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Abstract—Malware using document files as an attack vector
has continued to increase and now constitutes a large portion of
phishing attacks. To avoid anti-virus detection, malware writers
usually implement obfuscation techniques in their source code.
Although obfuscation is related to malicious code detection, little
research has been conducted on obfuscation with regards to
Visual Basic for Applications (VBA) macros.

In this paper, we summarize the obfuscation techniques and
propose an obfuscated macro code detection method using
five machine learning classifiers. To train these classifiers, our
proposed method uses 15 discriminant static features, taking into
account the characteristics of the VBA macros. We evaluated
our approach using a real-world dataset of obfuscated and
non-obfuscated VBA macros extracted from Microsoft Office
document files. The experimental results demonstrate that our
detection approach achieved a Fy score improvement of greater
than 23% compared to those of related studies.

I. INTRODUCTION

Attacks using macros have become a constant threat since
the “Concept”, a wide-spread macro virus written in Visual
Basic for Applications (VBA), which appeared in 1995 [1].
Macro malware was a major threat from the late 1990s to the
early 2000s, but it had declined since the security mechanism
of Microsoft Office was enhanced in 2000 [2], [3]. However,
according to the statistics and security news of Anti-Virus (AV)
companies, attacks using VBA macros have been increasing
again since the second half of 2014 [4], [5]. Since the release
of Microsoft Office 2000, the execution of VBA macros was
disabled by default, but attackers began to deploy simple
social engineering techniques that lure users into enabling the
execution of macros.

The threat reports of AV companies also confirmed the
comeback of script-based malware such as VBA macro
malware. According to the report released by Symantec in
2016, MS Office document file formats dominated the email
attachments (73.2%), even more than executable files [6].
Furthermore, a recent Kaspersky threat report demonstrates
that the Microsoft Office Word VBA macro-based attacks are
included in the top 10 malware families [7]. The latest McAfee
security report, published in September 2017, also covers the
trends of script-based malware and reports a malware type
which includes PowerShell command inside of VBA macro
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As mentioned above, the security reports of AV vendors
have shown that script-based attacks are on the rise and can be
dangerous. The most frequently mentioned scripting languages
that can be used in malicious code are JavaScript, Visual
Basic Script, PHP, and Powershell. Among these, VBA macro
malware, which is an attack related to MS Office documents,
should not be ignored. Owing to the fact that MS Office
document files are used by a large number of companies and
institutions, malware which leverages MS Office documents
as an attack vector can have a large impact. Attacks related
to VBA macros are usually considered less suspicious than
the executable files because most people are familiar with the
MS Office document files, e.g., .docx or .pptx. In result, this
negligence leads to the proliferation of ongoing VBA macro
attacks.

A primary quality that a successful cyber-attack must have
is the ability to bypass AVs. One of the most effective strate-
gies to bypass AVs is obfuscation, which is the intentional
obscuring of code by making it difficult to understand. In
many script-based malware, obfuscation techniques are fairly
common, and it is generally known that obfuscation works
well against AVs. There have been malicious JavaScript de-
tection studies which categorized obfuscation techniques into
four types and investigated how the detection rate changed
when they were applied [9], [10]. The studies demonstrated
that obfuscation techniques are effective in avoiding the AV
detection.

Currently, many obfuscated VBA macro attacks are un-
derway, but there are still few studies on obfuscated VBA
macro detection. Most document malware detection researches
focused on vulnerability or shellcode detection [11]-[14].

Only recently has it appeared in several studies under
the name of “Downloader” or “Macro malware”. Mimura
et al. [15] conducted a study to extract the Remote Access
Trojan (RAT) in malicious documents files used in Advanced
Persistent Threat (APT) attacks from 2009 to 2015. They clas-
sified the collected document malware as “Downloader” and
“Dropper”. “Downloader” uses VBA macro, and “Dropper”
includes executable files in itself. However, the focus of the
study was on the “Dropper”, rather than the ‘Downloader”.

We have observed that the rate of VBA macro use in APT
attacks has been drastically increasing since 2014, and our
proposed method targets the missing area that has not been
studied by the referenced research. There are few studies
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that leverage machine learning to detect malicious MS Office
documents.

Cohen and Nissim et al. [16], [17] proposed a method to
detect malicious docx files with structural features by using
active learning that emphasizes the updatability of a detection
model. It provided a 94.44% true positive detection rate by
leveraging the hierarchical nature of docx files. It presented
the most prominent 11 features, including 8 structural path
related to the existence of VBA macros.

