms
is so strong that if both sequentially and randomly scanning

worms simultaneously propagate, the matrix rank is complete-
ly dominated by the sequentially scanning worm because we
overwrite the connection information of traffic on the matrix.
The rank never stays in the middle, which would mean no
detection of either type of worm. Figure 6b shows that no
matter how many randomly scanning worms come, the matrix
rank dips due to a concurrently active sequential scanning
worm.

Figure 6a shows that the two different types of worms expe-
rience the rank value change at a similar range of scan rates.
The detection time for the worms would be similar and be a
function of the scan rate, but not the scan type.

In order to alert of the imminent onset of a worm epidem-
ic, how many scanning packets would we need to collect in the
matrix to grow the rank over a large threshold, say 252? We
can calculate the answer as follows. Let γ denote the random
factor so that the random sprinkling of γm2 number of 1s
would form a random binary matrix with an extremely high
rank value. Then for a random scanning worm to register
enough 1s in the traffic matrix to turn it random, one can
argue that we need γm2 scanning packets. But in fact, the
required number of random scanning packets is less. Notice in
Fig. 2 that scanning packets have the effect of approximately
doubling the non-zero entries in M′t after Mt ⊕ Mt–1 operation.
Thus, we only need half of γ ⋅ m2 to build a random m × m
matrix. Thus, we obtain the following relation among the
parameters as the answer to the above question:

αN ⋅ β ⋅ L/232 ≥ γ ⋅ m2/2. (5)

1 1 1 1

1 1 1 1

1 1 1 1

0 0 1 0

1 1 1 1

0 0 0 0

0 0 0 0

0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒

11 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

� Figure 4. The various rank values under FE: a) Jscript; b) WinUpdate; c) CAIDA01; d) CAIDA02.

Time (s)

(a)

10

Max = 256

0

50

0

Ra
nk

100

150

200

250

20 30 40 50 60 70 80 90

The original rank value
The rank value after applying matrix operation

Time (s)

(b)

10

Max = 256

0

50

0

Ra
nk

100

150

200

250

20 30 40 50 60 70 80 90

The original rank value
The rank value after applying matrix operation

Time (s)

(c)

Max = 256

0

50

0

Ra
nk

100

150

200

250

20 15 10 5

The original rank value
The rank value after applying matrix operation

Time (s)

(d)

Max = 256

0

50

0

Ra
nk

100

150

200

250

20 15 10 5

The original rank value
The rank value after applying matrix operation

� Table 1. The random factor γ for the size of traffic matrix.

m 32 64 128 256 512 1024

γ 0.063 0.041 0.025 0.014 0.008 0.005

PARK LAYOUT 9/9/09 12:09 PM Page 18

Authorized licensed use limited to: Korea University. Downloaded on October 12, 2009 at 01:02 from IEEE Xplore. Restrictions apply.

IEEE Network • September/October 2009 19

In other words, the values of N, β, α, and L will determine
whether the resulting matrix M′t is random or not. Here, the
parameters N and L are given by the host and network con-
figurations, β is largely the worm’s attribute, and m is given
by the anomaly detection module configuration. The remain-
ing parameter γ, on the other hand, is a property of matrix
randomness and only depends on m. We can experimentally
measure the average γ through iterations of random matrix
construction, which is shown in Table 1. We can see that
only a small fraction of the traffic matrix estate needs to be
turned on by random scan packets to enable randomness
detection through the rank. It shows the sensitivity of the
rank metric from another angle, as it is used in detecting
randomness.

The inequality of Eq. 5 lets us understand the interplay
between the parameters better. In particular, we can see
that earlier detection is possible if α can be lowered, say,
by increased β . For instance, in Fig. 6a α = 0.03 for β
=1000, whereas in the same condition α decreases to 0.01
with β =3000. This inverse proportionality between α and β
(also evident in Eq. 5) lets us detect faster worms faster,
which is a desirable property of the proposed detection
scheme.

Finally, according to Eq. 5, the infection ratio at which the
epidemic is first detected by matrix rank is only about 0.3 per-
cent ~ 1.2 percent when N = 105 ~ 106 and β =5000 ~
10,000. In essence, for the parameter ranges that could lead to
a global worm epidemic, the proposed method can give us an
early warning to the rising danger when there is still time to
react.

Conclusion
A matrix is a convenient data structure with many well
defined powerful operations. In this article, we introduce a
matrix-based intrusion detection mechanism, which constructs
a matrix from network traffic and measure the rank of the
matrix after matrix operations for legitimate traffic filtering.
From the experiments and analysis, we have shown that the
matrix rank is a highly effective and reliable measure to sense
the imminent onset of an Internet worm, regardless of the
worm’s scanning strategy. This matrix approach can be useful
to detect not only Internet worms, but also other types of
attack that increase the randomness in network traffic.

Acknowledgment
This work was supported in part by the ITRC program of the
Korea Ministry of Knowledge Economy (MKE), the IT R&D
program of MKE/IITA(2009-S-026-01), the Defense Acquisi-
tion Program Administration and Agency for Defense Devel-
opment, and the Korea Research Foundation Grant
2009-0080413.

