
Acknowledgement of receipt
We hereby acknowledge receipt of your request for grant of a European patent as follows:

Submission number 10295485

Application number EP21202849.2

File No. to be used
for priority declarations

EP21202849

Date of receipt 15 October 2021

Your reference P213132EP

Applicant Korea University Research and
Business Foundation

Country KR

Title METHOD FOR IDENTIFYING OPEN-
SOURCE SOFTWARE
COMPONENTS AT THE SOURCE-
CODE LEVEL

Documents submitted package-data.xml ep-request.xml

application-body.xml ep-request.pdf (5 p.)

SPECEPO-1.pdf\P213132EP specifi-
cation.pdf (41 p.)

SPECEPO-2.pdf\P213132EP
drawings.pdf (10 p.)

OLF-ARCHIVE.zip\P213132EP.zip OTHER-1.pdf\Statement 706 IB
EN.pdf (1 p.)

f1002-1.pdf (1 p.)

Submitted by CN=Claudia Perez 74260

Method of submission Online

Date and time
receipt generated

15 October 2021, 12:05 (CEST)

Message Digest 4E:58:32:77:23:E1:24:19:4C:89:D4:DF:EF:4B:D6:78:CB:F8:54:39

Acknowledgement of receipt - application number EP21202849.2 Page 1 of 2

Public
Inventor

Name: LEE Heejo
Address: Gyeonggi-do

Republic of Korea
The applicant has acquired the right to the

European patent: As employer
Inventor

Name: WOO Seunghoon
Address: Seoul

Republic of Korea
The applicant has acquired the right to the

European patent: As employer

Signature(s)

Place: MADRID

Date: 15 October 2021

Signed by: /M.STIEBE/

Association: BALDER IP Law, S.L.

Representative name: Lars Magnus STIEBE

Capacity: (Representative)

Form 1002 - 1: Public inventor(s)

Designation of inventor

User reference: P213132EP
Application No:

EPO Form 1002 - P213132EP Page 1 of 1

- 1 -

METHOD FOR IDENTIFYING OPEN-SOURCE SOFTWARE COMPONENTS 5

AT THE SOURCE-CODE LEVEL

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to and the benefit of Korean Patent Application

No. 10-2021-0010585 filed in the Korean Intellectual Property Office on January 26, 10

2021, the entire contents of which are incorporated herein by reference.

TECHNICAL FIELD

The present disclosure relates to detection of an open-source software

component reused by specific software, and particularly, to a method for extensively and 15

accurately detecting even a reuse pattern in addition to an open-source software list which

is being reused.

BACKGROUND ART

Open source software (OSS) may mean software which can be reused, modified, 20

and redistributed by anyone without a particular limit if a license is observed while a

source code is opened. Developers may not implement detailed functions required for

developing the software one by one, but shorten software development time and cost

through reuse of an open source software code which is previously implemented.

In spite of such an advantage, reuse of indiscriminate unmanaged open source 25

software may cause various problems. Representatively, a problem of propagating a

weak point while vulnerable open source software is used and a license violation problem

due to reuse of open source software which does not follow a license policy may occur.

When the open source software component which is being reused may be

- 2 -

clearly detected, the problems may be prevented. However, the reuse of the modified 5

open source software makes accurate component detection into a challenging problem.

The developers frequently reuse only some source codes or modify and reuse a code and

a structure in the process of reusing the open source software. If it is confirmed that

there are some common source codes between target software and specific open source

software, it is not easy to distinguish whether some open source software is actually 10

reused (correct detection) or whether only a sub-component in the open source software

is reused (in this case, determining that all open source software is reused is false

detection).

 The number of open source software and a code size of each open source

software which increase steadily can make the detection of the open source software 15

component within a reasonable time be more difficult.

 Technology that detects the open source software component at a binary level,

“Identifying Open-Source License Violation and 1-day Security Risk at Large Scale”,

was announced in ACM Conference on Computer and Communications Security (CCS)

in 2017, but the corresponding technology does not sufficiently consider the modified 20

open source software component and may be insufficient even in terms of expandability

in detecting the open source software component in large-sized software.

 Accordingly, a method is required, which is to detect the open source software

component accurately and expansively while considering reuse of the modified open

source software. 25

SUMMARY OF THE INVENTION

 The present disclosure is contrived in response to the above-described

background art, and has been made in an effort to provide a method for accurately

- 3 -

detecting an open source software component list which is being used by specific software 5

and a reuse pattern thereof from a large-scale open source software set.

 However, technical objects of the present disclosure are not restricted to the

technical object mentioned as above. Other unmentioned technical objects will be

apparently appreciated by those skilled in the art by referencing to the following

description. 10

 In order to solve the problem, an exemplary embodiment of the present

disclosure provides a method for identifying open source software (OSS) components

using a processor of a computing device. The method for identifying open source

software (OSS) components may include: constructing a component database by

performing redundancy elimination for each of a plurality of open source software; and 15

identifying a component of target software by using the component database.

 The constructing of the component database by performing the redundancy

elimination for each of the plurality of open source software may include when

performing the redundancy elimination for first open source software among the plurality

of open source software, recognizing at least one function which appears in each of at 20

least one version of the first open source software, and setting a hash value of each of the

at least one function as a key and setting at least one version in which each of the at least

one function appears to a value for the key, and storing the key value in a first dictionary

data structure for the first open source software.

 The first dictionary data structure may be distinguished into different groups 25

according to the number of versions in which the function appears.

 The identifying of the component of the target software by using the component

database may include segmenting a source code included in each of the plurality of open

source software into an application code part and a borrowed code part, and comparing a

- 4 -

target source code included in the target software and the application code part included 5

in each of the plurality of open source software to extract at least one second open source

software used when preparing the target software among the plurality of open source

software.

 The segmenting of the source code included in each of the plurality of open

source software into the application code part and the borrowed code part may include 10

recognizing one or more first functions which appear in a first source code included in

third open source software to be subjected to the code segmentation among the plurality

of open source software, selecting fourth open source software to be analyzed through a

comparison with the third open source software among the plurality of open source

software, recognizing one or more second functions which appear in a second source code 15

included in the fourth open source software, comparing the one or more first functions

and the one or more second functions and extracting one or more common functions

recognized to be the same, recognizing one or more third functions which appear earlier

in the fourth open source software among the one or more common functions, and

removing the one or more third functions from a second dictionary data structure related 20

to the third open source software in the component database.

 The removing of the one or more third functions from the second dictionary

data structure related to the third open source software in the component database may

include, when a value calculated based on a first number of the one or more second

functions and a second number of the one or more third functions is equal to or more than 25

a predetermined value, removing the one or more third functions from the one or more

first functions included in the second dictionary data structure.

