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Abstract. This paper presents a novel context-based approach to filter
out unfair recommendations for trust model in ubiquitous environments.
Context is used in our approach to analyze the user’s activity, state and
intention. Incremental learning based neural network is used to dispose
the context in order to find doubtful recommendations. This approach
has distinct advantages when dealing with randomly given irresponsible
recommendations, individual unfair recommendations as well as unfair
recommendations flooding.

1 Introduction

The basis for the trust model to make decision on unfamiliar service requesters
are the recommendations given by recommenders who have past interaction
history with the requesters. However, in the large-scale, open, dynamic and
distributed ubiquitous environments, there may possibly exist numerous self-
interested recommenders who give unfair recommendations to maximize their
own gains (perhaps at the cost of others). Therefore, finding ways to avoid or re-
duce the influence of unfair recommendations from self-interested recommenders
is a fundamental problem for trust model in ubiquitous environments.

The possible scenarios for unfair recommendations are: (1) Individual Unfair
Recommendation: honest recommender gives inaccurate recommendation due to
incorrect observation, or the recommender maliciously gives unfair recommen-
dation (the recommender may be a malicious node or a node which acted honest
but suddenly gives unfair recommendation due to his own benefits (called In-
side Job)). (2) Unfair Recommendations Flooding: a number of recommenders
collude to give unfair recommendations (more than 50% of total recommen-
dations), which causes the flooding of unfair recommendations. The flooding
may be caused by malicious nodes or those who acted honest (called Inside
Job Flooding). (3) Randomly Given Recommendation: the recommender gives
random recommendation due to the lack of responsibility.

There are mainly three methods had been proposed for filtering out unfair
recommendations in previous works. One is to use polling method, e.g. in [1],
the authors used basic polling as well as enhanced polling. The enhanced polling
� Corresponding author.

A. Bagchi and V. Atluri (Eds.): ICISS 2006, LNCS 4332, pp. 357–360, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



358 W. Yuan et al.

differs from basic polling by requesting voters to provide their servent id to
prevent a single malicious user to create multiple recommendations. Another
method is to give weighted value to each recommender (also called reputation
based method) [2], [3]. This method regards recommendations given by low rep-
utation recommenders as malicious. The third method is to use the combination
of filters [4]. It suggests that cluster filtering is suitable to reduce the effect of
unfairly high recommendations and frequency filtering can guarantee the calcula-
tion of trust not be influenced by the unfair recommendations flooding. However,
these methods take at least one of the following assumptions, which makes them
disable to deal all the unfair recommendations scenarios: (1) recommendations
provided by different recommenders on a service requester will follow more or
less the same probability distribution, (2) the higher rank the recommender has,
the more authority his recommendation will have. E.g., it is impossible to filter
out Inside Job and Inside Job Flooding using reputation based method since it
takes assumption (2).

This paper introduces a novel context-based approach using incremental learn-
ing algorithm to deal with the possible unfair recommendation scenarios. Instead
of taking the assumptions of previous works, context is used in our approach to
analyze the user’s activity, state and intention. The learning of context is incre-
mentally increased by a Cascade-Correlation architecture neural network.

2 The Proposed Approach

Trust is subjective since it is based on each user’s own understanding. Hence it
is relatively easy for the malicious recommender to pretend honest and for the
honest recommender to be misunderstood as malicious because of the different
understandings, which makes it difficult to differentiate between the unfair and
fair recommendations. Our key idea for the solution is that: recommenders may
give different recommendations due to their different understandings, however,
one recommender will follow the rule of himself, i.e., one recommender usually
gives similar recommendations in similar context. In case one recommender gives
exceptional recommendations compared with his own previous ones in similar
context, the reason lies in two aspects. One is that this recommendation is a
mischievous one. The other is that the recommender’s rule on recommendation
giving has changed, e.g. the recommender now only gives positive recommenda-
tion to requesters whose past interaction with him is more than 80% successful
in stead of 60%.

We use incremental learning based neural network, the Cascade-Correlation
architecture in particular, to learn each recommender’s rule on recommendation
giving since the acquisition of a representative training data for the rule is time
consuming and the rule is also possible to dynamically change from time to time.
Cascade-Correlation is useful for incremental learning, in which new information
is added to an already-trained network. It begins with minimal network, then
automatically trains and adds new hidden units one by one, creating a multi-
layer structure [5]. Fig. 1 gives the process of training Cascade-Correlation. In
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Fig. 1. Training of Cascade-Correlation Architecture

1, we train weights from input to output. In 2, we add a candidate unit and
train its weights to maximize the correlation with the error. In 3, we retrain the
output layer. We train the input weights for another hidden unit in 4. Output
layer is retrained in 5, etc. The usage of Cascade-Correlation architecture has
several advantages: it learns quickly; the network determines its own size and
topology; it retains the structures it has built even if the training set changes.

Fig. 2. Architecture for Filtering out Unfair Recommendations

We use the architecture shown in Fig. 2 to filter out the unfair recommenda-
tions. Recommendation Manager first collects recommendations (RECorg) from
all recommenders, along with the context value Vcontext under which recommen-
dations were given. For each recommender, the input of Cascade-Correlation
architecture is Vcontext and the output is RECIL, which is the recommendation
that one recommender will give due to his past behavior when given Vcontext.
If RECorg=RECIL, it means that the recommender gives the same recom-
mendation as previous behavior. In this case, we regard RECcom as a reliable
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recommendation and use basic voting mechanism to calculate the final recom-
mendation RECfin. Otherwise if RECorg �=RECIL, RECorg is regarded as a
doubtful recommendation. In this case, if RECorg �=RECfin, we regard RECorg

as mischievous or incorrect. Otherwise, if RECorg=RECfin, the possible situa-
tions are: (1) the recommender’s rule on recommendation giving has changed, (2)
the currently neural network is not enough to reflect the recommender’s rule on
recommendation giving since the Cascade-Correlation architecture begins with a
minimal network and the knowledge on the recommender’s rule is incrementally
increased. In this case, Vcontext as well as RECorg will be given back as retrain
data to the Cascade-Correlation architecture.

3 Conclusions

In this paper we propose a robust trust model for ubiquitous environments, in
which a context-based approach is used to filter out unfair recommendations.
The learning of the context is based on incremental learning neural network.
The filtered out recommendations may be the intended unfair recommendations
as well as the mis-observation by the recommenders. Since our approach concen-
trates on the doubtful behaviors of each entity, it has special advantages when
dealing with inside job, which is lack of considerations in previous works. In the
future work, we plan to simulate our proposed method based on CAMUS [6]
middleware. We also plan to add risk analysis in our context-based trust model.
We believe that to filter out unfair recommendations by using context-based
trust model presents a promising path for the future research.
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