
A Connection Management Protocol for Stateful
Inspection Firewalls in Multi-Homed Networks

Jin-Ho Kim
Samsung Electronics

Email: jhkim@netlab.snu.ac.kr

Saewoong Bahk
School of Electrical Engineering

and Computer Science
Seoul National University

Email: sbahk@netlab.snu.ac.kr

Heejo Lee
Department of Computer Science

and Engineering
Korea University

Email: heejo@korea.ac.kr

Abstract— To provide network services consistently under
various network failures, enterprise networks increasingly utilize
path diversity through multi-homing. As a result, multi-homed
non-transit autonomous systems (ASes) become to surpass single-
homed networks in number. In this paper, we address an
inevitable problem that occurs when networks with multiple
entry points deploy stateful inspection firewalls in their borders.

In this paper, we formulate this phenomenon into a state-
sharing problem among multiple firewalls under asymmetric
routing condition. To solve this problem, we propose a state-
ful inspection protocol that requires very low processing and
messaging overhead. Our protocol consists of the following two
phases: 1) Generation of a TCP SYN cookie marked with the
firewall identification number upon a SYN packet arrival, and
2) State sharing triggered by a SYN/ACK packet arrival in the
absence of the trail of its intial SYN packet. We demonstrate
that our protocol is scalable, robust, and simple enough to be
deployed for high speed networks. It also transparently works
under any client-server configurations. Last but not least, we
present experimental results through a prototype implementation.

I. INTRODUCTION

Enterprise networks increasingly leverage path diversity
through multi-homing because a single Internet Service
Provider (ISP) is not enough to provide consistent perfor-
mance. Today, multi-homed non-transit autonomous systems
(ASes) surpass single-homed networks in number [11], [3].
However, since BGP policies provide very coarse control over
communication paths and the global effect on its traffic is
difficult to predict or control, asymmetric routing is a real
possibility for multi-homed networks. Even before the current
advent of multi-homed networks, it was shown that routing
paths are often asymmetric in the Internet [5].

Meanwhile, most enterprise networks need to deploy fire-
walls in their border to protect themselves from illegitimate
traffic. Recently, what is called the stateful inspection firewall
has become the de facto industry standard. It enables flexible
and fine-grained control over incoming traffic, and the filtering
decision can be dynamically made based on the need of
the outgoing traffic. Namely, a stateful inspection firewall
intercepts a packet and updates its internal state table with the
extracted connection state information (source and destination
addresses and port numbers), based on which the filtering
decision is made for the incoming traffic [9]. However, this
means that the stateful inspection has a topological restriction:

outgoing and incoming traffic of a connection should pass
through a single firewall.

The failure of meeting this restriction due to the possibility
of asymmetric routing leads to the connection establishment
problem. Namely, if an AS is with multiple entry/exit points
(henceforth, MEPs), outgoing and incoming flows may go
through different firewalls. In this case conventional stateful
inspection designed for a single entry point (henceforth, SEP)
does not work as desired. In this paper, we address this
inevitable problem that occurs when MEP networks deploy
firewalls in their border. In particular, we explore a state
sharing method between firewalls used in the MEP networks
and the stateful inspection mechanism to filter out packets
from suspicious connections.

The main contributions of this work are three-fold. First, we
formulate the problem of firewalling for an MEP network. Sec-
ond, we propose a method of stateful inspection for firewalls
in the MEP network, and design an effective mechanism for
state information exchange among firewalls in it. Our proposed
mechanism is scalable because its complexity has nothing to
do with the increase of firewalls in number. Third, through
a prototype implementation, we verify that the high-speed
packet filtering is achievable in the MEP network.

The paper is organized as follows. Section II describes the
state sharing problem in asymmetric routing environments,
then discusses state sharing methods between firewalls during
the connection establishment procedures. In section III, we
propose an algorithm using the modified SYN cookies by
considering the state synchronization problem. Sections IV
discusses performance issues and implementation results re-
spectively, followed by the conclusion in section V.

II. STATE EXCHANGE FOR CONNECTION ESTABLISHMENT

This section describes the state sharing problem in MEP
environments, and considers two state sharing approaches that
take different steps during the TCP handshaking. Then, we
briefly review the principles of a SYN cookie [10] for our use
in transferring connection information among firewalls.

