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Abstract. From the appearance of CodeRed and SQL Slammer worm, we have
learned that the early detection of worm epidemics is important to reduce the
damage caused by their outbreak. One prominent characteristic of Internet worms
is to choose next targets randomly by using a random generator. In this paper,
we propose a new worm detection mechanism by checking the random distri-
bution of destination addresses. Our mechanism generates the traffic matrix and
checks the value of rank of it to detect the spreading of Internet worms. From the
fact that a random binary matrix holds a high value of rank, ADUR (Anomaly
Detection Using Randomness check) is proposed for detecting unknown worms
based on the rank of the traffic matrix. From the experiments on various environ-
ments, we show that the ADUR mechanism effectively detects the spread of new
worms in an early stage, even when there is only one host infected in a monitoring
network.

1 Introduction

An Internet worm is the one of malicious codes that propagates by copying itself onto
other computers. Such a self-replicating malicious code scans vulnerable hosts on a net-
work, replicates itself to the vulnerable hosts without user intervention. Starting from
one decade after the Morris worm in 1988, the number of incidents according to In-
ternet worms is growing drastically. CodeRed and Nimda worm infected hundreds of
thousands of vulnerable computers at year 2001. At that time, from public institutes to
personal users suffered from the damage caused by CodeRed and Nimda. The amount
of damage was accounted for millions of dollar [1-4].

On the history of Internet worms, the SQL Slammer worm is known as the fastest
spreading worm. It spends mere 10 minutes to infect 90 percent of vulnerable hosts
in the Internet. And the number of infected hosts increased two times per 8.5 seconds.
This speed is much faster than CodeRed, which increases two times per 37 minutes
[5]. The first step toward countering with the epidemic of a worm is ”early detection”
as soon as possible. However, signature-based detection algorithms are not proper to
detect new worms or polymorphic worms since they can always change their codes. On
the contrary, anomaly-based approaches can be used for detecting such worms, at the
expense of higher degree of complexity and false alarms.
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Anomaly-based approaches have been studied in several ways. Zou et. al. [6] pro-
posed a Kalman filter-based detection algorithm which detects the trend of illegitimate
scans to a large unused IP space. Wu et. al. [7] proposed a victim counter-based de-
tection algorithm that tracks the increased rate of new infected hosts. The algorithm
warns when abnormal events occur consecutively over a certain number of times. Berk
[8] proposed an anomaly detection algorithm using ICMP ”Destination Unreachable”
messages which can be collected at border routers to infer worm activities. Previous ap-
proaches determine an on-off binary condition based on a ”threshold” value, but rarely
provide further information for defending the worm epidemic such as infected subnet
locations in a monitoring network.

In this paper, we propose a new method for detecting the spread of Internet worms,
which is called ADUR (Anomaly Detection Using Randomness check). The ADUR
mechanism can detect a new worm by measuring the randomness of destination ad-
dresses in network traffic, where the randomness is formed when a worm propagates
randomly over the Internet. By checking the randomness of address distribution, ADUR
distinguishes between the status of normal conditions and the state of worm epidemics.
Two main features of ADUR are the use of ”matrix” representations and exclusive-or
(XOR) operations. Matrix representations give many benefits to implement particular
operations regardless of network size and traffic volume. And the XOR operator dimin-
ishes the effect of normal traffic and magnifies the effect of worm traffic, which results
in reduced false alarms. By measuring the dynamics of the rank of traffic matrix, ADUR
can detect the worm epidemic in an early stage.

Main contributions of this study is three-fold. First, we propose a novel approach to
detect unknown worms based on the randomness of worm traffic. Second, we suggest an
anomaly detection algorithm based on matrix and its simple operation of XOR, which
greatly increase the flexibility and the accuracy of detection. Finally, the algorithm gives
additional information such as infected subnet locations when a worm is detected.

The rest of this paper is organized as follows. In Section 2, we explore scanning
methods of Internet worms which have been used to choose a target host. Section 3
describes how to check the randomness of traffic. In Section 4, we propose the ADUR
mechanism and show the reason why it uses the XOR operator. The evaluation of the
proposed ADUR mechanism is shown in Section 5. We summarize our results and
conclude the paper in Section 6.

2 Scanning Methods of Active Worms

In this section, we describe the scanning methods of Internet worms and show the re-
lationship to the randomness of traffic generated by an individual scanning method.
Scanning methods can be classified onto four categories [9]: hitlist scanning, topologi-
cal scanning, local scanning, and permutation scanning.

