
Code Graph for Malware Detection
Kyoochang Jeong, Heejo Lee

Division of Computer and Communication Engineering
Korea University

Seoul 136-713, South KOREA�
kyoochang,heejo � @korea.ac.kr

Abstract— When an application program is executed for the
first time, the results of its execution are not always predictable.
Since the host will be damaged by a malware as soon as
it is executed, detecting and blocking the malware before its
execution is the most effective means of protection. In contrast
to current research into the detection of malwares based on their
behavior while being executed, we propose a new mechanism
which can preview the effect of a program on a system. The
mechanism we developed is to represent the distinctions between
portable executable binaries. The proposed mechanism analyzes
the instructions related to the system-call call sequence in a
binary executable and demonstrates the result in the form of a
topological graph. This topological graph is called the code graph
and the preview system is called the code graph system. We have
tested various real application programs with the code graph
system and identified their distinctive characteristics which can
be used for distinguishing normal softwares from malwares such
as worm codes and botnet programs. Our system detected all
known malwares used in the experiment, and distinguished 67%
of unknown malwares from normal programs. In this paper, we
show how to analyze the effects of executable binaries before their
execution and normal softwares can be effectively distinguished
from malwares by applying the code graph.

I. INTRODUCTION

Internet attack programs, so called malwares, infect hosts
connected to the network, and they not only exert a mis-
chievous influence on the system but also degrade the net-
working performance of the system. According to a study in
which network operators were surveyed about Internet attacks,
Internet worms and DDoS attacks are two most serious attacks,
amounting to as much as 70 � 80% of the attacks [1].

An Internet worm infects hosts and uses them to infect
more hosts on the networks. The worm propagation model
shows the progression of the damage resulting from a worm
attack over time [2]. Once a host is infected by a worm,
the subsequent damage increases rapidly. Therefore, the best
method of preventing a worm from infecting a host is to notify
the user of its presence before its execution.

DDoS attacks are mostly launched by a large pool of
compromised hosts, which are called software robots or simply
“bots.” Such a network of bots is commonly referred to as a
botnet, which is also used for sending spam mails, stealing
personal information, as well as launching DDoS attacks.
According to the results of a recent study, the number of botnet
hosts amounts to 100 million [3]. When a PC is infected by
a bot code, the user is not typically aware of it because of
its stealthy behavior. Therefore, it is better to know what a
program is before it is installed.

The traditional method of detecting malwares before their
execution is pattern matching using malware signatures. As
well, most malware cleaning tools heavily rely on the pre-
defined signatures. However, many problems with these tools
have been pointed out and the most serious problem is the
rapid growth of the signature database and its timely update
whenever new malwares are detected [7]. One way to decrease
the number of signatures is the use of normalization techniques
that have been actively studied recently [4], [5]. However, this
approach does not provide a complete solution for detecting
unknown malwares.

Most computer users do not know what kind of functions are
included in a program before it is executed for the first time.
Moreover, they sometimes cannot know the internal functions
in the program even if they execute it. It means that a user
may install or execute a program which they do not intend to
use. This motivates us to study a preview mechanism which
can decrease the danger associated with the execution of such
programs.

We propose a mechanism to determine what kinds of
functions are included in a program before its execution.
The proposed mechanism analyzes the instructions related
to the system-call call sequence in a binary executable and
demonstrates the result in the form of a topological graph.
This topological graph is called the code graph and the preview
system is called the code graph system.

The code graph system is able to determine what kind of
functions are contained in the program before it is executed.
Moreover, the system analyzes the portable executable binary
for the purpose of determining what kinds of functions are
programmed on the operating system before executing the pro-
gram. We employ the code graph system to analyze malwares
for the purpose of finding the difference between them and
normal programs. From the experiments with real application
programs and malwares, it is shown that the code graph can
detect even unknown malwares, as well as typical malwares,
using their distinctive characteristics of malwares and normal
programs.

II. BACKGROUND

A. CPU instructions in binaries

To extract the characteristics of a program before its ex-
ecution, we need to analyze its binary. We interpreted the
instructions in portable executable binaries using the Intel
x86 instruction set reference provided by Intel [8]. There are

thousands of instructions in Intel x86 architectures. However,
we need only a few instructions related to the system call
calling sequence. Therefore, we divided the required instruc-
tions into 4 groups and extracted the instructions included in
these groups from the binaries. These grouped instructions are
illustrated in Table. I.