Conversely, research on detecting attacks related to PDF
documents have been widely carried out. VBA macros in MS
Office files and JavaScript in PDF documents share similar
characteristics. We can detect the obfuscation techniques in
the JavaScript of the PDF files, and there are many studies on
the detection of obfuscated malicious JavaScript. Given that
it is also a scripting language, one may think that we can
apply JavaScript research to VBA macro detection, but it has
never been demonstrated how it would work. There are many
similarities due to the “scripting language in the document”,
but the language itself is different, hence the obfuscated code
is very different. For instance, there is a minification technique
in JavaScript. Although minification can reduce code size by
deleting linefeed, it often appears in malicious script code to
avoid malware detection. This technique is only applicable to
JavaScript, not VBA macros. Owing to the differences between
JavaScript and VBA, independent research focusing on VBA
macros should be conducted.

In this paper, we propose a method to detect obfuscated
VBA macros in MS Office documents by using machine
learning classifiers. First, we investigated the VBA macros
that were actually used as malicious code, and classified the
VBA obfuscation techniques into four categories by referring
to related research. In our experiment, we evaluated the
performance of our proposed obfuscation detection method
which leverages machine learning. 773 malicious and 1,764
benign MS Office files were collected and we conducted
an experiment with 4,212 VBA macro extracted from the
collected files. All VBA macros were manually labeled as
either obfuscated or normal. By performing a manual scan
on large, real-world samples, we demonstrated how many
malicious and benign samples were obfuscated. From this
labeled dataset, we extracted 15 discriminant static features
that reflect the characteristics of the VBA macros and applied
them to five different classifiers, and compared the results
with those of related studies. As a result, we obtained a 23%
improvement in Fy score in our comparative experiment.

The contributions of this paper are as follows.

o As the first obfuscation detection study applied to VBA
macro, we have summarized the types of obfuscation
techniques and we have shown the extent of obfuscation
applied to real-world VBA macros.

We presented 15 discriminant static features and, tested
them using five different classifiers. The results of the
comparison with related research show that the perfor-
mance was improved by 23%.
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The rest of this paper is organized as follows. Section II
summarizes related studies concerning detection of document
malware. Section III provides the simple explanation about
VBA macro, and categorization of obfuscation techniques. In
Section IV, we propose our obfuscated VBA macro detection
approach with experiment setup. Section V, we evaluate the
classification performance of proposed detection approach.
Finally, Section VI and VII include discussion and conclusion
of this paper.

II. RELATED WORK

Attacks using VBA macros continue to increase. Moreover,
over 98% of malicious VBA macros are obfuscated according
to our manual inspection on a collected sample set (as detailed
in Section IV.B). However, there is a scarcity of studies on the
detection of obfuscation on VBA macros. Given that attacks
using VBA macros have only just begun to increase, most
research is focused on vulnerability or shellcode detection
[11]-[15] rather than on the detection of VBA macros. The
following are the studies that can be applied to attacks using
VBA macros.

A. Malicious VBA macro detection

Until now, a few studies have been proposed and most of
them are based on a machine learning approach. Cohen et al.
[16] conducted research on malware detection for XML-based
documents. This study uses the hierarchical nature of Office
Open XML (OOXML) as a key feature of machine learning to
detect MS Office document malware. It recognized the risks
that could be posed by document files, and well-organized
the types of possible attacks which could result from them.
In their experiment, nine different classification algorithms
were used and Random Forest classifiers demonstrated the best
results among them. In addition, they proved the effectiveness
of their proposed method by comparing the detection results
to those of several AVs. This research using the idea of
structural feature has proven to be effective when dealing with
OOXML file types such as .docx, .docm, or .xlsx. However,
the majority of VBA macro malware are .doc or .xls, which
are not OOXML file types [6].

Subsequently, Nissim et al. [17] added Active Learning
to the SFEM method in 2017. Active Learning methods are
designed to assist the analytical efforts of experts; it led to a
95.5% reduction of labeling efforts. However, their proposed
mechanism is limited to docx files, which is narrower than
OOXML files.

Gaustad [18] presented a research on malicious VBA macro
detection in 2017. This study used a Random Forest classifier
of the ensemble learning with over a thousand static features
to detect malicious documents. However, given that its de-
tection was performed with the static features of malicious
VBA macro codes, it is difficult to identify how obfuscation
techniques were considered in the detection process.

B. Malicious JavaScript code detection

JavaScript is one of the most popular scripting languages.
JavaScript-based attacks are also taking place in PDFs, and



have similarities with VBA in that both threats utilize scripting
language in document formats. By retrieving research on ma-
licious JavaScript detection, we are able to explore appropriate
ways to counteract VBA macro malware.

While malicious VBA macro detections in MS Office doc-
uments mainly consist of machine learning methods, there
are a larger variety of approaches to detecting malicious
JavaScript in PDFs. Moreover, a number of research have
been emphasizing on analyzing obfuscations, some focusing
on restoring the obfuscated code to original code by de-
obfuscating it. In the subsections below, we will introduce
the representative studies that have been researched to detect
malicious JavaScript.

