
Scalable Attack Graph for Risk Assessment
Jehyun Lee∗, Heejo Lee†, Hoh Peter In‡

Division of Computer and Communication Engineering
Korea University, Seoul, Korea

{arondit∗, heejo†, hoh in‡}@korea.ac.kr

Abstract— The growth in the size of networks and the number
of vulnerabilities is increasingly challenging to manage network
security. Especially, difficult to manage are multi-step attacks
which are attacks using one or more vulnerabilities as stepping
stones. Attack graphs are widely used for analyzing multi-step
attacks. However, since these graphs had large sizes, it was too
expensive to work with. In this paper, we propose a mechanism to
manage attack graphs using a divide and conquer approach. To
enhance efficiency of risk analyzer working with attack graphs,
we converted a large graph to multiple sub-graphs named risk
units and provide the light-weighted graphs to the analyzers.
As a result, when k order of time complexity algorithms work
with an attack graph with n vertices, a division having c of
overhead vertices reduces the workloads fromnk to r(n + c)k.
And the coefficient r becomes smaller geometrically from2−k

depended on their division rounds. By this workload reduction,
risk assessment processes which work with large size attack
graphs become more scalable and resource practical.

I. I NTRODUCTION

For the past several decades, the task of protect information
assets has become increasingly complex and substantially
harder. The difficulties have been caused by the growth of
objects to concern, nodes of networks and their vulnerabilities.
As the result of protection problems, according to a CSI&FBI
survey report in 2007 [1], there have been double the average
annual loss in 2007 in contrast with 2006. In order to
reduce the burst of damage occurring from network attacks,
practitioners are adopting risk management techniques to
provide network security.

In the report, almost one-fifth of respondents who
experienced security incidents said they had suffered a
“targeted attack” aimed at an organization. Particularly,a
kind of targeted attacks called to multi-step attacks, using
one or more vulnerabilities as stepping stones, are focused
by security risk managers for the following reasons. At first,
they must face more and more new vulnerabilities not just
the large numbers of vulnerabilities that they have experience
in the past. The increase numbers of new vulnerabilities
have been accelerated. Statistically, in June 2008, nearly
five hundred new vulnerabilities were published on CAS
(National Cyber Alert System) [2]. The other reason is that
there are, in risk management, much more factors what
must be considered not only the security problems. They are
organizational factors such as economic and political things.
Against an attack scenario, the number of concerned factors
increases when there are more related assets on its attack
route. In these situations, security managers must decide

precedence of works for resistance as fast as possible, even
considering more than the final target of an attack.

Attack graphs are a well-formed method for network
hardening and security analysis. Past researches [3], [4],[5],
[6] using an attack graph were focused on faster graphs
generation and better readability. Here, we focus on the latest
usage of attack graphs, the risk management. While they are
used into the risk management process in order to get various
pieces of risk information and decision supports, there are
various criteria, and algorithms that work with the attack
graphs.

The most important factor about attack graphs is their
scalability. The causes of scalability problems with these
graphs are the computational complexity of the generation
and the large size of the generated graph. Both of them
have been caused by the increase of the network size
and numbers of vulnerabilities. There were several studies
achieving reasonable generation time [7]. But the large size
of a graph is a quite different problem. The generated graphs
were not necessarily small. Thus, researchers have suggested
various approaches to manage the complexity of these
graphs. However, most of them were not for risk assessment
since they were focused on reducing visual complexity for
user readability [8], [9]. They contributed to enhance the
readability and interactivity of an attack graph. But manual
graph analysis using visual representation is a different usage
of attack graph with computational analysis using a graph as
a data structure. Some of the other approaches [10], [11] were
dependent on specific analysis algorithms. Their approaches
needed consideration of the algorithms for special objects
what they defined on attack graphs. It means that they may not
have enough flexibility on standard risk assessment processes
which have component based structures. In other words,
attack graphs can have fast generation but slow analysis.
To keep pace with complex and expensive risk analysis
algorithms, we need to enhance scalability by managing their
working data, the attack graphs.