Group Instructions

 1. SCALL:
 System-call call

CALL(system-call)

 2. PCALL:
 Procedure call

CALL(procedure)

 3. JMP:
 Jump

JMP

 4. CJMP:
 Conditional jump

JA, JAE, JB, JBE, JC, JCXZ, JECXZ,
JRCXZ, JE, JG, JGE, JL, JLE, JNA,
JNAE, JNB, JNBE, JNC, JNE, JNG, JNGE,
JNL, JNLE, JNO, JNP, JNS, JNZ, JO, JP,
JPE, JPO, JS, JZ, JA, JAE, JB, JBE, JC,
JE, JZ, JG, JGE, JGE, JL, JLE, JNA,
JNAE, JNB, JNBE, JNC, JNE, JNG, JNGE,
JNL, JNLE, JNO, JNP, JNS, JNZ, JO, JP,
JPE, JPO, JS, JZ

TABLE I
THE INSTRUCTIONS INCLUDED IN 4 GROUPS

B. Code obfuscation of malwares

The code obfuscation is a code protection method by
complications such as encryption and compression. There
are three common code obfuscation methods: code reorder-
ing, junk-insertion, packing. The code reordering obfuscation
changes the syntactic order of instructions in a program
while maintaining the execution order through the insertion
of jump instructions. The junk-insertion obfuscation randomly
adds dummy codes that do not change the program behavior.
The packing obfuscation replaces a code sequence with a
data block containing the code sequence in encrypted or
compressed form and an unpacking routine that, at runtime,
recovers the original code from the data block [5],[6].

Most malwares use code obfuscation methods in order to
make it difficult to analyze them or to reduce their size. The
code obfuscation method itself is not within the scope of
our study. Nonetheless, we will show that the code graph
is effective even if code obfuscation methods are used, as
explained in the evaluation section.

III. CODE GRAPH

In this section, we describe how to construct the code graph
of an executable program, and explain how to detect suspicious
programs before their execution.

A. Motivation

The motivation of the code graph is based on a simple
proposition. A program consists of a certain number of func-
tions arranged in a certain sequence designed by a programmer

for the purpose of achieving its goal. However, this does not
mean that if we know the function call sequence of a program,
we can know what the goal of the program is. This relationship
is explained in Fig. 1.

G = Thegoal of a program
S = The system-callcall sequence of a program
F = Thesystem-call functions called by a program

G S(F)

Guess

Fig. 1. The motivation of the code graph

In this paper, we identify the call sequence of system call
functions in a program. And, even if we do not know the
exact goal of each program, we can predict the malevolence
of the program by analyzing the call sequence comparing with
predefined behavioral patterns.

B. System architecture

The code graph is a directed graph which represents the
characteristics of a portable executable binary. The code graph
system is a preview system which enables the characteristics of
a program to be viewed before its execution by generating and
analyzing the code graph. Our system analyzes the portable
executable binary, which is the design drawing of a program.
the characteristics of a program, we use the system-call call
sequence. We extract only those instructions related to the
system call call sequence in the binary executable program
and represent the result in the form of a code graph. Here we
define the code graph as follows.

A code graph is a directed graph �����	��
��� , where � is a
set of nodes and � is a set of edges. A node is a system call
selectively chosen among the system calls in a given program.
An edge is determined by the call sequence of the system calls
in � , e.g. ������������
������� ����
����� �"! , where ��� denotes the#%$�&'&	(�) system-call, and ��� denotes the #�$*&	& - +-, system-call.

Fig. 2 shows the architecture of the code graph system. Our
system consists of two parts, the code analyzer and the graph
analyzer. The code analyzer transforms a portable executable
binary into a directed graph, which is called the code graph.
And the graph analyzer analyzes and measures the code graph
to find out whether the program is malicious and to determine
the characteristics of the program.

C. Code analyzer

The code analyzer transforms a binary into the code graph
using the transformation algorithm. To transform a binary into
a code graph, first the code analyzer builds the node set � .
The code analyzer obtains the system-call set through the IAT
(Import Address Table) contained in a binary which means the
node set � . And it builds up a node set by connecting one
node to one system-call.