 The comparing of the target source code included in the target software and the

application code part included in each of the plurality of open source software to extract

- 5 -

at least one second open source software used when preparing the target software among 5

the plurality of open source software may include recognizing each code similarity value

between each of the plurality of open source software and the target software based on a

third number of functions commonly included in the function included in the target source

code and the function of the application code part of each of the plurality of open source

software subjected to the code segmentation and a fourth number of functions of the 10

application code part of each of the plurality of open source software subjected to the

code segmentation, and extracting at least one second open source software in which the

code similarity value is equal to or more than a predetermined value among the plurality

of open source software subjected to the coding segmenting .

 The code similarity value may be determined based on a first equation, the first 15

equation may be , and the Φ may represent the code similarity value, the T

may represent the function of the target software, and the S may represent the function of

the application code part of the plurality of open source software subjected to the code

segmentation.

 Another exemplary embodiment of the present disclosure provides a device for 20

identifying open source software components may include: a processor performing

redundancy elimination for each of a plurality of open source software; and a component

database unit storing a result of performing the redundancy elimination, in which the

processor may identify a component of target software by using the component database

unit. 25

 The processor may recognize at least one function which appears in each of at

least one version of the first open source software, and set a hash value of each of the at

least one function as a key and set at least one version in which each of the at least one

function appears to a value for the key, and store the key value in the component database

- 6 -

unit as a first dictionary data structure for the first open source software when performing 5

the redundancy elimination for first open source software among the plurality of open

source software.

 The first dictionary data structure may be distinguished into different groups

according to the number of versions in which the function appears.

 The processor may segment a source code included in each of the plurality of 10

open source software into an application code part and a borrowed code part, and

compares the target source code included in the target software and the application code

part included in each of the plurality of open source software to extract at least one second

open source software used when preparing the target software among the plurality of open

source software. 15

 The processor may recognize one or more first functions which appear in a first

source code included in third open source software to be subjected to the code

segmentation among the plurality of open source software, select fourth open source

software to be analyzed through a comparison with the third open source software among

the plurality of open source software, recognize one or more second functions which 20

appear in a second source code included in the fourth open source software, compare the

one or more first functions and the one or more second functions and extract one or more

common functions recognized to be the same, recognize one or more third functions

which appear earlier in the fourth open source software among the one or more common

functions, and remove the one or more third functions from a second dictionary data 25

structure related to the third open source software in the component database unit.

 The processor may, when a value calculated based on a first number of the one

or more second functions and a second number of the one or more third functions is equal

to or more than a predetermined value, removes the one or more third functions from the

- 7 -

one or more first functions included in the second dictionary data structure. 5

 The processor may recognize each code similarity value between each of the

plurality of open source software and the target software based on a third number of

functions commonly included in the function included in the target source code and the

function of the application code part of each of the plurality of open source software

subjected to the code segmentation and a fourth number of functions of the application 10

code part of each of the plurality of open source software subjected to the code

segmentation, and extract at least one second open source software in which the code

similarity value is equal to or more than a predetermined value among the plurality of

open source software subjected to the code segmentation.

 The code similarity value may be determined based on a first equation, the first 15

equation may be , and the Φ may represent the code similarity value, the T

may represent the function of the target software, and the S may represent the function of

the application code part of the plurality of open source software subjected to the code

segmentation.

 Technical solving means which can be obtained in the present disclosure are 20

not limited to the aforementioned solving means and other unmentioned solving means

will be clearly understood by those skilled in the art from the following description.

 According to some exemplary embodiments of the present disclosure, security

enhancement of software and software code management including whether there is a

weak point and whether a license is violated can be performed. 25

 Effects which can be obtained in the present disclosure are not limited to the

aforementioned effects and other unmentioned effects will be clearly understood by those

skilled in the art from the following description.

- 8 -

BRIEF DESCRIPTION OF THE DRAWINGS 5

 Various aspects are now described with reference to the drawings and like

reference numerals are generally used to designate like elements. In the following

exemplary embodiments, for the purpose of description, multiple specific detailed matters

are presented to provide general understanding of one or more aspects. However, it will

be apparent that the aspect(s) can be executed without the specific detailed matters. In 10

other examples, known structures and apparatuses are illustrated in a block diagram form

in order to facilitate description of the one or more aspects.

 FIG. 1 is a block diagram for describing an example of a computing device

according to some exemplary embodiments of the present disclosure.

 FIG. 2 is a flowchart for describing an example of a method for identifying a 15

component of open source software by a computing device according to some exemplary

embodiments of the present disclosure.

 FIG. 3 is a flowchart for describing an example of a method for constructing a

component database by a computing device according to some exemplary embodiments

of the present disclosure. 20

 FIG. 4 is a diagram for describing a dictionary data structure according to some

exemplary embodiments of the present disclosure.

 FIG. 5 is a flowchart for describing an example of a method for identifying a

component of target software by a computing device according to some exemplary

embodiments of the present disclosure. 25

 FIG. 6 is a flowchart for describing an example of a method for performing

code segmentation by a computing device according to some exemplary embodiments of

the present disclosure.

 FIG. 7 is a flowchart for describing an example of a method for extracting at

- 9 -

least one second open source software by using a code similarity value by a computing 5

device according to some exemplary embodiments of the present disclosure.

 FIG. 8 is a diagram for comparing the present disclosure and related art

according to some exemplary embodiments of the present disclosure.

 FIG. 9 is a general schematic view of an exemplary computing environment in

which exemplary embodiments of the present disclosure may be implemented. 10

 FIG. 10 is a diagram for comparing the present invention and related art

according to some exemplary embodiments of the present disclosure.

DETAILED DESCRIPTION

 Various exemplary embodiments and/or aspects will be now disclosed with 15

reference to drawings. In the following description, for the purpose of a description,

multiple detailed matters will be disclosed in order to help comprehensive appreciation

of one or more aspects. However, those skilled in the art of the present disclosure will

recognize that the aspect(s) can be executed without the detailed matters. In the

following disclosure and the accompanying drawings, specific exemplary aspects of one 20

or more aspects will be described in detail. However, the aspects are exemplary and

some of various methods in principles of various aspects may be used and the descriptions

are intended to include all of the aspects and equivalents thereof. Specifically, in

“embodiment”, “example”, “aspect”, “illustration”, and the like used in the specification,

it may not be construed that a predetermined aspect or design which is described is more 25

excellent or advantageous than other aspects or designs.

 Hereinafter, like reference numerals refer to like or similar elements regardless

of reference numerals and a duplicated description thereof will be omitted. Further, in

describing an embodiment disclosed in the present disclosure, a detailed description of

- 10 -

related known technologies will be omitted if it is determined that the detailed description 5

makes the gist of the embodiment of the present disclosure unclear. Further, the

accompanying drawings are only for easily understanding the exemplary embodiment

disclosed in this specification and the technical spirit disclosed by this specification is not

limited by the accompanying drawings.