Static analysis approach: In malware detection, static
analysis has advantages over dynamic analysis in terms of cost
for inspection, because it generally guarantees a lightweight
inspection. Choi et al. [19] proposed a method to detect
JavaScript obfuscation that leveraged the lexical characteristics
of obfuscated strings. Detection was performed by using an N-
gram distribution, entropy, the string length for all the strings
used, and the parameters of the dangerous function. Xu et
al. [20] analyzed the decoding process of obfuscated code
to detect obfuscation. Their key idea was that obfuscated
malicious JavaScript code has to be de-obfuscated before it
executes its malicious actions. They identified the function
calls that are related with obfuscated malicious JavaScript
code.

Dynamic analysis approach: Liu et al. [21] proposed
a method to detect malicious JavaScript through document
instrumentation. This method inserts monitoring code into a
PDF, so that the inspector knows the context of the runtime
behaviors. Kim et al. [22] proposed J-force, which is a forced
execution engine for JavaScript. J-force was introduced to
detect suspicious hidden behavior, and it achieved a 95%
code coverage on real-world JavaScript samples. Furthermore,
there is a study focusing on the de-obfuscation of mali-
cious JavaScript, JSDES [23]. It is an automated system
for de-obfuscation and analysis of malicious JavaScript code.
This study conducted an extensive survey on the available
JavaScript obfuscation techniques and their usage in malicious
code.

Machine learning approach: Likarish et al. [24] proposed
a method based on the Support Vector Machine (SVM) and a
decision tree to detect malicious JavaScript in web pages. They
proposed a frequency of 50 keywords and 15 properties as
detection features that indicate human-readable characteristics.
Jodavi et al. [25] used one-class SVM classifiers to detect
obfuscation. In training, they pruned the classifier ensemble
using a novel binary Particle Swarm Optimization (PSO)
algorithm to find a near-optimal sub-ensemble. Aebersold et al.
[26] tested the machine learning approach to detect obfuscated
JavaScript in 2016. This study trained four different classifiers
and evaluated them with real-world PDF files. Their approach
and proposed features scored promised results on a benign
dataset, but had a 60.6% recall score on a malicious dataset.
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1| Sub StartCalculator()

2 Dim Program As String
Dim TaskID As Double
4 On Error Resume Next
Program = "calc.exe"

'Run calculator program using Shell()
8 TaskID = Shell (Program, 1)

9 If Err <> 0 Then

MsgBox "Can’t start " & Program

11 End If

12| End Sub

(a) A macro for running the program “calc.exe” in Windows

I| Sub SendEmail ()
2 Dim OQutlookApp As Object
Dim MItem As Object

'Create Outlook object using CreateObject ()
6 Set OutlookApp CreateObject ("Outlook.Application")

8 For Each cell in
Columns ("a") .Cells.SpecialCells (x1CellTypeConstants)

9 email_ = cell.Value
10 subject_ = cell.Offset (0, 1).Value
1 body_ = cell.Offset (0, 2).Value

13 ’'Create Mail Item and send it via Outlook object
Set MItem OutlookApp.CreateItem(0)

15 With MItem

16 .To email

1 .Subject subject_

.Body = body_

.Display

20 End With

21 Next

22| End Sub

(b) A macro for sending an email via Outlook

Fig. 1: VBA macro code sample

The users of the host applications are able to leverage the
VBA language to write script that access to the functionalities
of host applications.

1II. BACKGROUND
A. Visual Basic for Applications

Visual Basic for Applications (VBA) is a scripting language
that is implemented within host applications, such as Microsoft
Office Word or Excel [27]. The advantage of VBA is its ability
to automatically and repeatedly use various functions of the
host application and system. Figure 1 displays a sample macro
code that interacts with a system. Figure 1(a) shows the macro
code for executing a program of a system via the VBA function
Shell(). With several lines of code, any program in a computer
can be executed. As shown in Figure 1(b), VBA can be used
to send emails in Excel via an Outlook object. Through VBA,
users can perform a variety of tasks.

The expandability of VBA is convenient for users, but
it can also become an opportunity for attackers. Attackers
can accomplish almost every action that can be used for
malicious behavior, such as downloading or executing, via a
VBA macro. Figure 1 represents the sample code of functions



TABLE I: Type of obfuscation techniques

# Type Method

o1 Random obfuscation Randomize name

02 Split obfuscation Split strings
o3 Encoding obfuscation Encode strings

04 Logic obfuscation Insert and reorder code

1| "Procedure name is changed to "ueiwjfdjkfdsv"
2| Sub ueiwjfdjkfdsv ()
'Variable name is changed to "yruehdjdnnz"
4 Dim yruehdjdnnz As Integer

yruehdjdnnz = 2

Do While yruehdjdnnz < 45

DoEvents: yruehdjdnnz = yruehdjdnnz + 1

End Sub

Fig. 2: An example of Random obfuscation

that are triggered by users — however attackers prefer to take
advantage of functions triggered upon opening a document,
such as workbook_open() or document_open(). Furthermore,
by using simple social engineering techniques which lure users
to enable macros, attackers are able to bypass MS Office’s
security mechanism.