. . .
. . .
. . .
. . .

Code Analyzer

Graph Analyzer

Code Graph System

Portable Executable Binary

Analysis Result

Code Graph

Fig. 2. The architecture of the code graph system

The code analyzer generates the edge ���/�
������ of the code
graph � using the system-call sequence, where �*� is the caller
system-call and �0� is the call-in system-call. Fig. 3 shows the
whole transformation algorithm. And Fig. 4 shows how to
transform each instruction into an edge.

D. System-call grouping

We have classified system-calls into five categories, in order
to satisfy the following two conditions.1 Condition 1: The system-call group should express

simple information to determine the characteristics of
malwares easily.1 Condition 2: The system-call group should include
detailed information to represent the characteristics of
malwares exactly.

We drew the code graph on layer 2 and 3 according to the
results of the following equations. If there are , code graphs,
the edge size of each graph can be denoted by (� . Then, the
subgraph ��2 is the intersection graph of the , graphs. Thus,
we can define the rate of a subgraph ��2 as follows.3 24�65,879 �;:=< (2(� (1)

When a code graph �?> is given on layer @ , we let (> denote
the number of edges in � > . Then, the rate of information
accuracy can be defined as follows.3BA � (�C(> (2)

Input: Portable Executable Binary D
Output: Code Graph �E���	��
���
Transformation Algorithm
1 �GFHD�IJ+ &'K*LNMOK*(�	�QPR��FTSUP
2 ���=FHVWP
3) FX�Y,[Z)0\�]YM +-,[Z%�	D^�QP
4 WHILE) is not the end of D
5 // Instruction at address) in D
6 _�`aFH_cb)�d P
7 // Parameter of the instruction at address)
8] `eF] b)�d P
9 IF _ ` is in fhgjilk�k
10 IF ��� is equal to 0
11 ���=F] ` P
12 ELSE
13 �0�mF] ` P
14 �GFH�onp� K�q�(�'����
�����QP
15 ���=F6����P
16 END IF
17 ELSE IF _�` is in rUs]
18 � � FH� (Zutj+)�v Z�f�gjimk�kl�) �QP
19 �GFH�onp� K�q�(��� �
� � �QP
20 � � FHVwP
21 ELSE IF _�` is in g^rUs]
22 ���lFH� (Zutj+)�v Z�f�gjimk�kl�) �QP
23 �GFH�onp� K�q�(������
�����QP
24 ELSE IF _ ` is in] gjilk�k
25 ���lFH� (Zutj+)�v Z�f�gjimk�kl�) �QP
26 �GFH�onp� K�q�(������
�����QP
27 ���xFH� (Zu�Y, K f�gjimk�kl�) �QP
28 END IF
29) FygBI)0)O(,[Z]j)OM�q*)O$*z g M Ic,[Z (�) �'D^�%P
30 END WHILE
END of Algorithm

Fig. 3. Description of Transformation Algorithm

E. Graph analyzer

Let us explain the graph analyzer which is one of the
two main components in the code graph system. The graph
analyzer should extract the characteristics of the program and
determine its goal using the code graph drawn by the code
analyzer. However, it is difficult to identify the meaning of the
graph because it is not easy for a human being to understand
it. Therefore, we need another graph form. This alternative
representation of the code graph should satisfy the following
conditions.1 It should represent all information included in the code

graph.1 It should be easy to understand by a human being.1 It should be easy to identify the similarity of multiple
code graphs.1 It should be easy to find the difference between the code
graphs.

 CALL SystemCall1

 Instruction

 CALL SystemCall2

 Procedure 1

 Procedure 2

 Lable 1

 CALL SystemCall3

 . . .

 . . .

 . . .

 CALL SystemCall4

 RETN

 1 :

 11 :

 10 :

 12 :

 9 :

 8 :

 7 :

 6 :

 5 :

 4 :

 3 :

 2 :

Code instructions

 Instruction case 1 : 'JMP'

 Instruction case 2 : 'CJMP'

 JMP Lable 1

 Edge SystemCall1 -> SystemCall3

 Edge SystemCall1 -> SystemCall3
 Edge SystemCall1 -> SystemCall2

 CJMP Lable 1

 Instruction case 3 : 'PCALL'

 Edge SystemCall1 -> SystemCall3
 Edge SystemCall4 -> SystemCall2

 PCALL Procedure 2

Graph meterials

Fig. 4. An example of the transformation

We define the code graph matrix satisfying the above four
conditions. The code graph matrix s is an ,|{}, size matrix
for which each entry has the following structure.