In order to show the spreading speed of Internet worms, we can use an analytical
model such as AAWP (Analytical Active Worm Propagation) [15]. AAWP is a worm
propagation model based on discrete time.

In the AAWP model, the number of infected hosts at time tick i is shown in Eq. (1),
where N is the total number of vulnerable hosts in the Internet, T is the size of address
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Table 1. Attack signatures of nine attacks

space used by the worm to scan, s is the scan rate, and ni is the number of infected
hosts at time tick i.

ni+1 = ni + [N − ni]
(

1 −
(

1 − 1
T

)sni
)

(1)

On Eq. (1), let us assume that the initial time tick is 0, i.e. i=0. And the value of
n0 is equal to the initial hitlist size. Fig. 1 shows the distribution of infected hosts as
a function of time tick. Even with a different hitlist size, the number of infected hosts
increases drastically when the value of n passed 10,000, as shown in Fig. 1.

Fig. 1. The number of infected hosts as a function of time tick when n0 = 1, 100, 1000, and 10000,
respectively

At the beginning of worm propagation, the speed of propagation is slow. However,
when the number of infected hosts exceeds a certain point, e.g. 10,000 in Fig. 1, the in-
fection is growing rapidly. This is caused by the fact that, as the propagation proceeds,
the number of scanning packets also increases along with the increased number of in-
fected hosts. Thus, infection is accelerated by finding remaining susceptible hosts more
rapidly.

A hitlist scanning worm has a list of IP addresses and the sequence of the addresses is
not likely to form a uniform distribution. Thus, the traffic generated by hitlist scanning
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has the property of randomness. Topological scanning worms gather the information
of target hosts from the information on the infected host. The sequence of target IP
addresses, gathered on the infected host, is not uniformly distributed. Therefore, the
traffic generated by the topological scanning worm has also the randomness. The local
and permutation scanning worm uses a random generator to generate target IP addresses
with particular constraints. Eventually, the sequence of those IP addresses generated by
the local or permutation scanning, have the randomness.

Thus, conventional worm propagation strategies produce the property of ”random-
ness” in target hosts. This implies that we can monitor the spreading of worms by mea-
suring the randomness of destination addresses in network traffic. In this study, we
attempt to measure the degree of randomness in traffic in order to catch the spreading
of high speed worms.

3 Matrix Rank as a Randomness Metric

Many approaches have been proposed for testing the randomness and one cost-effective
approach is checking the linear-dependency among fixed-length substrings of its orig-
inal sequence. In order to check the linear-dependence among rows or columns of a
matrix, we can use the rank of a matrix [17]. The randomness test using by the rank of
the matrix has been broadly used as defined in a specification of one of tests coming
from the DIEHARD [18] battery of tests.

One easy way to compute the rank of a matrix is counting the number of non-zero
rows after applying the Gaussian elimination method to the matrix. In other words, the
rank of the matrix is equal to the number of leading 1’s [16].

In case of a random m x n binary matrix, the value of rank has the following proba-
bility where rank r = 1, 2,. . . , min(m, n) [17].

2r<n+m−r>−nm
r−1∏
i=0

(
1 − 2i−n

) (
1 − 2i−m

)
(1 − 2i−r)

(2)

From the Eq. (2), we can get the distribution of probability for a given random matrix.
In case of 64x64 random binary matrices, the distribution of probabilities for the value
of rank is shown as Fig. 2.

If one 64x64 random matrix is given, the probability that the value of rank exceeds 60
is over 99.995% from Eq. (2). This implies that, if the 64x64 binary matrix is a random
matrix, the rank of the matrix will be larger than 60 with high probability. Thus, we can
use the rank of a matrix to determine the randomness of element distribution.

4 Anomaly Detection Using Randomness Check

We propose an anomaly-based worm detection algorithm, called ADUR (Anomaly De-
tection Using Randomness check). This section describes the ADUR mechanism which
includes a matrix representation and its XOR operations. We show how to express net-
work traffic on a matrix, and how to use the XOR operation in order to diminish the
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Fig. 2. Probability distribution of the rank of a 64x64 random binary matrix

effect of normal traffic and magnify the effect of worm traffic. Then, the rank of the
matrix is used for measuring the randomness of traffic.