B. Obfuscation Techniques in VBA

The goal of this study is to detect obfuscation with the
textual characteristics of obfuscated macro code. For more
effective detection, we classify obfuscation techniques into
four types by target and method of obfuscation based on the
studies by Collberg et al. [28] and Xu et al. [9]: 1) Random
obfuscation, 2) Split obfuscation, 3) Encoding obfuscation, and
4) Logic obfuscation. Each obfuscation type has different syn-
tactic structure and different uses of functions and operators.
Therefore, we can use the unique characteristics of each type
to detect obfuscation. Table I provides a summary of each
obfuscation type.

The obfuscation techniques affect the manual code in-
spection of human experts. Whether it be a signature-based
AV or machine learning based AV, in order to judge the
maliciousness of code, it must be predetermined by human
experts. These obfuscation techniques are applied to decelerate
the time of analysis, which in turn, delays the countermeasures
after detection. Although each obfuscation technique is quite
simple, when used in combination, they render the code
visually indecipherable. In addition, attackers use obfuscation
tools to create many variants of malware with different hash
values. In the following subsections, the explanation of each
obfuscation technique and our machine learning features to
detect these techniques will be provided with example code.

1) OI Random Obfuscation: Random obfuscation is a type
of obfuscation that changes the identifiers of VBA macro
code. Identifiers are the names of variables and procedures that

Public Const pzonda = "a"
Public Const pzonde = "e"
3| Public Const pzondP = "P"

'Parameter "wScript.shell" is divided
CreateObject ("WScript.Sh" + pzonde + "11")
'Parameter "Process" is divided

.Environment (pzondP + "" + "roc" + pzonde + "ss")

E

Fig. 3: An example of Split obfuscation

are used in VBA macro code. Random obfuscation makes it
difficult to analyze the flow from variables and function calls
by changing the identifiers to random strings.

Figure 2 shows an example of random obfuscation. The
names of the sub procedure and the variables are changed
to random meaningless strings such as ueiwjfdjkfdsv, yruehd-
jdnnz. This change to random strings makes it difficult for
humans to understand the actual operation of the macro code.

The identifying feature of this random obfuscation is in the
naming of the identifiers. Therefore, using Entropy, a measure
of the disorder of the characters of the identifiers, can be one
way of detecting the characteristics of this obfuscation. Related
studies already leverage the entropy of the entire code as one
feature to detect malicious scripts [18], [26]. In addition to
this, given that random obfuscation is applied to identifiers, it
is also possible to use the variance or mean value of length
of identifiers as one feature of obfuscation detection.

Transform of Random Obfuscation

Sub function()
Dim variable —

—  Sub uoweghklsdfdw()
Dim i03u9nlkq8lgk

2) 02 Split Obfuscation: Split obfuscation usually per-
forms obfuscation by dividing parameter data. The morpholog-
ical changes that occur in the process of partitioning data have
proven to be very effective in avoiding signature-based AVs
[9]. As the data is partitioned, it has a form that is different
from the detection signature hence, it is not flagged by the
detection technique. However, when the macro is executed,
the parameter value transferred to the function is the same, so
the macro can successfully execute its malicious action. Figure
3 displays an example of macro code with split obfuscation.
This conversion does not change the actual behavior of the
code, but it avoids the detection of the use of “wScript.shell”
or “Process” as the signature for malware detection.

Functions such as Shell() and URLDownloadToFile() are
frequently used for attacks in malicious VBA macros, but
legitimate users can also use them in benign VBA macros for
normal programs. Therefore, in order to determine whether
a VBA macro is obfuscated or not, it is necessary to verify
not only the functions it uses, but also the input parameters
of the functions. Split obfuscation obstructs the detection of
malicious code by modifying parameter values.



1| "Parameter "savetofile" is changed to "savteRKtofilteRK"
2| Replace ("savteRKtofilteRK", "teRK", "e")

(a) Obfuscation using built-in function Replace()

I| "Each character of URL is changed to number

>|urlAr = Array (1878, 1890, 1890, 1886, 1832, 1832, 1821,
1886, 1871, 1890, 1878, 1875, 1884, 1888, 1895, 1879,
1882, 1891, 1883, 1879, 1884, 1871, 1873, 1879, 1885,
1884, 1820, 1879, 1830, 1820, 1873, 1885, 1883, 1821,
1829, 1828, 1876, 1828, 1874, 1827, 1821, 1827, 1826,
1889, 1874, 1876, 1877, 1829, 1878, 1830, 1880, 1820,
1875, 1894, 1875)

3| urlstr DecodeArray (urlAr)

(b) Obfuscation using user-defined function DecodeArray()

Fig. 4: An example of Encoding obfuscation

In obfuscated macro code, in order to use the split data, it
is essential to combine it. The combination of data is done
using the join operators ‘&’ and ‘+’, as shown in Figure 3.
The join operators are used in normal macros, but more often
in obfuscated macros. Thus, an excessive appearance of these
characters can be selected as one of the features to detect
obfuscation. In addition to this, given that it also increases the
number and length of string variables, we can also leverage it
as a feature.