In this paper, we propose a mechanism to make attack
graphs more scalable to be used, by taking a divide and
conquer approach. For the consistency of the analysis result
and the flexibility of an attack graph, we have established
two principles what will be explained in Section 3. As most
divide and conquer algorithms do, this method shows more
contribution on a more complex algorithm running on a larger
graph.



II. RELATED WORK

Using attack graphs and managing risk have the same goal,
enhancing network security. Researches have concentratedon
using attack graphs more for technical problems than risk
management. Also, the risk management standard has had
economic and political problems that have received more
attention than security problems.

There were lots of attack graph researches, and many of
them were improved by the studies of Noel, and Jajodia
at George Manson University [5], and Ou at Kansas
State University [7]. In their approaches, the attack graph
had various information sources and visualization ability.
However, it was not in the scope of their studies to be
concerned about cooperation with a risk management process
especially that had a circular flow.

Noel’s suggestion about complexity of attack graph [8]
archived enough feasibility by aggregating common properties
of vertices, but it was not suitable for automated risk
assessment. Because it managed graph complexity by hiding
detailed information hierarchically. We surely agree thatit
was helpful in enhancing user readability, but it did not
contribute to reducing computing workload of analysis
algorithms which require most detailed internal data of each
vertex. Homer et al. [9] suggested a more fundamental way
to reduce the complexity of an attack graph. They introduced
several rules to remove the redundant part of attack graphs.
The rules may be coordinated by the security policy of a
user group. We found out that the approach was useful in
removing the ring topologies from attack graphs.

To evaluate relative risk caused by inter hosts and inter
sub-networks as well as the risk of each of the hosts, attack
graphs are a most suitable method. However, in the risk
assessment process standards, there are so many non-technical
properties under the heading of ‘Organizational Gap’ [12].
Since that, the assessment methods are burdened with a more
heavy workload than past risk analysis studies had to deal
with. If attack graphs had enough scalability on practical
environments, they were useful tools for attack predictionand
efficient response with considering organizational properties,
but most past studies were not concerned with these usages.
Kotenko and Stepashkin [11] focused on a similar problem
and suggested a risk assessment architecture. They did
not dealt with the detail inside of each component. Also,
they did not analyze concrete benefit. Their method about
complexity reduction indicated that they took a graph split
and aggregation method by using a dynamic programming
approach. Their methodology may contribute a few additional
benefits if a risk management process already utilized data
reusability not limited to attack graphs. However, we think
it is a good case for the assessment process so that our
approach can be adopted.

III. PROPOSED ARCHITECTURE

To keep flexibility with risk analysis and quantification
algorithms, we established two principles onto enhancing

scalability.
- Component independent : “It should be archived without

modifying the algorithms which use an attack graph as an
input data”

- Lossless reduction : “It should be archived without lossy
aggregation or removal of graph elements, except in explicit
cases on policy”

These principles are based on the recommendation of
standard risk management process [13], [12]. Security risk
assessment has various points of view on a case by case
basis. From the necessities of organizations, there can be
a number of criteria and proper algorithms as components.
For this reason, it is too hard to modify or develop every
candidate algorithms for better performance. There are only
a few heuristic algorithms optimized for attack graphs. For
the second principle, for example, if we aggregate security
conditions and relative exploits including internal data as one
vertex, algorithms to find the most critical or efficient patch
candidate do not work correctly.

Fig. 1. The conceptual architecture of the risk assessment process using an
attack graph.

Our mechanisms are fundamentally based on divide and
conquer approach. In our architecture described in Fig. 1,
all work is performed before and after analyzing an attack
graph. Attack graph manager provides divided attack graphs
to the risk analyzer. After analysis, the manager check the
consistency of overlapped area between related sub attack
graphs. The overlapped area is generated on division time by
cloning shared vertices and edges to divide a connected graph
to two sub graphs. Set of these components can be considered
as a phase of a risk assessment process. The phase which uses
attack graph get the environmental and political information
from the previous phases and provides analysis result to the
next phase.