 Although the terms “first”, “second”, and the like are used for describing 10

various elements or components, these elements or components are not confined by these

terms, of course. These terms are merely used for distinguishing one element or

component from another element or component. Therefore, a first element or

component to be mentioned below may be a second element or component in a technical

spirit of the present disclosure. 15

 Unless otherwise defined, all terms (including technical and scientific terms)

used in the present specification may be used as the meaning which may be commonly

understood by the person with ordinary skill in the art, to which the present disclosure

pertains. Terms defined in commonly used dictionaries should not be interpreted in an

idealized or excessive sense unless expressly and specifically defined. 20

 The term “or” is intended to mean not exclusive “or” but inclusive “or”. That

is, when not separately specified or not clear in terms of a context, a sentence “X uses A

or B” is intended to mean one of the natural inclusive substitutions. That is, the sentence

“X uses A or B” may be applied to any of the case where X uses A, the case where X uses

B, or the case where X uses both A and B. Further, it should be understood that the term 25

“and/or” used in this specification designates and includes all available combinations of

one or more items among enumerated related items.

 The word "comprises" and/or "comprising" means that the corresponding

feature and/or component is present, but it should be appreciated that presence or addition

- 11 -

of one or more other features, components, and/or a group thereof is not excluded. 5

Further, when not separately specified or it is not clear in terms of the context that a

singular form is indicated, it should be construed that the singular form generally means

“one or more” in this specification and the claims.

 The terms “information” and “data” used in the specification may also be often

used to be exchanged with each other. 10

 It should be understood that, when it is described that a component is

“connected to” or “accesses" another component, the component may be directly

connected to or access the other component or a third component may be present

therebetween. In contrast, when it is described that a component is “directly connected

to” or “directly accesses" another component, it is understood that no element is present 15

between the element and another element.

 Suffixes “module” and “unit” for components used in the following description

are given or mixed in consideration of easy preparation of the present disclosure only and

do not have their own distinguished meanings or roles.

 The objects and effects of the present disclosure, and technical constitutions of 20

accomplishing these will become obvious with reference to exemplary embodiments to

be described below in detail along with the accompanying drawings. In describing the

present disclosure, a detailed description of known function or constitutions will be

omitted if it is determined that it unnecessarily makes the gist of the present disclosure

unclear. In addition, terms to be described below as terms which are defined in 25

consideration of functions in the present disclosure may vary depending on the intention

or a usual practice of a user or an operator.

 However, the present disclosure is not limited to exemplary embodiments

disclosed below but may be implemented in various different forms. However, the

- 12 -

exemplary embodiments are provided to make the present disclosure be complete and 5

completely announce the scope of the present disclosure to those skilled in the art to which

the present disclosure belongs and the present disclosure is just defined by the scope of

the claims. Accordingly, the terms need to be defined based on contents throughout this

specification.

 In the present disclosure, a processor of a computing device performs 10

redundancy elimination for each of a plurality of open source software (OSS) to construct

a component database. In addition, the processor may identify a component of target

software to identify a component by using the constructed component database.

Hereinafter, a method for identifying open source software components according to the

present disclosure will be described. 15

 FIG. 1 is a block diagram for describing an example of a computing device

according to some exemplary embodiments of the present disclosure.

 Referring to FIG. 1, the computing device 100 may include a processor 110 and

a component database unit 120. However, components described above are not required

in implementing the computing device 100, so the computing device 100 may have 20

components more or less than components listed above.

 The computing device 100 may include a predetermined type computer system

or computer device such as a microprocessor, a main frame computer, a digital processor,

a portable device, or a device controller, for example.

 Meanwhile, the processor 110 may generally process an overall operation of 25

the computing device 100. The processor 110 processes a signal, data, information, and

the like input or output through the components of the computing device or drives the

application program stored in the component database unit 120 to provide or process

information or a function appropriate for the user.

- 13 -

 As an example, the processor 110 may perform the redundancy elimination for 5

each of the plurality of open source software. In addition, the processor 110 may store

the component database constructed by performing the redundancy elimination in the

component database unit 120. Here, the redundancy elimination may be eliminating

redundancy of functions commonly included in the plurality of open source software. In

addition, the processor 110 may identify the component of target software by using the 10

constructed component database. Here, the target software may be open source software

to identify the component. Hereinafter, contents regarding an operation performed by

the processor 110 according to the present disclosure will be described through FIGS. 2

to 8.

 Meanwhile, the component database unit 120 may include a memory and/or a 15

persistent storage. The memory may include at least one type of storage medium of a

flash memory type storage medium, a hard disk type storage medium, a multimedia card

micro type storage medium, a card type memory (for example, an SD or XD memory, or

the like), a random access memory (RAM), a static random access memory (SRAM), a

read-only memory (ROM), an electrically erasable programmable read-only memory 20

(EEPROM), a programmable read-only memory (PROM), a magnetic memory, a

magnetic disk, and an optical disk. However, the present disclosure is not limited

thereto.

 FIG. 2 is a flowchart for describing an example of a method for identifying a

component of open source software by a computing device according to some exemplary 25

embodiments of the present disclosure.

 Referring to FIG. 2, the processor 110 of the computing device 100 may

construct a component database by performing redundancy elimination for each of a

plurality of open source software (S100).

- 14 -

 As an example, at least one open source software of the plurality of open source 5

software stored in the component database unit 120 may exist in plural for each version.

In this case, when the version of the open source software is updated, a source code may

not be newly prepared every time. Accordingly, a common code part may exist in each

version of the open source software. The common code parts may be duplicated and

used for matching when the processor110 detects the component of the open source 10

software. In this case, in the operation of the processor 110 which detects the component,

a problem in that a detection operation requires a long time may occur or an error may

occur. Accordingly, the processor 110 may perform the redundancy elimination for

each of the plurality of open source software.

 Specifically, when the processor 110 performs the redundancy elimination for 15

first open source software among the plurality of open source software, the processor 110

may recognize at least one function which appears in one or more versions of the first

open source software. In addition, the processor may generate a first dictionary data

structure for the first open source software based on the at least one function and the

version in which the at least one function appears. Here, the dictionary data structure 20

may be a data structure which may store a value of a Key-Value type. In this case, the

first dictionary data structure may be distinguished into different groups according to the

number of versions in which the function appears. In this case, one or more functions

which appear in one or more versions, respectively may be stored as one dictionary data

structure. However, the present disclosure is not limited thereto. Hereinafter, the 25

method in which the processor 110 performs the redundancy elimination according to the

present disclosure will be described through FIGS. 3 and 4.

 Meanwhile, the processor 110 of the computing device 100 may identify the

component of the target software by using the component database (S200).

- 15 -

 Specifically, the processor 110 may recognize at least one open source software 5

having a code similarity value to the target software, which is equal to or more than a

predetermined value among the plurality of open source software stored in the component

database unit 120. Here, the code similarity value may be a value determined based on

the number of functions commonly included in a function included in a target source code

and a function of an application code part of each of the plurality of open source software, 10

and the number of functions of the application code part included in each of the plurality

of open source software. As an example, the processor 110 may determine at least one

open source software of which code similarity is 10% or more as the component of the

target software. Hereinafter, contents regarding the code similarity value according to

the present disclosure will be described in more detail through FIG. 7. 15

 FIG. 3 is a flowchart for describing an example of a method for constructing a

component database by a computing device according to some exemplary embodiments

of the present disclosure. FIG. 4 is a diagram for describing a dictionary data structure

according to some exemplary embodiments of the present disclosure.