4.1 ADUR System Design

The ADUR mechanism is to detect the spreading of Internet worms through checking
the randomness of traffic. Traffic data can be classified into two categories based on
their direction: incoming and outgoing. ADUR checks two directions respectively in
order to get more accurate attack information such as either entering or departing the
network. Checking the randomness of traffic can be accomplished by calculating the
value of rank of the matrix representing network traffic for a given period of time.

Let MI denote the matrix marked with incoming traffic. And we let MO represent
the matrix marked with outgoing traffic. R (MI) and R (MO) represent the value of
rank of matrix MI and MO, respectively. Then, the value of R (MI) and R (MO) can
be used to determine whether worm is active or not. There are four states depending on
the ranks R (MI) and R (MO) of traffic: calm, flowing, ebbing and flooding.

1. Calm: When both of R (MI) and R (MO) remains in a small range, there is no
suspicious activity of worms.
2. Flowing: When R (MI) suddenly increases but R (MO) remains steady in a small
range, the internal network is under attack by the worms in other networks.
3. Ebbing: When R (MI) remains steady in a small range but R (MO) suddenly in-
crease, the worms in the internal network are attacking other networks.
4. Flooding: When both R (MI) and R (MO) suddenly increase, the internal network
is flowing and ebbing.

4.2 ADUR System Design

The ADUR mechanism detects the worm spreading using the value of rank of the matrix
marked with network traffic. Matrix representation for both incoming and outgoing
traffic is described as follows.

In IPv4, we can capture source IP address and destination IP address and divide each
IP address into four octets. The length of each IP 1, IP 2, IP 3 and IP 4 is one octet.

IP 1.IP 2.IP 3.IP 4 (3)



780 H. Park and H. Lee

Matrix expression consists of two operations. The first one is placement. The other one
is storing information. When a packet is captured in a monitoring network, the packet
is mapped into a specific location of a matrix, which is determined by the destination
address of the packet. Without loss of generality, we assume that the matrix size is
64x64 when the size of monitoring network is /24. Then the placement function is
described as Eq. (4).

i = (IP 4/16)× 4
j = (IP 4 (mod 16)) × 4

(4)

Fig. 3. Construction of matrix M by mapping a packet to a sub-matrix m

Next, we need to store some information of the packet onto the matrix. The matrix
size 64x64 can hold 16 bits information for each packet. Since worms are likely to
change the last two octets more frequently than the first two octets, the last two octets
of an IP address will be stored at the 4x4 sub-matrix. In case of outgoing traffic, the
destination address of a packet is used for storing such information onto the matrix. In
case of incoming traffic, the source address of a packet is used instead of the destination
address. Fig. 3 illustrates the information storing on a 4x4 sub-matrix, where the matrix
size is 64x64. Furthermore, the 4x4 sub-matrix consists of four 1x4 sub-matrices, i.e.
m1, m2, m3, m4 in Fig. 3. The contents of 1x4 sub-matrices are described in Eq. (5).

m1 = first 4 bit of IP 3

m2 = last 4 bit of IP 3

m3 = first 4 bit of IP 4

m4 = last 4 bit of IP 4

(5)

We can extend the 64x64 matrix representation in a /24 network to larger networks.
When monitoring a /16 network, we can increase the size of matrix such as the 256
number of 64x64 matrices, i.e. 256x64x64. In this way, the principle of matrix expres-
sion can be scalable to any size of network. Reducing the matrix size for larger networks
is the future work of our study.

4.3 XOR Operator on Matrix Sequence

We need to consider only suspicious traffic but eliminate the effect of legitimate traffic.
It is found that the simple operation XOR is greatly effective for this purpose. Let Mt
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denote the matrix at time t. Eq. (6) shows the XOR operation on a sequence of matrices,
which dramatically reduces the influence of normal traffic on the value of rank.

R (M ′
t) = R (Mt ⊕ Mt−1) (6)

Matrix M ′ is made by the XOR operation of two consecutive matrices, which eventually
remove the most portion of legitimate traffic in the matrix because legitimate traffic
lives longer than one time unit. When time tick is an apt short, the legitimate traffic is
sufficiently removed without the loss of the impact of suspicious traffic. Experimental
results will be shown for different time ticks in next section. The XOR operation on the
consecutive matrices is the key factor to detect the worm spreading.

5 Evaluation of ADUR

In order to evaluate the effectiveness of ADUR, we show the exponential results with
real traffic. The traffic data is used the packets captured at a university network in July
29, 2004. For the purpose of making a situation of worm epidemic, we have injected
various types of random scanning packets on the traffic.