Transform of Split Obfuscation

[yl)

“String” N “Stn & “ru & “in” & g

3) O3 Encoding Obfuscation: Encoding obfuscation per-
forms obfuscation by modifying function parameters like split
obfuscation. Modification is performed by converting param-
eter data using reversible algorithms such as Base64 or Shift.
Three types of methods are used in encoding obfuscation: 1)
built-in VBA functions, 2) character encoding, and 3) user-
defined functions.

The first type of encoding obfuscation uses the built-in
functions of VBA such as Replace(), Right(), or Left(). Figure
4(a) shows an obfuscation using Replace() which is basically
supported by VBA. As shown in the figure, the parameter
“savetofile” is saved as “savteRKtofilteRK” which replaces “‘e”
to “teRK”. It prevents macros from being detected by the key-
word “savetofile”. The second type of encoding obfuscation
changes the character encoding by the use of VBA functions
such as Asc(), Hex(), Chr(). These functions change characters
to the number of the ASCII code and vice versa. The last type
of encoding obfuscation uses conversion algorithms that are
manually defined by users, for example, 4(b). Many algorithms
are used with simple bitwise operations, such as shift or xor,
or complex encryptions, such as Base64.

The functions used for encoding obfuscation are used in
non-obfuscated macros as well, but there is a large gap in
the frequency of their appearance. This is because attackers
encode as many strings as possible to prevent AVs from finding
keywords. In the case of “Downloader [15]” which downloads
and executes a malicious executable, the URL, path and related
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strings are all encoded by use of the aforementioned functions.
Hence, we can leverage the appearance frequency of encoding
functions as a feature to detect this type of obfuscation.

Transform of Encoding Obfuscation

“A” — Ord(65)
“String” —  Replace(“Stripe”,““pe”,“ng”))
“String” —  decodeBase64(“U3RyaW5n”)

4) 04 Logic Obfuscation: Logic obfuscation changes the
execution flow of macro code. It complicates the code and
makes analysis difficult. This technique is done by declaring
unused variables or using redundant function calls. It is
not difficult to increase the code size by inserting dummy
codes, and it is already being used by a public VBA macro
obfuscation tool [29]. If the size of the code that needs to
be analyzed increases 100 times by deliberately inserting
redundant dummy code, it means that the time it takes for
the code analyst to troubleshoot the obfuscated code will be
increased by the considerable amount.

Although the logic obfuscation affects the code analysis,
it often results in a significant change in code size. It also
changes several characteristics of code such as the number of
functions and declared variables, function parameters, string
data, etc. Therefore, logic obfuscation has no effect on the
detection rate in our obfuscation detection study using static
features. Rather, if the characteristics of logic obfuscation are
well-summarized, we can leverage them as features to detect
obfuscation. In Section IV, 15 discriminant static features
which reflect the above-mentioned characteristics of the ob-
fuscation techniques will be introduced.

IV. DETECTING OBFUSCATION WITH
A MACHINE LEARNING APPROACH

The obfuscation techniques in VBA macros are explained
in Section III. To detect aforementioned obfuscation tech-
niques, we propose a method based on classification algo-
rithm through supervised machine learning. Although machine
learning based detection method requires several prerequisites
such as sufficient data collection, training set labeling, and
feature selection process, it nevertheless has several advantages
over alternative techniques. Unlike machine learning, static
analyses, such as signature or pattern based detection method,
have limitations when counteracting to unknown malware;
dynamic analysis has a heavy overhead. On the other hand,
machine learning approach has been applied in numerous areas
of the computer science field including anomaly detection, and
has guaranteed and acceptable run time. If the prerequisites are
satisfied, machine learning method can overcome the short-
comings of the above-mentioned approaches and promising
performance can be expected.

This section provides an overview of our experiment pro-
cess. It consists of 1) Data collection, 2) Preprocessing, 3)
Feature extraction & selection, and 4) Classification using



machine learning classifiers. To thoroughly evaluate the perfor-
mance of our proposed machine learning method, we first ex-
plain how we collected the samples and preprocess them. After
that, the entire process of extracting and selecting features to
effectively detect the obfuscation techniques summarized in
Section III will be described. Finally, the explanation of the
machine learning classifiers will follow.

A. Data collection

Before proceeding with the experiment, we collected Mi-
crosoft Office document files which contained VBA macros.
Owing to the fact that our study targets VBA macros, we
collected “.docm” and “.xIsm” files, which will likely contain
macros, through keyword searches from Google. We also col-
lected all the MS Office files that were classified as malicious
in the malware portal [30]-[32] unconditionally, to ensure
that our proposed method is well-suited to be applied to the
malicious files. The sample collection was done from 2016 to
2017.