Entry structure of the code graph matrix �
boolean � $�& + K
boolean ~c+ &	& - +-,
boolean #�$*&	&'(�) b � d
boolean #�$*&	& - +�,hb � d!

Each entry s ��� is the code graph edge �y�y��� �
�� � � on
layer 2. Row + of the code graph matrix means �/� of the code
graph edge and column � means �O� . A valid bit of an entry
structure means the edge’s validation. If there exists an edge
then the ~c+ &'& - +-, bit is true. The caller bits are �/� ’s attribute on
layer 3 and #%$�&'& - +-, bits are �0� ’s attribute on layer 3.

To analyze the code graph matrix we define the matrix ex-
amination in two steps and the matrix operation of intersection�

. The intersection is an operation of the code graph matrix
and it generates a new matrix having common entries in the
two matrices. The two steps in the matrix examination are as
follows.�

Step 1. Generation of a filter matrix :s A � s�����s���
Step 2. Examination of an input matrix :s � � s�����s��

The first step is to generate a filter matrix. In this step,
the filter matrix s�� which is generated has common entries
between the two program’s matrices s A and s�� . In this
paper, our objective is to detect malwares. So, we express the
characteristics of malwares as the filter matrix s � in advance,
in order to detect a similar malware matrix.

The next step is the examination input matrix step using
the filter matrix, s � . In this step, we apply the intersection
operation to the input matrix, s�� , and the filter matrix, s � ,
and generates the result matrix, s � . This result matrix is used
by the matrix measurement operation.

We define the matrix operation intersection used by the
two matrix examination steps as described below.

If i and D are code graph matrices of the same
size, then the intersection i � D is the same size
code graph matrix whose entries are determined as
follows.
1. If each valid bit of corresponding entries is Z) I (
and the ~c+ &'& - +-, bits of the corresponding entries are
equal then the valid bit of the result entry is Z) I (.
Otherwise it is ~ $�&	v�(.
2. The ~c+ &'& - +-, bit is true if each ~c+ &	& - +�, bit of the
corresponding entries is Z) I (. Otherwise is ~ $�&	v�(.
3. The #%$�&	&'(�) bit is Z) I (if each #�$*&	&'(�) bit of the
corresponding entries is Z) I (. Otherwise is ~ $�&	v�(.
4. The #%$�&	& - +�, bit is Z) I (if each #%$�&'& - +-, bit of the
corresponding entries is Z) I (. Otherwise is ~ $�&	v�(.

IV. EVALUATION

GetProcAddress
raise

GetModuleHandleA

GetCommandLineA

CloseHandle

WriteFile

ReadFile

CreateFile

GetWindowsDirectoryA

GetTempFileNameA accept

listen

GetTempPathA

fwrite

fopen

closesocket

WinExec

send

exitRtlUnwind

GetCurrentProcessId
signal

LoadLibraryA
RegCloseKey

bind

CreateThread

RegSetValueExA

RegCreateKeyExA

socket
sendto

fclose

connect

ExitProcess

30

Fig. 5. The code graph of the part of the evilbot

1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 1

1

2

3

4

5

6

7

8

9

0

1

1

2

3

4

5

6

7

8

9

0

1

1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 1

1

2

3

4

5

6

7

8

9

0

1

1

2

3

4

5

6

7

8

9

0

1

Mr of evilbot Mr of sdbot Mr of alftp Mr of soribada
1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 1

1

2

3

4

5

6

7

8

9

0

1

1

2

3

4

5

6

7

8

9

0

1

1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 1

1

2

3

4

5

6

7

8

9

0

1

1

2

3

4

5

6

7

8

9

0

1

Fig. 6. The �^� of malwares and normal programs

Fig. 5 shows the code graph of the part of the evilbot, and
fig. 6 shows the s � of malwares and normal programs. We
can see the difference between the programs by the matrix

sdbot evilbot agobot scvhost alftp soribada msn starcraft

Sm 1.00 1.00 0.92 0.97 0.58 0.84 0.62 0.55

Dm 0.00 0.00 0.12 0.06 0.36 0.33 0.46 0.36

Sm - Dm 1.00 1.00 0.80 0.91 0.22 0.51 0.16 0.19

TABLE II
THE RESULT OF THE � � MEASUREMENT

N F V Code Graph
Packing 0 0 0 0

Code reordering 3 1 2 4
Junk insertion 2 2 3 4

total 5 3 5 8

TABLE III
THE EXAMINATION RESULT OF NEW GENERATED MALWARES BY CODE

OBFUSCATION METHODS

color, and we can see that malwares do not have system-calls
related to user interface.