 Referring to FIG. 3, the processor 110 of the computing device 100 may 20

perform the redundancy elimination for the first open source software among the plurality

of open source software. In this case, the processor 110 may recognize at least one

function which appears in each of at least one version of the first open source software

(S110).

 Specifically, the processor 110 may set a hash value of each of at least one 25

function as a key, and set one or more versions in which one or more functions appear,

respectively to the value for the key. In addition, the processor 110 may store the hash

value and the one or more versions in the first dictionary data structure for the first open

source software (S120).

- 16 -

 For example, referring to FIG. 4, the processor 110 may set a hash value 210 5

of an i function which appears in the first open source software 200 as the key. Further,

the processor 110 may set one or more versions 220 in which the i function appears to the

value. In this case, the hash value 210 of the i function and one or more versions 220 in

which the i function appears may be stored in the first dictionary data structure 230.

However, the present disclosure is not limited thereto. 10

 Meanwhile, according to some exemplary embodiments of the present

disclosure, the first dictionary data structure 230 may be distinguished into different

groups according to the number of versions in which the function appears.

 As an example, referring to a first group 240, at least one dictionary data

structure including a function which appears only in one version may be distinguished in 15

the first group 240.

 As another example, referring to a second group 250, at least one dictionary

data structure including functions which appear in two versions may be distinguished in

the second group 250.

 That is, the processor 110 may distinguish each of at least one function included 20

in the first open source software 200 into different groups according to the number of

versions in which the function appears. Accordingly, the processor 110 may perform

the redundancy elimination by constructing the component database so that at least one

function included in multiple versions of the first open source software 200 appears only

once. However, the present disclosure is not limited thereto. 25

 Meanwhile, the processor 110 of the computing device 100 performs the above-

described operation in each of all open source software stored in the component database

unit 120 to construct the component database. However, the present disclosure is not

limited thereto.

- 17 -

 According to the above-described configuration, the redundancy elimination is 5

performed for functions which appear commonly in each version of the open source

software which may be distinguished as at least one dictionary data structure.

Accordingly, when the processor 110 of the computing device 100 identifies the

component of the target software, a time required for computation may be reduced and

occurrence of the error may also be reduced. Further, since more open source software 10

may be collected through the redundancy elimination, an excellent database may be

constructed in expandability and performance.

 Meanwhile, according to some exemplary embodiments of the present

disclosure, the processor 110 of the computing device 100 may identify the component

of the target software by using the constructed component database. Hereinafter, an 15

example of the method in which the processor 110 identifies the component of the target

software according to the present disclosure will be described.

 FIG. 5 is a flowchart for describing an example of a method for identifying a

component of target software by a computing device according to some exemplary

embodiments of the present disclosure. 20

 Referring to FIG. 5, the processor 110 of the computing device 100 may

segment a source code included in each of the plurality of open source software into an

application code part and a borrowed code part (S210). Here, the application code part

may be a code recognized not to be prepared in another open source software. In

addition, the borrowed code part may be a code recognized as a code first prepared in 25

another open source software.

 Specifically, the processor 110 may select open source software of which code

segmentation is to be performed among the plurality of open source software and open

source software which is to be analyzed through a comparison with the open source

- 18 -

software. In addition, the processor 110 may recognize one or more functions which 5

appear commonly in the open source software of which code segmentation is to be

performed and the open source software to be compared and analyzed. In this case, the

processor 110 may recognize that the one or more functions appear earlier in the open

source software to be compared and analyzed. In this case, the processor 110 may

recognize the one or more functions as the borrowed code part in the open source software 10

of which code segmentation is to be performed. In this case, when the processor 110

recognizes that the one or more functions appear late in the open source software to be

compared and analyzed, the processor 110 may recognize the one or more functions as

the application code part in the open source software of which code segmentation is to be

performed. Hereinafter, the method for performing the code segmentation according to 15

the present disclosure will be described in more detail through FIG. 6.

 Meanwhile, the processor 110 of the computing device 100 may compare the

target source code included in the target software and the application code part included

in each of the plurality of open source software. In addition, the processor 110 may

extract at least one second open source software used when preparing the target software 20

among the plurality of open source software (S220).

 Specifically, the processor 110 compares the target source code included in the

target software and the application code part included in each of the plurality of open

source software to recognize the code similarity value. In addition, the processor 110

may extract at least one second open source software in which the code similarity value 25

is equal to or more than a predetermined value. As an example, when the code similarity

value between the target software and at least one second open source software is equal

to or more than 10%, the processor 110 may extract at least one second open source

software. However, the present disclosure is not limited thereto. Hereinafter, the

- 19 -

method for extracting at least one second open source software according to the present 5

disclosure will be described in more detail through FIG. 7.

 According to the above-described configuration, the processor 110 of the

computing device 100 may segment a source code included in each of the plurality of

open source software into an application code part and a borrowed code part. In this

case, the processor 110 may extract at least one second open source software used when 10

preparing the target software by using only the application code part of the source code

included in each of the plurality of open source software. Accordingly, a time required

for the processor 110 to extract at least one second open source software may be reduced.

 Meanwhile, according to some exemplary embodiments of the present

disclosure, the processor 110 of the computing device 100 may remove a function 15

recognized as the function included in the borrowed code part in performing in

performing the code segmentation in each of the plurality of open source software.

Hereinafter, an example of the method in which the processor 110 according to the present

disclosure performs the code segmentation will be described.

 FIG. 6 is a flowchart for describing an example of a method for performing 20

code segmentation by a computing device according to some exemplary embodiments of

the present disclosure.

 Referring to FIG. 6, the processor 110 of the computing device 100 may

recognize one or more first functions which appear in a first source code included in third

open source software of which code segmentation is to be performed among the plurality 25

of open source software (S211). Here, the third open source software may be open

source software which is subjected to the redundancy elimination and stored in the

component database unit 120.

 Meanwhile, the processor 110 of the computing device 100 may select fourth

- 20 -

open source software to be compared and analyzed with the third open source software 5

among the plurality of open source software (S212). Here, the fourth open source

software may be at least one open source software which is subjected to the redundancy

elimination and stored in the component database unit 120.

 Meanwhile, the processor 110 of the computing device 100 may recognize one

or more second functions which appear in the second source code included in the fourth 10

open source software (S213).

 Meanwhile, the processor 110 of the computing device 100 may extract one or

more common functions recognized to be the same by comparing one or more first

functions and one or more second functions (S214).

 Meanwhile, the processor 110 of the computing device 100 may recognize one 15

or more third functions which appear earlier in the fourth open source software among

one or more common functions (S215).