We verified the hash value of the collected files so that there
were no duplicates, and we also excluded the files which did
not have VBA macros. In the next step, we double-checked the
detection results of the VirusTotal [32] and the VBA macros
of files to determine the benign and malicious dataset, so
that the only samples using VBA macros as an attack vector
were included in the malicious dataset. As a result of the data
collection, we obtained 2,537 files in which 773 are benign,
and 1,764 are malicious. Table II displays the summary of our
dataset with the average file size of each sample set. According
to our observation, malicious files tend to be much smaller
in terms of file size, which means that most of the attacks
using VBA macros work to download malware from a remote
address and execute it, and do not actually include malware
in the file itself [15].

Although VirusTotal includes the results of about 60 differ-
ent AV vendors who take advantage of individual detection
mechanism, it is not 100% accurate. Because there is no
conclusive criterion to determine a sample’s maliciousness, we
set a threshold to divide samples into malicious/benign training
dataset. We set this threshold loosely to prevent the training
samples from being mislabeled. In detail, we labeled a sample
as malicious if more than 25 vendors detected it as malicious,
and labeled it as benign if less than or equal to 2 vendors
marked it as malicious. Every sample in between was manually
inspected by three security researchers who specialize in VBA
macros.

B. Preprocessing

The next step for detecting obfuscation is preprocessing. By
preprocessing we mean to extract VBA macros from the col-
lected MS Office document files, remove small (insignificant)
and duplicated macros, and label training samples.

To obtain the VBA macros from Microsoft Office document
file, we need to open the document file directly or parse the
structure of OpenXML (OLE in the previous version of MS
Office 2003). Given that malicious VBA macros are often
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Fig. 5: Code length distribution of (a) non-obfuscated, and (b)
obfuscated VBA macro samples. The x-axis indicates arbitrary
sample in each dataset.

executed when documents are opened, we use oletools in the
extraction of VBA macro codes [33]. Oletools is an open
source Python package to analyze Microsoft Office document
files. It allows us to easily extract the VBA macros without
opening the file.

Although we split our dataset into benign and malicious
to provide the information about the relationship between
maliciousness and obfuscation, the goal of this paper is to
detect obfuscation in VBA macros. VBA macros in benign



TABLE II: Summary of collected MS Office document files.

Group Wfrtli’y t);?ll);cel Avg. size  Collected from
Benign dataset oo jMB Google
(773 in total)
Malicious dataset
AICI008 CHASEL 1410 354 0.06MB [30]-[32]
(1,764 in total)
Total 1,485 1,052

TABLE III: Summary of VBA macros extracted from MS
Office files.

Group # files  # macros # obfuscated macros
Benign dataset 773 3,380 58 (1.7%)
Malicious dataset 1,764 832 819 (98.4%)
Total 2,537 4,212 877

datasets could be obfuscated, and vice versa. Therefore, we
manually inspected and marked the macros with obfuscating
features (described in Section III) as “obfuscated”.

In this manual labeling process, we observed that the macros
of less than 150 bytes are not meaningful, either malicious
or benign, because they are only made up of comments
or practice code that had no particular purpose. Therefore,
insignificant macros with too short of a length were excluded
from our dataset.

Table III shows that the majority of malicious VBA macros
are obfuscated. Only 1.7% of the benign macros are obfus-
cated, whereas 98.4% of the malicious macros are obfuscated.
With a huge gap of obfuscation rates in each of the dataset
group, we verified the obfuscation tendency in benign and
malicious macros: malicious macros are more likely to be
obfuscated.

Also, there is a large gap in the number of extracted VBA
macros. As explained in the data collection step, we already
eliminated the duplicates ones, after collecting the Microsoft
Office document files. But there is still a possibility that the
files have macro duplicates. We found that there were about
5k macros for the overall dataset in this process of duplicates
elimination. Finally, the number of macros was narrowed down
to 3,380 and 832 respectively, in the benign and malicious
dataset.

In the case of the benign dataset, the number of macros
increases to more than 4 times as many as the number of
files, because one file could have several macros. However, in
the case of a malicious dataset, even though we only collected
files that contain more than one macro in the data collection
step, the number of macros is halved compared to the number
of files. This means that most of the malicious documents
which contains VBA macros are using the same macros.

In addition to this, we also examined the code length of
the macros belonging to the non-obfuscated and obfuscated
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TABLE IV: Summary of 15 static features used in our pro-
posed method.