A. State Sharing Problem

We let
���������
	��

denote the firewall on the one-way routing
path from client host

�
to server host

	
, where either

�
or

C

S

FW2
FW1

FW3 FW4

State

Sharing

Fig. 1. State sharing problem for asymmetric routing.

	
is in the considered AS to be protected by firewalls. We

call the routing path of a connection is symmetric when���������
	����������	������
. Otherwise, it is asymmetric. State

sharing between firewalls is needed when a routing path is
asymmetric for any client-server pair

�����
	��
. For simplicity, let�����

denote
����������	��

and
�����

denote
������	������

.
Fig. 1 shows an example of network with 4 firewalls,��� � �������

and
��� � �������

. To do stateful inspec-
tion of a TCP connection,

�����
needs to share the state

information with
�����

. Assume that a SYN packet, referred
to as SYN

�����
	�
, passes through

��� �
and its corresponding

SYN/ACK packet, referred to as SYNACK
��	!�����

, arrives at��� �
. To check the validity of SYNACK

��	������
,
��� �

needs
to know the state information of this connection, otherwise it
will drop the SYNACK

��	������
. Thus, a state sharing mechanism

is required for firewalls to protect the MEP network against
possible attacks. Our goal is to minimize the cost for state
exchange among firewalls.

B. Two State Sharing Methods

We can consider two possible ways of state sharing for a
TCP connection according to the initiator of state sharing.

1) SYN-Initiated State Sharing: In a SYN-initiated algo-
rithm, a firewall receiving a SYN

������	��
initiates information

exchange by sending new connection information to all other
firewalls. A drawback of this method is that it is hard to know
in advance which firewall will receive the SYNACK

��	������
.

In case of symmetric routing, state sharing among firewalls
is not necessary for connections. But if a firewall cannot
convince the routing path a priori, it should send the state
information to every other firewall which does not need it
except the designated one. Such a SYN-initiated algorithm
incurs "$#&% extra packets per connection, where " is the
number of firewalls. Thus, messaging overhead of "'#(%
packets per SYN packet renders firewalls vulnerable to denial
of service (DoS) attacks with) � " � amplification.

In addition to the redundant messages, a SYN-initiated
approach has a race condition between state sharing and
SYNACK

��	!�����
arrival.

2) SYN/ACK-Initiated State Sharing: Under the SYN/ACK-
initiated state sharing,

�����
initiates information exchange

upon receiving a SYNACK
��	������

. If
���*�

receives a
SYNACK

��	!�����
and it has not seen the corresponding

SYN
�����
	�

before, +
, -., , ��� �0/�1��� � , it requests the con-
nection information to the other firewalls.

SYN : isnc

SYN : isns

ACK : isnc+1

ACK : isns+1

Client Server

isns
= SYN cookie

Fig. 2. TCP 3-way handshaking with original SYN cookie.

The advantage of this method is that extra messages are
not generated for symmetric routing cases. The messaging
overhead of SYN/ACK-initiated sharing is proportional to2�3 � "4#5% � , 687 2 7$% , where 2 is the portion of asym-
metric routing. The SYN/ACK-initiated sharing has negligible
messaging overhead when 2�9 6 .

Nevertheless, it is still susceptible to DoS attacks like
floods of spoofed SYN/ACK packets. Fake SYN/ACK packets
amplify the number of messages because a single SYN/ACK
packet invokes ":#;% control packets. This amplification effect
causes DoS of the firewalling network.

These drawbacks motivate us to devise a novel approach
without incurring the amplification effect. There are two
objectives of our protocol design:

1) Only a valid SYN/ACK initiates state sharing,
2)
��� �

inquires only
��� �

instead of all the others.

In this case, the messaging overhead is only proportional
to 2 and independent of " . To achieve these objectives, upon
receiving a SYNACK

��	������
, the firewall needs to check the

validity of the SYNACK
��	������

, and identify which firewall the
corresponding SYN

���<��	��
passed.

To run the protocol in an efficient manner, we manipulate
the initial TCP sequence number (ISN) of a SYN packet,
which is similar to SYN cookies [10]. SYN cookies were
originally suggested by Bernstein to defend a TCP server
against SYN flooding attacks with IP spoofing [2].