 Specifically, release information of each of the plurality of open source

software may be stored in the component database unit 120. Here, the release

information may be information on a date at which the open source software is distributed. 20

Accordingly, the processor 110 may recognize which open source software of the third

open source software and the fourth open source software is distributed earlier. In

addition, when the processor 110 recognizes that the fourth open source software is earlier

distributed, the processor 110 may recognize one or more third functions included in the

fourth open source software among one or more common functions. However, the 25

present disclosure is not limited thereto.

 Meanwhile, the processor 110 of the computing device 100 may remove one or

more third functions from a second dictionary data structure related to the third open

source software in the component database (S216).

- 21 -

 In this case, only the application code part of the third open source software 5

may remain in the second dictionary data structure related to the third open source

software. However, the present disclosure is not limited thereto.

 Meanwhile, according to some exemplary embodiments of the present

disclosure, the processor 110 of the computing device 100 may recognize a first number

of one or more second functions and a second number of one or more third functions. In 10

addition, when a value calculated based on the first number and the second number is

equal to or more than a predetermined value, the processor 110 may remove the one or

more third functions from one or more first functions included in the second dictionary

data structure.

 Specifically, the processor 110 may divide the first number of one or more 15

second functions by the second number of one or more third functions. In addition,

when the processor recognized that a value acquired by dividing the first number by the

second number is equal to or more than 0.1, the processor may recognize that the second

function is included in the borrowed part of the third open source software to be subjected

to the code segmentation. The reason is that if 10% or more of a code base of the third 20

open source software is included in the fourth open source software, it may be determined

that there is a reusing possibility. In this case, the processor may remove the third

function from one or more first functions which appear in the first source code included

in the third open source software. However, the present disclosure is not limited thereto.

 According to the above-described configuration, only the application code part 25

of the third open source software may remain in the second dictionary data structure

related to the third open source software in the component database unit 120.

Accordingly, when the processor 110 of the computing device 100 identifies the

component of the target software, a time required for computation may be reduced and

- 22 -

occurrence of the error may also be reduced. 5

 Meanwhile, according to some exemplary embodiments of the present

disclosure, the processor 110 of the computing device 100 may extract at least one second

open source software by using the code similarity value. Hereinafter, an example of a

method in which the processor 110 according to the present disclosure extracts at least

one second open source software by using the code similarity value will be described. 10

 FIG. 7 is a flowchart for describing an example of a method for extracting at

least one second open source software by using a code similarity value by a computing

device according to some exemplary embodiments of the present disclosure.

 Referring to FIG. 7, the processor 110 of the computing device 100 may

recognize a third number of functions commonly included in the function included in the 15

target source code and the function of the application code part of each of the plurality of

open source software subjected to the code segmentation. In addition, the processor 110

may recognize a fourth number of functions of the application code part of each of the

plurality of open source software subjected to the code segmentation. In this case, the

processor 110 may recognize each code similarity value between each of the plurality of 20

open source software subjected to the code segmentation and the target software based

on the third number and the fourth number (S221).

 Here, the code similarity value may be defined as an equation below.

 [Equation 1]

 25

 Here, Φ may represent the code similarity value. In addition, T may represent

the function of the target software. Further, S may represent the function of the

application code part of the plurality of open source software subjected to the code

segmentation.

- 23 -

 Specifically, the processor 110 may recognize a value acquired by dividing the 5

third number by the fourth number as the code similarity value. However, the present

disclosure is not limited thereto.

 Meanwhile, the processor 110 of the computing device 100 may extract at least

one second open source software in which the code similarity value is equal to or more

than a predetermined value among the plurality of open source software subjected to the 10

code segmentation (S222). Here, the predetermined value may be 10%. However, the

present disclosure is not limited thereto. In addition, the processor 110 may determine the

extracted second open source software as the component of target software. However,

the present disclosure is not limited thereto.

 FIG. 8 is a diagram for comparing the present disclosure and related art 15

according to some exemplary embodiments of the present disclosure.

 As representative conventional technology related to the present disclosure,

there may be “Identifying Open-Source License Violation and 1-day Security Risk at

Large Scale.” (OSSPolice) technology by Ruian Duan and 4 persons.

 Referring to FIG. 8, at an analysis level, the OSSPolice in the related art may 20

perform an analysis at a software binary level. On the contrary, in the present disclosure,

the analysis may be performed at a software source code level.

 Meanwhile, in a utilization granularity unit, the OSSPolice in the related art

may utilize a feature unit (e.g., a character string or a function name). However, when

open source software component detection is performed by the feature units, modified 25

reuse of a feature may not be considered. For example, the corresponding feature may

not be used (partially reused) or source files in the open source software may also be

reused at different locations from the source files in the existing open source software.

In this case, accuracy may deteriorate. On the contrary, in the present disclosure, all

- 24 -

functions in the source code other than some features may be limited to a basic unit. 5

Accordingly, even though only a part of the source codes are reused, detection

considering only the corresponding part may be possible. Further, since structural

information (e.g., a path of a file) of the source code is not utilized in a detection process,

it may be possible to detect the component regardless of whether the structure is changed.

 Meanwhile, for comparison of expandability, in the case of the OSSPolice, an 10

open source software set of 30 GB (a total of approximately 2 billion lines considering

only C and C++ software) is selected as a data set. In this case, 1000 seconds are

required on average for extracting the feature from each software through the OSSPolice,

and a detection time (e.g., when the number of features is 10000, an average detection

time also requires approximately 10000 seconds) which is in proportion to the number of 15

features may be required on average. On the contrary, in the case of the present

disclosure, an open source software set of 13 TB (a total of approximately 80 billion lines)

is selected as an initial data set to be expanded by approximately 40 times as compared

with the related art. Further, 320 seconds may be required per software on average in

extracting the function and performing a preprocessing process, and when the component 20

of the open source software is detected in the target software, average 100 seconds or less

may be required. Accordingly, when it is evaluated that the expandability of the

OSSPolice is prominent, it may be evaluated that the expandability of the present

disclosure is high.

 Meanwhile, as a result of comparing the accuracy through the above-described 25

test, in the case of the OSSPolice, C/C++ OSS component detection accuracy except for

a case where the structure is modified may be 82%. On the contrary, in the case of the

present disclosure, component detection accuracy of 91% or more may be achieved in

spite of considering both the modifications of the code and the structure. Accordingly,

- 25 -

when it is evaluated that the accuracy of the OSSPolice is prominent, it may be evaluated 5

that the expandability of the present disclosure is high.

 Meanwhile, a recall rate may be compared through the above-described test.

Here, the recall rate may mean a value for representing a ratio of open source software

which is not found even though the component of the target software is correct. That is,

high recall rate may indicate that the ratio of the open source software which is not found 10

is low. In the case of the OSSPolice, as the recall rate, a result at a level of 87% may be

derived. On the contrary, in the present disclosure, a result of 94% may be derived.