Features  Description Used In:
V1 # of chars in code except comments
V2 # of chars in comments [24], [26]
V3 avg. length of words [26]
V4 var. length of words
V5 appearance frequency of string operators [26]
Vo6 % of chars belonging to string [26]
V7 avg. length of strings in code [24], [26]
V8 % of text functions called
V9 % of arithmetic functions called
V10 % of type conversion functions called
V11 % of financial functions called
VIi2 % of functions with rich functionality called
Vi3 Shannon entropy of the file [26], [34]
V14 avg. length of identifiers
V15 var. length of identifiers

group. The results are shown in Figure 5 (a) and (b). Each
figure displays the code length distribution in normal and
obfuscated VBA macros, respectively. Figure 5 (a) is uni-
formly distributed throughout, this could also be evidence that
our dataset is well-collected, including the informative benign
macros. Alternatively, in Figure 5 (b), it can be seen that the
macros are somewhat grouped to form several horizontal lines.
Generally, we can expect that obfuscated code is reproduced
with a custom obfuscater with different options. Especially
in the malicious case, malware writers are expected to make
variations to avoid the signature-based detection of AVs. We
can interpret the results shown in Figure 5 (b), as the result
of this expectation. This means that there are a large number
of macros which have a similar code length even after the
duplicate elimination.

C. Feature selection

We summarized the types of obfuscation techniques in Sec-
tion III. After observing the results of applying the obfuscation
techniques, we built a set of features based on each of the
obfuscation techniques. The proposed features are depicted in
Table IV. Each of the features targets obfuscation, and some
of them are from related studies. Given that four types of
techniques have distinct characteristics, different combinations
of features are required for an effective detection.

1) Detection of Ol (Random obfuscation): The O1 obfus-
cation technique randomizes the identifier in the macro code.
The identifier refers to both the function names and variable
names, and O1 can be applied to both of them. As a result of
O1 obfuscation, the randomness of the macro code increases.
To measure the randomness of macros, we use the Shannon
entropy of the file as the feature V13 [35]. The computation
of the entropy is performed on the basis of each character
of the macro code. If p; is considered to be the rate at which



character i appears in the entire macro code, entropy H follows
Shannon’s Entropy formula.

H(X) ==Y pilogypi

We use 2 additional features, V14 and V15 to capture
the characteristics of Ol. Because the identifiers with Ol
techniques have various lengths, we calculate the length of
the identifier. V14 is the average length of identifiers used in
macro codes, V15 is the variance of each identifier length.
2) Detection of O2 (Split obfuscation): In the VBA macros
with O2, more strings and string operators are observed than
normal macros for the purpose of avoiding the detection of
AVs. It also contains many unused dummy strings. For this
type of obfuscation, we use V5-V7. V5 contains the number
of occurrences of string operators such as ‘+’, ‘=" or ‘&’,
which are used for string concatenation. Feature V6 is % of
characters belonging to strings, and V7 calculates the average
length of strings. These three features can indicate the unusual
appearance of strings in obfuscated macros.
3) Detection of O3 (Encoding obfuscation): Encoding ob-
fuscation is related to the use of various function calls. It is
often used with O2, hiding keywords that can be detected
by AVs, e.g., URL or .exe. It also uses infrequent financial
functions which are only used for accounting and financial
calculations to create more varied variants. To capture the
characteristics of O3, we use V8-V11, while attempting to
cover as many types as possible. The examples of the functions
included for each feature are listed as follows. The rest of
functions can be found by referring to the VBA language
specification [27].
o V8 (text functions): Asc(), Chr(), Mid(), Join(), InStr(),
Replace(), Right(), StrConv(), etc.

e V9 (arithmetic functions): Abs(), Atn(), Cos(), Exp(),
Log(), Randomize(), Round(), Tan(), Sqr(), etc.

e V10 (type conversion functions): CBool(), CByte(),
CChar(), CStr(), CDec(), CUlInt(), CShort(), etc.

e V11 (financial functions): DDB(), FV(), IPmt(), PV(),
Pmt(), Rate(), SLN(), SYD(), etc.

4) Detection of O4 (Logic obfuscation): O4 changes the
entire shape of the targeted code by inserting dummy codes
and reordering the code. As we mentioned in Section III, code
reordering does not affect our proposed method as we use
static features. We use V1-V4 to capture the dummy code
insertion, which leads to an increase in code size. Before
describing each feature, we use “words” to represent the units
delimited by whitespace and VBA programming language
symbols. “words” is used as a part of the features to detect
maliciousness in [24]; it is also included in our features as
V3 and V4 because it is a discriminant feature for dividing
obfuscated and non-obfuscated code. V3 and V4 represent the
average and the variance of “word” length, respectively.

To balance the effect of each feature on the training classi-
fiers, a normalization process is required. Aebersold et al. [26]
divided the value of features, which need to be normalized, by

497

the length of the entire scripts. Instead, we assign the length
of the comments-excluded macro code to V1, and the length
of comments to V2. Then we use V1 as the normalization unit
for more effective training.