C. Original SYN Cookie

The SYN cookie was designed to defend against SYN
flooding attacks. It is a particular choice of initial TCP
sequence number (ISN), which represents connection state.
Hosts send out SYN/ACK packets each with the SYN cookie
instead of keeping all the connection information to achieve
the scalability. Thus, hosts using SYN cookies do not have to
drop connections even if the backlog queue fills up [10].

Fig. 2 shows a TCP 3-way handshaking with a SYN cookie.
Let + 	�=?> and + 	�=A@ denote the ISNs sent by a client and a
server, respectively. Upon receiving a SYN packet, the server
generates a SYN cookie1 according to the following.

+ 	�=?@B�DCFEG	�C?��	 - � % ��	EIH.H!J��
	LKNM�J�OP��H.E.H.H�J���H�KQM�J�OL�
1The format of SYN cookie that we are using is different from the original

one. The modified SYN cookie format will be discussed in section III-C.

R + 	�=?> R ��O +�"S-BTVU
�LW �

R ��CQEG	CA��	 - � U ��	EIH�H�J���	�KQM�J�OP��H�EIH.H!J���H�KNM�JOP�O +X"Y- �AZ\[I] U
�LW � R " 	�	^`_!aPb � � (1)

where
O +X"Y- represents a 5-bit counter increasing every

64 seconds, " 	�	^c_!aPb � represents an encoded value of the
MSS in [0,7],

	 - � % and
	 - � U represent secret keys which

only the server knows, and
CFEG	�C

represents a cryptographic
hash function such as MD5 or SHA-1.

	�EIH.H!J
,
	�KQM�J�O

,
H.EIH�H�J

and
H�KNM�JO

represent source address, source port, destination
address, and destination port of the SYN packet, respectively.
If a client receives the SYN/ACK packet with the SYN cookie,
+�, -., , + 	�=?@ , it sends an ACK packet with the acknowledge
number of + 	�=?@ R % . A server receiving the ACK packet checks
its acknowledge number by using the following.

" 	�	^`_�aPb � �d�DEI��eI=gf "(# 	 -�h =gf "i# O +X"S-jTVU
��W

# CFEG	�CA��	 - � % �
	�EIH.H!J��
	�KQM�J�OP��H.EIH�H�J���H�KQM�J�OL�
# ��CQEG	CA��	 - � U ��	EIH�H�J���	�KQM�J�OP��H�EIH.H!J���H�KNM�JOP�O +X"Y- �AZ\[I] U

�LW �P�
(2)

where
E.��eI=gf " and

	 -�h =gf " represent the acknowledge num-
ber and the sequence number of ACK packet respectively.
If " 	�	 ^c_!aPb � � is in [0,7], the ACK packet is considered as
legitimate, and the server creates a connection with the MSS
corresponding to " 	�	 ^`_�aPb � � . In case that a packet is forged,
" 	�	 ^`_�aPb � � tends to be very different from a value in [0,7].

III. DISTRIBUTED STATEFUL INSPECTION PROTOCOL

In this section, we propose a distributed stateful inspection
protocol for coordination of multiple firewalls in an AS.

A. Protocol Design

The requirements of our protocol design for connection state
exchange are as follows:
k It needs to be secure as much as a SEP firewall.k It generates low overhead to maintain connection states

by minimizing the number of extra control packets, the
amount of computation and data storage.k It guarantees no race condition.k It is compatible with the Internet infrastructure.

In this protocol, we take advantage of SYN cookies to
securely exchange connection information between the two
associated firewalls. As the SYN cookie was originally applied
for SYN/ACK packets, we modify it to make it applicable to
SYN packets. Unlike the original SYN cookie, the modified
SYN cookie uses the firewall ID instead of " 		 ^c_!aPb � to se-
curely record the cookie sender’s information. The verification
of SYN/ACK packets is performed by a keyed-hash function.
To use this function, all the firewalls in the AS need to share
the same secret key. Our proposed protocol illustrated in Fig. 3
is described as follows.

1) C sends a SYN packet which arrives at
�����

.
2)
�����

examines the packet according to its packet filter-
ing rules. If the requested connection is valid, continue
the next step.