 As a test result by comparing the OSSPolice which is the representative

technology in the related art and the present disclosure as described above, in the present

disclosure, the component of the open source software may be detected effectively as 15

compared with the technology in the related art.

 Meanwhile, as another technology in the related art, Dejavu code clone

detection technology may exist. Table 1 below may show a result of component

detection using the present disclosure (CENTRIS) and Dejavu.

 [Table 1] 20

 Specifically, Table 1 may show an open source software component

- 26 -

identification result between the present disclosure and Dejavu for 4 software projects 5

(ArangoDB, Crown, Cocos2dx-classical, and Splayer). Referring to Table 1, in the case

of Dejavu, a modified component which may not be identified may be shown. As an

example, in the case of Dejavu, when a reused code ratio is lower than a selected threshold,

the component may not be identified. Accordingly, in the case of Dejavu, a low recall

rate of up to 40% may be shown. In addition, Dejavu aims at detecting a project level 10

clone, but a mechanism of Dejavu may not include a processing routine of false positives

due to overlapped open source software. Thereafter, when the threshold is selected as

50%, Dejavu may show precision of 4% and when the threshold is selected as 80%,

Dejavu may show precision of 7%. When the threshold of Dejavu is selected 100%,

precision of 100% is shown, but as it can be seen that the recall rate is 16%, a partially 15

reused component may not be identified.

 On the contrary, referring to a test result of the present disclosure (CENTRIS),

precision of 95% and a recall rate of 100% may be shown when the code segmentation is

applied (with cs). On the contrary, when the code segmentation is not performed

(without cs), in the present disclosure, the false positives may not be processed with the 20

same reason as Dejavu and precision of 5% may be shown. This may mean that the

operation of the processor 110 of the computing device 100 performing step S210 which

segments the source code into the application code part and the borrowed code part

successfully detects numerous false positives. Last, the open source software

component which is identified only in Dejavu and not identified in the present disclosure 25

may not be shown among 4 software projects. In summary, the present disclosure may

show even higher precision and recall rate than Dejavu.

 FIG. 9 is a general schematic view of an exemplary computing environment in

which exemplary embodiments of the present disclosure may be implemented.

- 27 -

 The present disclosure has generally been described above in association with 5

a computer executable command which may be executed on one or more computers, but

it will be well appreciated by those skilled in the art that the present disclosure can be

implemented through a combination with other program modules and/or as a combination

of hardware and software.

 In general, the module in the present specification includes a routine, a 10

procedure, a program, a component, a data structure, and the like that execute a specific

task or implement a specific abstract data type. Further, it will be well appreciated by

those skilled in the art that the method of the present disclosure can be implemented by

other computer system configurations including a personal computer, a handheld

computing device, microprocessor-based or programmable home appliances, and others 15

(the respective devices may operate in connection with one or more associated devices as

well as a single-processor or multi-processor computer system, a mini computer, and a

main frame computer.

 The exemplary embodiments described in the present disclosure may also be

implemented in a distributed computing environment in which predetermined tasks are 20

performed by remote processing devices connected through a communication network.

In the distributed computing environment, the program module may be positioned in both

local and remote memory storage devices.

 The computer generally includes various computer readable media. The

computer includes, as a computer accessible medium, volatile and non-volatile media, 25

transitory and non-transitory media, and mobile and non-mobile media. As a non-

limiting example, the computer readable media may include both computer readable

storage media and computer readable transmission media.

 The computer readable storage media include volatile and non-volatile media,

- 28 -

transitory and non-transitory media, and mobile and non-mobile media implemented by 5

a predetermined method or technology for storing information such as a computer

readable instruction, a data structure, a program module, or other data. The computer

readable storage media include a RAM, a ROM, an EEPROM, a flash memory or other

memory technologies, a CD-ROM, a digital video disk (DVD) or other optical disk

storage devices, a magnetic cassette, a magnetic tape, a magnetic disk storage device or 10

other magnetic storage devices or predetermined other media which may be accessed by

the computer or may be used to store desired information, but are not limited thereto.

The computer readable transmission media generally implement the computer

readable instruction, the data structure, the program module, or other data in a carrier

wave or a modulated data signal such as other transport mechanism and include all 15

information transfer media. The term “modulated data signal” means a signal acquired

by setting or changing at least one of characteristics of the signal so as to encode

information in the signal. As a non-limiting example, the computer readable

transmission media include wired media such as a wired network or a direct-wired

connection and wireless media such as acoustic, RF, infrared and other wireless media. 20

A combination of any media among the aforementioned media is also included in a range

of the computer readable transmission media.

An exemplary environment 1100 that implements various aspects of the present

disclosure including a computer 1102 is shown and the computer 1102 includes a

processing device 1104, a system memory 1106, and a system bus 1108. The system 25

bus 1108 connects system components including the system memory 1106 (not limited

thereto) to the processing device 1104. The processing device 1104 may be a

predetermined processor among various commercial processors. A dual processor and

other multi-processor architectures may also be used as the processing device 1104.

- 29 -

 The system bus 1108 may be any one of several types of bus structures which 5

may be additionally interconnected to a local bus using any one of a memory bus, a

peripheral device bus, and various commercial bus architectures. The system memory

1106 includes a read only memory (ROM) 1110 and a random access memory (RAM)

1112. A basic input/output system (BIOS) is stored in the non-volatile memories 1110

including the ROM, the EPROM, the EEPROM, and the like and the BIOS includes a 10

basic routine that assists in transmitting information among components in the computer

1102 at a time such as in-starting. The RAM 1112 may also include a high-speed RAM

including a static RAM for caching data, and the like.

 The computer 1102 also includes an internal hard disk drive (HDD) 1114 (for

example, EIDE and SATA) – the internal hard disk drive 1114 may also be configured 15

for an external purpose in an appropriate chassis (not illustrated), a magnetic floppy disk

drive (FDD) 1116 (for example, for reading from or writing in a mobile diskette 1118),

and an optical disk drive 1120 (for example, for reading a CD-ROM disk 1122 or reading

from or writing in other high-capacity optical media such as the DVD). The hard disk

drive 1114, the magnetic disk drive 1116, and the optical disk drive 1120 may be 20

connected to the system bus 1108 by a hard disk drive interface 1124, a magnetic disk

drive interface 1126, and an optical disk drive interface 1128, respectively. An interface

1124 for implementing an external drive includes, for example, at least one of a universal

serial bus (USB) and an IEEE 1394 interface technology or both of them.