Fig. 4. The rank of matrix before and after
XOR operation

Fig. 5. The rank of matrix when randomly
generated connections are added

5.1 Effect of XOR

The ADUR mechanism eliminates the effect of legitimate connections in the traffic by
the use of XOR operation on the consecutive matrices. Fig. 4 shows the values of rank
”before” and ”after” XOR operation. Since the matrix after the XOR operation has only
suspicious traffic, such as new connections on the network, the value of rank greatly
reduces comparing with the matrix before the operation. In other words, the ranks will
increase sharply when new worms spread over the network.

5.2 Rank and Random Connection

Fig. 5 shows the value of rank when adding more random connections. After 20th tick,
we injected one random connection per time tick. When there are more than 25 random
connections, the value of rank becomes over 60. This shows the transition of state from
”calm” to ”ebbing.” From the fact that conventional worms can generate thousands of
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new connections per second, we can confirm that the ADUR mechanism has an ability
to detect new worms in an early stage of the worm propagation.

5.3 Effect of Window Size on the Value of Rank

Traffic matrix M is constructed by the traffic gathered for a given time period, called
”window size,” then the value of rank is measured after passing every window size. This
unit time is counted as one time tick in this paper. Here we conduct an experiment for
measuring the effect of window size.

The Fig. 6 shows the rank of matrix as a function of time tick with three different
window sizes. Each graph shows the result with the same traffic data in calm state.
As the window size increases, the amount of traffic for construction a matrix M also
increases. It implies that the rank of M will increase as the windows increases. However,
this increment is quite limited in a certain boundary, e.g. 20 as shown in Fig. 6, but
adding random connections will greatly increase the range of the rank. It shows that the
ADUR mechanism is robust to the window size and also to the traffic volume. Also, it
shows the possibility that ADUR can be used in high-speed networks.

In order to evaluate the effectiveness of ADUR, we measured the dynamics of ranks
as the worm proceeds. Fig. 7 shows the number of infected hosts which is modeled with
AAWP. Fig. 8 shows the variation of ranks associated with the propagation shown in
Fig. 7. The rank of the traffic matrix by AAWP model responds quicker than the speed
of infection, which is depicted by Fig. 7 and Fig. 8. In Fig. 8, two different networks
were considered: /24 and /16 as the size of a monitoring network. Monitoring larger
networks can give better looking glasses so that results in earlier detection. Even in a
small network such as a /24 network, we can catch the symptom rapidly such as 650
unit time in Fig. 8, where only 20% of hosts in the network got infected as shown in
Fig. 7. It implies that the ADUR mechanism is effective even by monitoring a small
network. The effectiveness of ADUR is measured in a real network traffic. The traffic
is gathered in a university network and worm traffic is injected to the normal traffic,

Fig. 6. The relation between the value of rank and the windows size
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Fig. 7. The number of infected hosts mod-
eled by AAWP as a function of time tick

Fig. 8. The corresponding value of rank
when worms spread with the AAWP model

Fig. 9. Rank distribution for a /16 network,
where only one host is infected by Slammer

Fig. 10. Corresponding 2-D graph to Fig. 9,
which also shows the infected subnet location

where only one host is infected by the Slammer worm. The rank distribution is shown
in Fig. 9 and Fig. 10. This is the situation that one host located in an unused network is
infected. Fig. 9 and Fig. 10 show the case that the infection of a subnet 48, which means
the third octet is 48 in a /16 network. Why we input the infected host on unused local
network? Because when the infected host exists in an unused network, the change of
the rank by the Slammer worm correctly distinct from the normal condition. The value
of rank with normal traffic is under about forty. But the value of rank with the traffic
including one host infection is over sixty. So, even though only one host is infected by a
worm, the ADUR mechanism can detect such infection and give additional information
such as infected subnet locations.

6 Conclusion

We have proposed an unknown worm detection algorithm called ADUR. The proposed
mechanism examines whether destination addresses have the property of random dis-
tribution. Matrix expression of network traffic and simple XOR operation on two con-
secutive matrices give a clue of worm spreading by measuring the rank of the matrix.
This paper showed that the ADUR mechanism can detect unknown worms in an early
stage of worm spreading and robust to the size and speed of a monitoring network and
the volume of traffic. We have a plan to run this mechanism in high speed networks and
try to experiment with more instances. Furthermore, we will extend the mechanism to
work when multiple worms spread simultaneously.
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