C

FWy FWx

S

1
SYN : isnc

2, 3
7

8

6, 9

4
SYN : SYNcookie

5
SYN : isns

ACK : SYNcookie+1

 10
SYN : isns
ACK : isnc+1

Fig. 3. Connection State Exchange Protocol.

3)
��� �

replaces + 	�=A> with the modified SYN cookie, and
keeps2 the connection information3 at the state table.

4)
��� �

sends the modified SYN packet to S.
5) S sends C a SYN/ACK packet which will go through��� �

.
6)
��� �

examines the SYN/ACK packet and extracts the
firewall ID of

��� �
. If the packet is invalid, it will be

dropped. If
��� � �D��� �

, go to step 9.
7)
�����

forwards the SYN/ACK packet to
���*�

.
8)
�����

checks the connection information of the packet
and sends it to

�����
with the SYN/ACK packet. If there

is no corresponding connection information,
�����

drops
the packet.

9)
��� �

updates its state table and replaces the acknowl-
edge number of the SYN/ACK packet with + 	�=l> R % .

10)
��� �

sends the modified SYN/ACK packet to C.
Therefore

��� �
and
��� �

share the connection information,
and forthcoming packets for the connection including the
corresponding ACK can pass through the two associated
firewalls directly.

B. Reincarnation of a TCP Connection

In [7], there are regulations about TCP connection reincar-
nation which are given as follows.

When a connection is closed in active state, it
MUST linger in TIME-WAIT state for a time 2*MSL
(Maximum Segment Lifetime). However, it MAY
accept a new SYN from the remote TCP to reopen
the connection directly from TIME-WAIT state, if
it:
- assigns its ISN for the new connection to be larger
than the largest sequence number it used on the
previous connection incarnation, and

2The original SYN cookie does not have this storing process.
3Source address, source port, destination address, destination port, and

difference of the sequence numbers between monLpIq and the SYN cookie.

T0 Hashisnu17

17

ID

132

Isnu17 : Upper 17bits of isn received
T0 : 2 LSBs of time counter, Time
Hash u17
ID

: Hash(Sa,Sp,Da,Dp,Time,isn ,Secret Key)
: Firewall ID

Fig. 4. Modified SYN cookie.

- returns to TIME-WAIT state if the SYN turns out
to be an old duplicate.

When S stays in TIME-WAIT state, it may accept a new
SYN packet sent by C. To support the reincarnation, the ISN in
the new SYN packet should be larger than the latest sequence
number, denoted by rts�u�v bxw , which was sent for the previous
connection incarnation.

First of all, our protocol is designed to minimize processing
and control overheads rather than to support fast reincarna-
tion [7] of closed TCP connections. So we build our protocol
on the following two premises. First, fast reincarnation is not
used often. This is because there is scarcely any protocol or
application that requires fast reincarnation. Second, hosts who
want fast reincarnation would generate ISNs of larger than
rtsyu�v bzw R|{ U �
}<~!� .

The number 32,768 comes from the following reasons.
4.4BSD-Lite adds 64,000 to the ISN of each connection in
addition to timer increase [12], while NetBSD-1.5.2 adds
16,777,216. FreeBSD-4.5 and Linux 2.4.17 use 1MHz timer
so every 33ms the ISN is increased by 32,768. For OSes which
use 250KHz timer proposed in [6], it takes 132ms to increase
the ISN by 32,768. However these instances are not directly
related to our case of fast reincarnation because they are just
concerned with increasing ISNs as a part of connection setup.

Nevertheless, fast reincarnation is made possible by increas-
ing the ISN by ‘at least’ 32,768 from rts�u�v bzw . The increment
of smaller than 32,768 is not enough to secure a hash field of
our modified SYN cookie which will be explained next.

If the second premise is fulfilled, the upper 17 bits of
the ISN sent by C becomes larger than rts u�v bzw . Therefore,
it makes sense to leave the upper 17 bits intact to support
reincarnation properly.

C. Modified SYN Cookie

The proposed SYN cookie format is depicted in Fig. 4. It is
assumed that all firewalls share a secret key and a synchronized
time counter which increases every 16 seconds. The upper 17
bits of the SYN cookie are taken from that of the ISN of the
received SYN packet. �g� is the two least significant bits of the
time counter which enables a firewall to extract the time of
the SYN cookie made. The firewall receiving the SYN cookie
extracts the time according to the following equation and uses
it as an input to a hash function that validates the SYN cookie.