 The drives and the computer readable media associated therewith provide non-25

volatile storage of the data, the data structure, the computer executable instruction, and

others. In the case of the computer 1102, the drives and the media correspond to storing

of predetermined data in an appropriate digital format. In the description of the

computer readable storage media, the mobile optical media such as the HDD, the mobile

- 30 -

magnetic disk, and the CD or the DVD are mentioned, but it will be well appreciated by 5

those skilled in the art that other types of storage media readable by the computer such as

a zip drive, a magnetic cassette, a flash memory card, a cartridge, and others may also be

used in an exemplary operating environment and further, the predetermined media may

include computer executable instructions for executing the methods of the present

disclosure. 10

 Multiple program modules including an operating system 1130, one or more

application programs 1132, other program module 1134, and program data 1136 may be

stored in the drive and the RAM 1112. All or some of the operating system, the

application, the module, and/or the data may also be cached in the RAM 1112. It will

be well appreciated that the present disclosure may be implemented in operating systems 15

which are commercially usable or a combination of the operating systems.

 A user may input instructions and information in the computer 1102 through

one or more wired/wireless input devices, for example, pointing devices such as a

keyboard 1138 and a mouse 1140. Other input devices (not illustrated) may include a

microphone, an IR remote controller, a joystick, a game pad, a stylus pen, a touch screen, 20

and others. These and other input devices are often connected to the processing device

1104 through an input device interface 1142 connected to the system bus 1108, but may

be connected by other interfaces including a parallel port, an IEEE 1394 serial port, a

game port, a USB port, an IR interface, and others.

 A monitor 1144 or other types of display devices are also connected to the 25

system bus 1108 through interfaces such as a video adapter 1146, and the like. In

addition to the monitor 1144, the computer generally includes other peripheral output

devices (not illustrated) such as a speaker, a printer, others.

 The computer 1102 may operate in a networked environment by using a logical

- 31 -

connection to one or more remote computers including remote computer(s) 1148 through5

wired and/or wireless communication. The remote computer(s) 1148 may be a

workstation, a server computer, a router, a personal computer, a portable computer, a

micro-processor based entertainment apparatus, a peer device, or other general network

nodes and generally includes multiple components or all of the components described

with respect to the computer 1102, but only a memory storage device 1150 is illustrated 10

for brief description. The illustrated logical connection includes a wired/wireless

connection to a local area network (LAN) 1152 and/or a larger network, for example, a

wide area network (WAN) 1154. The LAN and WAN networking environments are

general environments in offices and companies and facilitate an enterprise-wide computer

network such as Intranet, and all of them may be connected to a worldwide computer 15

network, for example, the Internet.

When the computer 1102 is used in the LAN networking environment, the

computer 1102 is connected to a local network 1152 through a wired and/or wireless

communication network interface or an adapter 1156. The adapter 1156 may facilitate

the wired or wireless communication to the LAN 1152 and the LAN 1152 also includes 20

a wireless access point installed therein in order to communicate with the wireless adapter

1156. When the computer 1102 is used in the WAN networking environment, the

computer 1102 may include a modem 1158, is connected to a communication server on

the WAN 1154, or has other means that configure communication through the WAN 1154

such as the Internet, etc. The modem 1158 which may be an internal or external and 25

wired or wireless device is connected to the system bus 1108 through the serial port

interface 1142. In the networked environment, the program modules described with

respect to the computer 1102 or some thereof may be stored in the remote memory/storage

device 1150. It will be well known that an illustrated network connection is exemplary

- 32 -

and other means configuring a communication link among computers may be used. 5

The computer 1102 performs an operation of communicating with

predetermined wireless devices or entities which are disposed and operated by the

wireless communication, for example, the printer, a scanner, a desktop and/or a portable

computer, a portable data assistant (PDA), a communication satellite, predetermined

equipment or place associated with a wireless detectable tag, and a telephone. This at 10

least includes wireless fidelity (Wi-Fi) and Bluetooth wireless technology. Accordingly,

communication may be a predefined structure like the network in the related art or just ad

hoc communication between at least two devices.

The wireless fidelity (Wi-Fi) enables connection to the Internet, and the like

without a wired cable. The Wi-Fi is a wireless technology such as the device, for 15

example, a cellular phone which enables the computer to transmit and receive data

indoors or outdoors, that is, anywhere in a communication range of a base station. The

Wi-Fi network uses a wireless technology called IEEE 802.11 (a, b, g, and others) in order

to provide safe, reliable, and high-speed wireless connection. The Wi-Fi may be used

to connect the computers to each other or the Internet and the wired network (using IEEE 20

802.3 or Ethernet). The Wi-Fi network may operate, for example,at a data rate of 11

Mbps (802.11a) or 54 Mbps (802.11b) in unlicensed 2.4 and 5 GHz wireless bands or

operate in a product including both bands (dual bands).

It may be appreciated by those skilled in the art that various exemplary logical

blocks, modules, processors, means, circuits, and algorithm steps described in association 25

with the exemplary embodiments disclosed herein may be implemented by electronic

hardware, various types of programs or design codes (for easy description, herein,

designated as “software”), or a combination of all of them. In order to clearly describe

the intercompatibility of the hardware and the software, various exemplary components,

- 33 -

blocks, modules, circuits, and steps have been generally described above in association 5

with functions thereof. Whether the functions are implemented as the hardware or

software depends on design restrictions given to a specific application and an entire

system. Those skilled in the art of the present disclosure may implement functions

described by various methods with respect to each specific application, but it should not

be interpreted that the implementation determination departs from the scope of the present 10

disclosure.

Various exemplary embodiments presented herein may be implemented as

manufactured articles using a method, a device, or a standard programming and/or

engineering technique. The term “manufactured article” includes computer programs

or media which are accessible by a predetermined computer-readable device. For 15

example, a computer readable storage includes a magnetic storage device (for example, a

hard disk, a floppy disk, a magnetic strip, or the like), an optical disk (for example, a CD,

a DVD, or the like), a smart card, and a flash memory device (for example, an EEPROM,

a card, a stick, a key drive, or the like), but is not limited thereto. The term “machine-

readable media” includes a wireless channel and various other media that can store, 20

possess, and/or transfer instruction(s) and/or data, but is not limited thereto.

FIG. 10 is a diagram for comparing the present invention and related art

according to some exemplary embodiments of the present disclosure.

FIG. 10A may be a diagram for showing a detection result of open-source

software components of ArangoDB using Dejavu which is the relate art. FIG. 10B may 25

be a diagram for showing a detection result of open-source software components of

ArangoDB using CENTRIS according to the present invention.

Referring to FIGS. 10A and 10B, it may be confirmed that in the detection

result of the components using Dejavu, there are more false positives than in the detection

- 34 -

result of the components using CENTRIS according to the present invention. 5

Specifically, it may be confirmed that DejaVu detects more “An OSS not a component of

ArangoDB” than CENTRIS according to the present invention.

 Further, it may be confirmed that in the detection result of the components using

Dejavu, there are more false negatives than in the detection result of the components using

CENTRIS according to the present invention. Specifically, it may be confirmed that 10

DejaVu cannot detect several “An OSS component of ArangoDB”. Accordingly, it may

be confirmed that the accuracy of the detection result of the components using CENTRIS

according to the present invention is higher than the accuracy of the detection result of

the components using DejaVu.