A. The structure of the attack graphs

Attack graphs what we used in this paper have three types of
vertices:square, circle, and diamond vertices. Square vertices
are shownc1, c2, ... cn at Fig.2. They mean represent the
security conditions in a network. Most of them are caused
by vulnerabilities of software installed on hosts, but some
are caused by the network configuration. Circle verticese1,
e2, ... en are exploits which cause new conditions using
conditions. At last, diamond vertices are penetrated conditions
of a machine or a target resource. In this case, directed edges



Fig. 2. An example of cut and divide operation.

started from the origin conditions point on an exploit vertex
that is using the conditions. Also, directed edges startingfrom
an exploit vertex, points to other conditions that become active
by the exploit. In other words, a security condition is caused
by performing exploits that points to the condition vertex,
and an exploit needs the conditions that point to the exploit
vertex. However, there is a difference between exploit pointing
edges and condition pointing edges. The all edges pointing to
an exploit vertex mean that the origin vertices are necessary
conditions of the pointed exploit; however, the edges pointing
to a condition vertex mean that the origin vertices are sufficient
conditions of the pointed condition.

B. Division process - Cut and divide

Cut and divide operations make a connected attack graph
into two isolated sub graphs. By repeating this operation
multiple times, an attack graph becomes divided into multiple
sub graphs.

1) Cut operation: The cut operation removes a group of
edges and vertices that satisfy the cutting rules. Cutting rules
can be determined to remove attack paths that have extremely
rare feasibility or risk factor from the graph. Homer’s rules [9]
are good example of cutting rule for making an attack graph
more obvious. Fig.2 shows the reduction of ring structure by
cutting two edges from the original graph G. As a result, the
cut graph G’ has more independency between the vertices.

2) Divide operation: The divide operation makes a con-
nected attack graph to two sub-graphs. Conceptually, because
it is for finding a set of related vertices on a depth first attack
path, if there are three dividable sub-graphs, the graph needs to

Fig. 3. C like pseudo code for division procedure,‘FindSet’

perform the divide operation twice. As a result of the above cut
operation, G’ has less size of intersection vertex set between
the attack paths starting fromc1, and c2 than the original
graph G. Since the vertices of the intersection set becomes to
overlapped vertices of the divided sub-graphs, less intersection
size means less division overhead. In Fig.2, the sub-graphG′

a

andG′

b have smaller overlapped area and the entire graph than
sub-graphGa andGb. The graphG is converted to two sub-
graphs having 14 vertices, but the cut graph G’ is converted
to two sub-graphs having 10 vertices.

Fig. 4. An example of top-down(left) and bottom-up(right) directed division.

The divide operation has two kinds of dividing forms that
depend on the assessment direction of the risk. The assessment
direction is determined from the kind of risk that a user wants



to obtain from the attack graph. When a user wants to assess
criticality, countermeasure, consequence, or the maximum
effect area of a security condition, in other words, an user
want to know the worth of a patch, or a security product. The
assessment, then, is performed with a top-down direction. On
the contrary, the bottom-up direction may be used to obtain
the security risk that a specific machine has. Fig.4 shows two
different results of each of the dividing forms. In the easy
sense, the top-down sub-graphsG1, G2, and G3 are started
from one or set of conditions having an indispensable relation
and end with a set of penetrate (goal) conditions. Opposite to
this case, the bottom-up sub attack graphsGa, Gb, Gc and
Gd are started from a set of initial conditions, and end to a
penetrate condition. Fig.3 is the pseudo code for the division
procedure. The procedure finds a set of vertices from the
original attack graph to make a sub-graph. We named these
divided sub attack graphs to risk units. A risk unit is a working
unit for risk assessment and quantifying. This procedure finds
out connected nodes and inserts them into the node set of
the start node. To find related condition nodes which share
exploit nodes, the procedure is recursively called and find
branches of the condition or exploit nodes. It searches the
graph with depth first policy and stops until there is a kind of
penetrate condition nodes which satisfy pre-defined stop rules
or any other grouping rules. To avoid duplicated search in loop
connections we took the bit marking method in this algorithm,
but it can be implemented by any other method.

The one of most significant problem of dividing an attack
graph is the ring structure in the graph. In the ring structured
graph, our algorithm outputs similar or almost identical sub-
graph. However, it just means an overlapped area that cannot
be divided anymore. Therefore, if ring structured verticestake
reasonable portion of the sub graphs, under the overhead prac-
ticality limit, there still are workload benefits from the divide
operation. We analyze the practical range of the overhead in
the evaluation section of this paper.