We examined the code graph system with four malwares and
four normal programs. And we measured each the similarity
and the difference of the result matrix in each case. Also,
we tested the code graph system with three common code
obfuscation methods and compared the results with those
obtained using three popular malware detection tools.

To measure the result matrix, s�� , we count the number of
entries with the entry structure value. These counter values are
shown in Table. IV.

valid fill-in

N1 true true

N2 false true

N3 true false

N4 false false

TABLE IV
THE COUNTER VALUES OF �^�

We compute the similarity of matrix, fU� , and the difference
of matrix, �"� , as follows.f[� � L <��w� L <�� L^� � (3)�"� � L?� �w� L^� � L�� � (4)

To determine whether the examined program is a malware
or a normal program, we define the variable � , as follows.��� f[�o����� (5)

Table II and Table III show the results of the examination.
According to the result if � is close to 1 then it is a malware.

V. CONCLUSIONS AND FUTURE WORK

We developed a program preview system which can exam-
ine the characteristics of a program and detect malwares before

their execution. This code graph system transforms a portable
executable binary into a topological directed graph and matrix
and then analyzes them. We distinguished malwares from
normal programs using the code graph system effectively and
the system was shown to work well under code obfuscation
methods.

Most malware codes are packed with binary packaging
techniques. Many kinds of packing techniques and unpacking
techniques are in public and many malware codes use this
public information. However, a malware code can be packed
by its own packing method which is hardly to unpacking. The
unpacking code contains themselves on the character of the
packing technique. If we use this self unpacking code we can
unpack unknown packing methods.

There are two ways to call system-calls on Windows. The
representative method is to link libraries. The other method
is to call the system-calls at run time. Currently, we use the
former way to implement the code graph system, and the latter
way will be solved with further research, since the names of
the system calls in the code can be found in the latter way.

The code graph system can be used to analyze the distinc-
tion of other applications as well as malware. We show the first
application of this method of detecting malware in this paper,
but this approach could also be used to classify programs into
groups and check to see if a function is made for a specific
need.

Acknowledgments

This work was supported in part by the ITRC program of
the Korea Ministry of Information & Communications, the
Basic Research Program of the Korea Science & Engineering
Foundation, and the Defense Acquisition Program Administra-
tion and Agency for Defense Development under the contract
UD060048AD.

REFERENCES

[1] Arbor Networks, “Worldwide ISP Security Report,” 2005.
[2] C.C. Zou, L. Gao, W. Gong, D. Towsley, “Monitoring and Early Warning

for Internet Worms,” Proc. of the 10th ACM Conf. on Computer and
Communications Security, 2003.

[3] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, Andreas Terzis, “My
Botnet is Bigger than Yours (Maybe, Better than Yours) : Why Size
Estimates Remain Challenging,” Proc. of HotBots, Apr. 2007.

[4] J. Newsome, B. Karp, D. Song, “Polygraph: automatically generating
signatures for polymorphic worms,” Proc. of IEEE Symp. on Security
and Privacy, 2005.

[5] M. Christodorescu, J. Kinder, S. Jha, S. Katzenbeisser, “Malware nor-
malization,” Technical Report 1539, University of Wisconsin, Madison,
Wisconsin, USA, November 2005.

[6] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscat-
ing transformations,” Technical Report 148, Department of Computer
Science, University of Auckland, New Zealand, July 1997.

[7] M. Christodorescu, S. Jha, “Testing malware detectors,” ACM SIGSOFT
Software Engineering Notes, 2004.

[8] Intel Corporation, “Intel 64 and IA-32 Architectures Software Developer’s
Manuals,” http://www.intel.com/products/processor/
manuals/index.htm.