 The description of the presented exemplary embodiments is provided so that 15

those skilled in the art of the present disclosure use or implement the present disclosure.

Various modifications of the exemplary embodiments will be apparent to those skilled in

the art and general principles defined herein can be applied to other exemplary

embodiments without departing from the scope of the present disclosure. Therefore, the

present disclosure is not limited to the exemplary embodiments presented herein, but 20

should be interpreted within the widest range which is coherent with the principles and

new features presented herein.

- 35 -

WHAT IS CLAIMED IS: 5

1. A method for identifying open source software (OSS) components using a

processor of a computing device, the method comprising:

constructing a component database by performing redundancy elimination for

each of a plurality of open source software; and 10

identifying a component of target software by using the component database.

2. The method of claim 1, wherein the constructing of the component

database by performing the redundancy elimination for each of the plurality of open

source software includes 15

when performing the redundancy elimination for first open source software

among the plurality of open source software, recognizing at least one function which

appears in each of at least one version of the first open source software, and

setting a hash value of each of the at least one function as a key and setting at

least one version in which each of the at least one function appears to a value for the key, 20

and storing the key value in a first dictionary data structure for the first open source

software.

3. The method of claim 2, wherein the first dictionary data structure is

distinguished into different groups according to the number of versions in which the 25

function appears.

4. The method of claim 1, wherein the identifying of the component of the

target software by using the component database includes

- 36 -

 segmenting a source code included in each of the plurality of open source 5

software into an application code part and a borrowed code part, and

 comparing a target source code included in the target software and the

application code part included in each of the plurality of open source software to extract

at least one second open source software used when preparing the target software among

the plurality of open source software. 10

 5. The method of claim 4, wherein the segmenting of the source code included

in each of the plurality of open source software into the application code part and the

borrowed code part includes

 recognizing one or more first functions which appear in a first source code 15

included in third open source software to be subjected to code segmentation among the

plurality of open source software,

 selecting fourth open source software to be analyzed through a comparison with

the third open source software among the plurality of open source software,

 recognizing one or more second functions which appear in a second source code 20

included in the fourth open source software,

 comparing the one or more first functions and the one or more second functions,

and extracting one or more common functions recognized to be the same,

 recognizing one or more third functions which appear earlier in the fourth open

source software among the one or more common functions, and 25

 removing the one or more third functions from a second dictionary data

structure related to the third open source software in the component database.

 6. The method of claim 5, wherein the removing of the one or more third

- 37 -

functions from the second dictionary data structure related to the third open source 5

software in the component database includes

when a value calculated based on a first number of the one or more second

functions and a second number of the one or more third functions is equal to or more than

a predetermined value, removing the one or more third functions from the one or more

first functions included in the second dictionary data structure. 10

7. The method of claim 4, wherein the comparing of the target source code

included in the target software and the application code part included in each of the

plurality of open source software to extract at least one second open source software used

when preparing the target software among the plurality of open source software includes 15

recognizing each code similarity value between each of the plurality of open

source software and the target software based on a third number of functions commonly

included in the function included in the target source code and the function of the

application code part of each of the plurality of open source software subjected to the

code segmentation and a fourth number of functions of the application code part of each 20

of the plurality of open source software subjected to the code segmentation, and

extracting at least one second open source software in which the code similarity

value is equal to or more than a predetermined value among the plurality of open source

software subjected to the code segmentation.

25

8. The method of claim 7, wherein the code similarity value is determined

based on a first equation,

the first equation is , and

the Φ represents the code similarity value, the T represents the function of the

- 38 -

target software, and the S represents the function of the application code part of the 5

plurality of open source software subjected to the code segmentation.

9. A device for identifying open source software components, the device

comprising:

a processor performing redundancy elimination for each of a plurality of open 10

source software; and

a component database unit storing a result of performing the redundancy

elimination,

wherein the processor identifies a component of target software by using the

component database unit. 15

10. The device of claim 9, wherein the processor

when performing the redundancy elimination for first open source software

among the plurality of open source software, recognizes at least one function which

appears in each of at least one version of the first open source software, and 20

sets a hash value of each of the at least one function as a key and sets at least

one version in which each of the at least one function appears to a value for the key, and

stores the key value in the component database unit as a first dictionary data structure for

the first open source software.

25

11. The device of claim 10, wherein the first dictionary data structure is

distinguished into different groups according to the number of versions in which the

function appears.

- 39 -

12. The device of claim 9, wherein the processor 5

segments a source code included in each of the plurality of open source software

into an application code part and a borrowed code part, and

compares the target source code included in the target software and the

application code part included in each of the plurality of open source software to extract

at least one second open source software used when preparing the target software among 10

the plurality of open source software.

13. The device of claim 12, wherein the processor

recognizes one or more first functions which appear in a first source code

included in third open source software to be subjected to code segmentation among the 15

plurality of open source software,

selects fourth open source software to be analyzed through a comparison with

the third open source software among the plurality of open source software,

recognizes one or more second functions which appear in a second source code

included in the fourth open source software, 20

compares the one or more first functions and the one or more second functions

and extracts one or more common functions recognized to be the same,

recognizes one or more third functions which appear earlier in the fourth open

source software among the one or more common functions, and

removes the one or more third functions from a second dictionary data structure 25

related to the third open source software in the component database unit.

14. The device of claim 13, wherein the processor removes the one or more

third functions from the one or more first functions included in the second dictionary data

- 40 -

structure when a value calculated based on a first number of the one or more second 5

functions and a second number of the one or more third functions is equal to or more than

a predetermined value.

15. The device of claim 12, wherein the processor

recognizes each code similarity value between each of the plurality of open 10

source software and the target software based on a third number of functions commonly

included in the function included in the target source code and the function of the

application code part of each of the plurality of open source software subjected to the

code segmentation and a fourth number of functions of the application code part of each

of the plurality of open source software subjected to the code segmentation, and 15

extracts at least one second open source software in which the code similarity

value is equal to or more than a predetermined value among the plurality of open source

software subjected to the code segmentation.

16. The device of claim 15, wherein the code similarity value is determined20

based on a first equation,

the first equation is , and

the Φ represents the code similarity value, the T represents the function of the

target software, and the S represents the function of the application code part of the

plurality of open source software subjected to the code segmentation. 25

- 41 -

ABSTRACT 5

According to some exemplary embodiments of the present disclosure, a method

for identifying open source software (OSS) components using a processor of a computing

device is disclosed. The method for identifying open source software (OSS)

components may include: constructing a component database by performing redundancy

elimination for each of a plurality of open source software; and identifying a component 10

of target software by using the component database.

DRAWINGS

Fig. 1

1/10

Fig. 2

2/10

Fig. 3

3/10

Fig. 4

4/10

Fig. 5

5/10

Fig. 6

6/10

Fig. 7

7/10

Fig. 8

8/10

Fig. 9

9/10

Fig. 10

10/10

	1
	2
	3
	4
	5