C. The update and merge process

When there is a new security condition or a newly discov-
ered exploit, an attack graph must be updated. If the updated
data has an effect on the relationship among sub attack graphs,
the sub attack graphs are restored by merge operation. This
special case is a breakout of when a new exploit needs plural
conditions that are in different sub graphs, or when a new
condition causes an exploit which makes a new path between
two conditions in different sub graphs. On the other hand, if
an update causes a vertex removal in a sub graph, the sub-
graph is going to be able to take a chance of dividing if it
has sufficient conditions. Fig.5 is an example of the case of a
merge operation caused by a new security condition.

D. Consistency process

After any changes in an attack graph, it must be checked
for consistency among the related sub-graphs, especially,
if the plural sub attack graphs have a set of overlapped
vertices. However, fortunately, it does not mean that the risk

Fig. 5. An example of merge operation.

of vertices in the set should be re-assessed in every case. If
there were no topological changes on the overlapped vertices,
keeping consistency is just update of numerical values which
is already quantified on the sub-graphs.

In some cases, there can be a dependency problem by
change of topological position of a vertex. Risk and worth
of a vertex that several sub-graphs share might be depended
on the analysis result of a graph sharing the vertex. In this
case, an analysis process should wait for the results of related
graphs. However, for independency of inter risk units, the
overlapped area of sub graphs can be expanded over a vertex.
By this expansion, a condition which is distinctly depended
on other conditions can shift a problem position to another
vertex. It uses that there are two kinds of vertices. Some
vertices have absolute worth and risk, and the other vertices
have relative worth and risk. These vertices which have
absolute properties do not cause the dependency problem
wherever they are.

IV. EVALUATION

In this paper, we addressed the workload problem of risk
assessment on attack graphs. Reduction of entire workload on
risk assessment means less cost and faster decision. In other
words, users can get benefits on the trade-off between versatile,
accurate, but expensive analysis algorithms and non-optimal,
heuristic but low cost algorithms.

In the suggested mechanism, workload reduction is accom-
plished by the external divide-and-conquer process. The pro-
cess provides more light-weighted attack graphs to an analysis
component. In this section, we show the quantified benefit
of our suggestion. We also present the ranges of allowed
overhead, and they are high enough to practical degree.

A. Analysis

Our architecture achieves more benefits with respect to time
consumption with more balanced and divided graphs. In per-
fectly balanced dividing and a no overhead ideal situation,the
architecture shows geometrically increasing reduction benefits,
2−k times that of the original workload, where the vertex size
of an attack graph isn and the target algorithm hasnk of
time complexity. With the overlapped vertices appearing atthe
dividing operation as the overhead, the benefits are decreased
depending on the portion of the overlapped area, but there



Fig. 6. Workload reduction and relative workloads comparison by graph
division.

TABLE I

COMPARISON BETWEEN DIVIDED AND ORIGINAL CASES

n3 n2log(n) n2 nlog(n)
Original 1954.31 sec 78.12 sec 19.53 sec 0.78 sec
Divided 78.12 sec 4.87 sec 2.90 sec 0.68 sec

are still increasing benefits by more division in Fig. 6 (left).
As shown at Fig.6 (right), since this approach involves

managing the complexity of input data proportionally, it shows
a better result at the target algorithms which have a higher
time complexity. The allowed limitation of overhead, the size
of the overlapped area, is determined by the time complexity
of the target algorithm. Assuming that the size of each of
the risk units are nearly the same, by many divisions, the
divided graphs having a graph size less than2(1−1/k) times
that of the previous attack graph has benefits for processing
workload reduction. In other words, on division time, divide
operations that have expected overlapped area larger than
1 − 2(1−1/k) times that of the target graph are not allowed.
According to our analysis,n3, n2log(n), n2, and nlog(n)
complexity algorithms have toughly50%, 45%, 40%, and10%
of overhead limitations in each of the cases.