References
[1] C. Leckie and R. Kotagiri, “A Probabilistic Approach to Detecting Network

Scans,” 8th IEEE/IFIP Net. and Ops. Mgmt. Symp., Apr. 2002, pp. 359–72.
[2] J. Jung et al., “Fast Portscan Detection Using Sequential Hypothesis Testing,”

IEEE Symp. Sec. and Privacy, 2004, pp. 211–25.
[3] D. Whyte, E. Kranakis, and P. Oorschot, “DNS-based Detection of Scanning

Worms in an Enterprise Network,” 12th Net. and Distrib. Sys. Sec. Symp.,
2004.

[4] W. Lee and D. Xiang, “Information-Theoretic Measures for Anomaly Detec-
tion,” IEEE Symp. Sec. and Privacy, 2001.

[5] H. Kim, I. Kang, and S. Bahk, “Real-Time Visualization of Network Attacks
on High-Speed Links,” IEEE Network, vol. 18, no. 5, Sept. 2004, pp. 30–39.

[6] H. Choi and H. Lee, “PCAV: Internet Attack Visualization on Parallel Coordi-
nates,” ICICS 2005, LNCS, vol. 3783, Dec. 2005, pp. 454–66.

� Figure 5. The number of infected hosts and the corresponding
rank as a function of time.

Time (s)

500

2
1.0
0.5
0.3

50

0 0

Th
e

nu
m

be
r

of
 in

fe
ct

ed
 h

os
ts

Ra
nk

4 100

6 150

8

10
x105 Max = 256

200

250

80 150 170100 200 250 300

Number of infected hosts (scan rate: 300)
The value of rank (scan rate: 300)
Number of infected hosts (scan rate: 600)
The value of rank (scan rate: 600)
Number of infected hosts (scan rate: 1000)
The value of rank (scan rate: 1000)

� Figure 6. The rank values of sequentially or randomly scanning schemes: a) rank values as the function of a scan rate; b) rank values
as the function of a scan rate.

Scan rate (log)

(a)

10 0
0

50

Ra
nk

 o
f

th
e

25
6

x
25

6
m

at
ri

x

Ra
nk

 o
f

th
e

64
 x

 ,6
4

m
at

ri
x

100

150

200

250
Max = 256 Max = 64

10

0

30

20

40

50

60

100 1000 10000

Scan rate (log)

(b)

10 1
0

50

Th
e

va
lu

e
of

 r
an

k

100

150

200

250
Max = 256

100 1000 10,000

The number of randomly scanning worms: 0
The number of randomly scanning worms: 1
The number of randomly scanning worms: 2
The number of randomly scanning worms: 3

Random scan (256 x 256 matrix)
Sequential scan (256 x 256 matrix)
Random scan (64 x 64 matrix)
Sequential scan (64 x 64 matrix)

PARK LAYOUT 9/9/09 12:09 PM Page 19

Authorized licensed use limited to: Korea University. Downloaded on October 12, 2009 at 01:02 from IEEE Xplore. Restrictions apply.

IEEE Network • September/October 200920

[7] G. Marsaglia and L. H. Tsay, “Matrices and the Structure of Random Num-
ber Sequences,” Linear Algebra and Its Apps., vol. 67, 1985, pp. 147–56.

[8] G. Marsaglia, “Diehard: A Battery of Tests of Randomness,” 1996;
http://www.stat.fsu.edu/pub/diehard/

[9] H. Park, H. Lee, and H. Kim, “Detecting Unknown Worms Using Randomness
Check,” IEICE Trans. Commun., vol. E90-B, no. 4, Apr. 2007, pp. 894–903.

[10] H. Park et al., “Distinguishing between FE and DDoS Using Randomness
Check,” Info. Sec. Conf., LNCS, vol. 5222, Sept. 16. 2008, pp. 131–45.

[11] D. Moore et al., “Inside the Slammer Worm,” IEEE Security & Privacy, vol.
1, no. 4, July/Aug. 2003, pp. 33–39.

[12] C. C. Zou et al., "The Monitoring and Early Detection of Internet Worms,"
IEEE/ACM Trans. Net., vol. 13, no. 5, Oct. 2005, pp. 961–74.

Biographies
HYUNDO PARK (hyundo95@korea.ac.kr) received B.S., M.S. degrees from the
Department of Computer Science and Engineering, and also received a B.S.
degree from the Department of Mathematics at Korea University, Seoul. He is
currently working toward a Ph.D. degree in the Department of Computer Science
and Engineering at Korea University.

HEEJO LEE (heejo@korea.ac.kr) is an associate professor at Korea University.
Before joining Korea University, he was at AhnLab, Inc. as a CTO from 2001 to
2003. He received his B.S., M.S., and Ph.D. degree from POSTECH, Pohang,
Korea, and was a postdoctorate researcher at Purdue University. He serves as
an editor of the Journal of Communications and Networks. He has been an advi-
sory member of the Korea Information Security Agency and Korea Supreme
Prosecutor's Office. With the support of the Korean government, he worked on
constructing the National CERT in the Philippines (2006) and consulted on cyber
security in Uzbekistan (2007) and Vietnam (2009). More information is avail-
able at http://ccs.korea.ac.kr.

HYOGON KIM (hyogon@korea.ac.kr) is a professor at Korea University. He got
his Ph.D. from the University of Pennsylvania in 1995. Prior to joining Korea
University, he was a research scientist at Bell Communications Research (Bell-
core). His research interests include Internet protocols and applications, wireless
networking, network security, and computational neuroscience.

PARK LAYOUT 9/9/09 12:09 PM Page 20

Authorized licensed use limited to: Korea University. Downloaded on October 12, 2009 at 01:02 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