O +�"S- ^`_ u��� �:O +X"S- > ��v�v R %
�L��O +�"S- > ��v�v R %�# � r�������% { �L�AZ\[I]\�I�P� (3)

where
O +X"Y- > ��v�v is the current time and SC is the SYN cookie.

This time is effective for about 40 seconds after the generation
of SYN cookie. We will explain the meaning of (3) and time
synchronization in section IV-C.

The modified SYN cookie also uses a keyed-hash function
to defend against DoS attacks of SYN/ACK packet flooding.
But it has the output length of 13 bits differently from the
original one of 32bits. So the probability of randomly guessing
the correct hash value in an attempt is U��

�x�
. Additionally we

include the firewall ID by sacrificing the length of hash output.
For instance, if an AS is with 4 firewalls, 2 bits are required to
identify a firewall so that the probability of randomly guessing
the correct hash becomes UG�

���
. This implies that four out

of U
�x�

fake packets can be classified as legitimate and three
of them will be forwarded to other firewalls. These packets,
however, will be filtered out by receiving firewalls because
their state information is not in the table. The other packet will
be also dropped by the first firewall due to the same reason.
So the flooding attack is tolerable because it incurs only one
temporary extra packet per U

�L�� � "i#8% � attacking packets.

IV. PERFORMANCE

In this section, performance issues are discussed. We im-
plemented the proposed protocol using the netfilter [4] in the
Linux kernel4 and conducted experiments for our proposed
protocol on a testbed with three PC firewalls.

A. Processing Overhead

As the algorithm contains no loops, its complexity is) � % �
per packet. However it contains the hash function and the
packet modification code, which need to be optimized.

1) Hash function: For a normal connection, the hash func-
tion is called twice. One is for the modified SYN cookie
generation, and the other for verification. If attackers send a lot
of SYN/ACK packets, firewalls have to call the hash function
frequently. As the hash function affects overall performance
very much, it should be chosen carefully. There exist com-
mercial network security processors that achieve multi-gigabit
throughput using MD5 and SHA-1 hash functions. Also, fast
hash functions like UMAC and MMH can achieve multi-
gigabit performance even on a 350MHz Pentium II PC [1].

2) Sequence Number Translation: Since the firewall
changes + 	�= > , it needs to translate all the sequence numbers of
packets in one direction and all the acknowledge numbers in
the opposite direction, and recalculate their TCP checksums.
The sequence number (SN) translation can be made possible
by one addition or subtraction simply, and TCP checksum (CS)
can be recalculated by a simple arithmetic [8].

��r _!bz� �����X� ��r��L� a R � rts��x� a R r�s _!bz� � (4)

4Linux kernel version 2.4.19 is used for implementation.

where
��E

means one’s complement of
E

.
Therefore, the sequence number translation has negligible

impact on the performance.

B. Control Packet Overhead

It is obvious that the proposed protocol requires extra
control packets at minimum for connection establishment. It
needs two packets for the request-and-reply for state exchange
only when the routing path is asymmetric.

C. Security

Firewalls with MEPs should be as secure as SEP firewalls.
We consider two types of attacks in view of security depend-
ing on how the firewall reacts when it receives SYN and
SYN/ACK packets.

1) DoS attacks: There are two possible DoS attacks, SYN
flooding attack and SYN/ACK flooding attack. On receiving
SYN and SYN/ACK packets, firewalls execute hash functions.
As mentioned before, we need to choose a hash function with
high performance.

2) Fake SYN/ACK attack: The effectiveness of the proposed
protocol with respect to verifying SYN/ACK packets is mea-
sured under a flooding attack of fake SYN/ACK packets. We
generated 1,000,000 SYN/ACK packets with random acknowl-
edge numbers. Among 1M forged packets, only 251 packets
which are very close to the expected value of 2445 were
forwarded to the other firewalls, and they were all dropped
at the receiving firewalls. This verify that no fake SYN/ACK
packets could succeed to penetrate into our network.