B. Experiment

To evaluate how the reduced workloads contribute to actual
computing time, we performed the architecture using dummy
algorithms. It was performed on Intel Pentium4 3.0Ghz
CPU, 1GB RAM, and Windows XP service-pack 3 OS
environment. We generated randomly, but considering vertex
types, a connected graph with 100 vertices, and performed
algorithms which have matrix calculations, file I/O, and
string matching with internal data assigned to vertices. In
divided cases, we performed top-down direction division
algorithm for 32 rounds with a 30% overhead limitation.
The computation times include time overhead for division
computations near 50ms for 32 running rounds. Table I shows
the comparison results of time consumptions with different
complexity algorithms.

V. CONCLUSION

We proposed a simple but clear approach to enhance
scalability of risk assessment on an attack graph considering

the practical limitations of the risk management process.
Our external divide and conquer approach does not require
adaptation of analysis methods and is not on exclusive
relation with other approaches for attack graph complexity
management. By cloning a set of vertices which are necessary
to multiple sub-graphs, it becomes to be available to dividea
connected graph without loss of adjacency and information.
The approach directly contributes to reducing the workload
of analyzers in a risk assessment process by providing a
light-weighted input object, named a risk unit. It is a fully
logical aggregation and automatically generated by some
simple sub-graph separation rules. We have shown how to
divide a connected attack graph by cloning the overlapped
vertices among risk units. We have evaluate expected
benefits by workload reduction in various cases and range
of practicality by analyzing the size limitation of overlapped
area. The results of analysis and experiments show that this
method contribute to reducing heavy workload of the complex
analysis algorithms with very practical overhead tolerance.

ACKNOWLEDGMENT

This work was supported in part by the ITRC program of
the Korea Ministry of Knowledge Economy, and the Basic
Research Program of the Korea Science & Engineering Foun-
dation.

REFERENCES

[1] “CSI&FBI Report 2007,” http://www.gocsi.com/.
[2] “National Cyber Alert System,” http://www.us-cert.gov/cas/.
[3] K. Ingols, R. Lippmann, and K. Piwowarski, “Practical attack graph

generation for network defense,”Proc. of the 22nd Annual Conf. on
Computer Security Applications, pp. 121–130, Dec. 2006.

[4] R. Lippmann and K. W. Ingols, “An annotated review of past papaers
on atack graphs.” MIT Lincoln Laboratory, Tech. Rep., March2005.

[5] S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs, “Efficientminimum-
cost network hardening via exploit dependency graphs,” inProc. of the
19th Annual Conf. on Computer Security Applications. IEEE Computer
Society, 2003, p. 86.

[6] L. Wang, A. Singhal, and S. Jajodia, “Toward measuring network
security using attack graphs,” inProc. of ACM workshop on Quality
of Protection. ACM, 2007, pp. 49–54.

[7] X. Ou, W. F. Boyer, and M. A. McQueen, “A scalable approachto attack
graph generation,” inProc. of the 13th ACM Conf. on Computer and
communications security. ACM, 2006, pp. 336–345.

[8] S. Noel and S. Jajodia, “Managing attack graph complexitythrough
visual hierarchical aggregation,” inProc. of the 2004 ACM workshop
on Visualization and data mining for computer security. ACM, 2004,
pp. 109–118.

[9] J. Homer, A. Varikuti, X. Ou, and M. A. McQueen, “Improving attack
graph visualization through data reduction and attack grouping,” in Proc.
of the 5th Int’l Workshop on Visualization for Cyber Security, Sep. 2008.

[10] R. Dantu, K. Loper, and P. Kolan, “Risk management using behavior
based attack graphs,” inProc. of the Int’l Conf. on Information Tech-
nology: Coding and Computing, vol. 2. IEEE Computer Society, 2004,
p. 445.

[11] I. Kotenko and M. Stepashkin, “Attack graph based evaluation of net-
work security,” inProc. of the 10th IFIP Int’l Conf. on Communications
and Multimedia Security, ser. LNCS, vol. 4237. Springer, 2006, pp.
216–227.

[12] CMU SEI, “OCTAVE,” http://www.cert.org/octave/.
[13] G. Stoneburner, A. Goguen, and A. Feringa, “Risk management guide

for information technology systems,”NIST Special Publication, no. SP
800-30, July 2002.