3) Replay Attacks: We use the current time as an input of
the hash function to prevent replay attacks. After 64 seconds,
a SYN cookie will be regarded as invalid and the packet will
be dropped accordingly. The proposed protocol prevents an
attacker from guessing the SYN cookie without having seen
it recently, which is the same as the original SYN cookie.
To prevent the replay attack, it is assumed that all firewalls
have a synchronized time counter, which increases every 16
seconds. We inserted the two least significant bits of the time
counter,

O +X"S- � vL� , and extracted
O +�"S- ^`_ u��� by using (3). Then,

the
O +�"S- ^c_ u���� has the following property.

O +X"S- � v�� ��O +X"S- ^`_ u������ O +X"S- � v���#�%y7 O +X"Y- > ��v�v 7 O +�"S- � v�� R UG, (5)

The reason we allow (
O +X"S- � v���#�%) and (

O +X"Y- � vL� R U) is to
tolerate time asynchronization between firewalls for up to 16
seconds. If the time asynchronization period does not exceed
16 seconds, the SYN cookie is valid for 16 to 64 seconds.

D. Scalability

A good feature of our proposed protocol is its scalability
because it runs independently of the number of firewalls in
an AS. This is caused by the fact that a connection exchange
occurs just between the two associated firewalls with their

5In case of ¡8¢Y£ , the expected value is ¤P¥X¦P¦P¦¥�¦P¦P¦I§G¨©£�ª ¤�«�¬
�®�¯j°S
±P± .

own identifiers. Our protocol has low complexity and does
not have looping problems. Desirably it does not generate any
unnecessary control packets for symmetric connections.

V. CONCLUSION

The state sharing problem occurs among firewalls in the
MEP network as the Internet intrinsically allows connections
to experience asymmetric routing paths. Conventional firewalls
have topological restrictions since they have no ability to do
stateful inspection in MEP environments. Such a problem has
hindered deploying stateful inspection firewalls in the MEP
environments.

In this paper, we described the state sharing problem
between two associated firewalls in the MEP network. Also
we proposed a distributed stateful inspection protocol which
exchanges connection information and checks its validity by
using the modified SYN cookie. Differently from the original
cookie, our cookie contains the field of firewall ID to indicate
which firewall the SYN packet passed through, and a hash
value to check the validity of a connection request. When the
firewall receives a SYN/ACK packet, it examines the hash
value and extracts the firewall ID from the acknowledge num-
ber to defend against DoS attacks employing fake SYN/ACK
flooding.

The proposed protocol is scalable because the control mes-
sages are exchanged between the two associated firewalls of
an asymmetric connection, regardless of the number of entry
points in an AS. The protocol requires low processing and
messaging overhead, thereby it can be applicable to current
Internet environments. For future work, we left the case of
supporting UDP sessions in the MEP network.

REFERENCES

[1] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway, UMAC:
Fast and Secure Message Authentication, Advances in Cryptology -
CRYPTO99, 1999.

[2] TCP SYN Flooding and IP Spoofing Attacks, CERT Advisory CA-1996-
21, September 1996.

[3] J. Johnson, BGP is a reachability protocol, a NANOG presentation, June
2002,
http://www.nanog.org/mtg-0206/ppt/jerm2/

[4] Netfilter Homepage,
http://www.netfilter.org

[5] V. Paxson, End-to-End Routing Behavior in the Internet, Proceedings of
ACM SIGCOMM, 1996.

[6] J. Postel, Transmission Control Protocol, STD 7, RFC 793, September
1981.

[7] R. Braden, Requirements for Internet Hosts - Communication Layers,
STD 3, RFC 1122, October 1989.

[8] A. Rijsinghani, Computation of the Internet Checksum via Incremental
Update, RFC 1624, May 1994.

[9] Stateful Inspection Technology, Check Point Tech note,
http://www.checkpoint.com/products/solutions
/technologies.html

[10] SYN Cookies Homepage,
http://cr.yp.to/syncookies.html

[11] D. Vukadinovic, P. Huang, and T. Erlebach, A Spectral Analysis of the
Internet Topology, Technical Report ETH-TIK-NR 118, 2001.

[12] G. Wright and W. Stevens, TCP/IP Illustrated, Volume 2: The Imple-
mentation, Addison-Wesley, 1995.