V1-V11 and V13-V15 are selected to capture the charac-
teristics of each obfuscation technique. In addition, there are
a few unique functions observed in the obfuscated macros.
Obfuscation is usually applied to code that has something to
hide rather than tiny, insignificant code. Obfuscation is used to
protect the intellectual property of the program code, or to hide
malicious behavior in malware. In both cases, obfuscated code
has a significant role that programmer wants to hide, hence
it often leads to the use of certain functions with relatively
rich functionality. For examples, the Shell() function is able to
run executable programs, CallByName() can execute methods
of objects which have full functionality in the VBA macro.
Including these functions, V12 counts the use of functions
that can write, download, or execute files.

D. Machine learning classifiers

We choose five different supervised machine learning clas-
sifiers to evaluate the performance of our proposed method:
Random forest (RF), Support Vector Machine (SVM), Linear
Discriminant Analysis (LDA), Bernoulli Naive Bayes (BNB),
and Multi-Layer Perceptron (MLP). In addition to the four
classifiers already used in previous studies [24], [26], we
introduced the MLP classifier which is a class of artificial
neural network models. We choose Scikit-learn [36] to use the
aforementioned classifiers. Instead of describing the details of
each classifier, we provide a customization parameter as well
as a brief description of each classifier in this part of the paper.

Support Vector Machine (SVM) [37] finds the optimal, or
maximum-margin hyperplane in a feature space that can sepa-
rate a feature space into two classes (in our work, two classes
indicate obfuscated and non-obfuscated). In our experiment,
we use C=150, v =0.03 as a parameter.

Random Forest (RF) [38] is an ensemble learning method
for classification or regression. It constructs multiple decision
trees in the training phase. It is known that Random Forest is
less likely to have an overfitting problem than a decision tree
[39].

Multi-Layer Perceptron (MLP) [40] is a feed-forward ar-
tificial neural network model that conducts supervised learning
by backpropagation using one or more hidden layers between
the input and output layer.

Linear Discriminant Analysis (LDA) [41], which is a form
of supervised dimensionality reduction, is a generalization of
Fisher’s linear discriminant [42] that finds the linear subspace
which maximizes the separation between two classes.

Naive Bayes [43] classifiers are a set of simple probabilistic
classifiers based on applying the Bayes’ Theorem with naive
independence assumptions between the features used. We use
Bernoulli Naive Bayes (BNB) in the evaluation of proposed
method.



TABLE V: Evaluation results of proposed approach.

Feature set  Classifier Accuracy Precision Recall
SVM 0.955 0.881 0.906
RF 0.965 0.982 0.848
V1-V15 MLP 0.970 0.938 0.915
LDA 0.901 0.842 0.64
BNB 0.891 0.75 0.713
SVM 0.753 0.445 0.751
RF 0.903 0.841 0.657
J1-J20 MLP 0.834 0.76 0.316
LDA 0.826 0.677 0.318
BNB 0.701 0.391 0.775

V. EVALUATION

In this section, the evaluation results based on the method
proposed in section IV will be described. We extracted the
feature matrix from the preprocessed dataset with the features
introduced in Table IV. After the five different classifiers
have undergone the training process, we will evaluate the
classification performance with several evaluation metrics.
Before going into the details of evaluation, we briefly explain
the evaluation metrics to be used in this section.

For more precise and quantitative measures of our clas-
sification performance, we use several evaluation metrics:
Accuracy, Precision, Recall, Fg score, and AUC of ROC curve.
We use accuracy, precision and recall to evaluate the basic
classification performance, and choose $=2 of the Fz score to
emphasize the security aspect. F5 score is often used when
weighing recall more than precision. By putting an emphasis
on recall, we can make sure malicious VBA macro is not
executed on the users’ system. In addition, we use the Receiver
Operating Characteristic (ROC) curves and Area Under the
Curve (AUC), which is the one of the standard convention,
to show the comparison of classification results in a more
intuitive manner.

We used 4,212 macros for the evaluation of classification
performance, 877 of which are marked as obfuscated. Al-
though our dataset is large enough to evaluate the classification
performance of the proposed method, we use 10-fold Cross
Validation (CV) to improve the statistical reliability. Therefore,
the experimental results to be described below are the results
of applying the 10-fold cross validation.

Table V shows the classification results with basic evalua-
tion metrics. The feature set we proposed is marked as V1-V15
in the leftmost column. As a result of the evaluation, SVM, RF
and MLP classifiers show relatively high performance among
five classifiers. In particular, RF recorded a precision of 98.2%
and MLP recorded a recall of 91.5%. However, LDA and
BNB classifiers were found to be inadequate for detecting
obfuscated VBA macro.

The evaluation result with Fy score is depicted in Figure
6. The result of the proposed method is the bars labeled
‘V feature set’. Because obfuscation detection is primarily
concerned with security purposes, we emphasize recall to min-
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Fig. 6: The results of machine learning classification using the
proposed feature set are expressed as Fo score. When using
the MLP classifier, the result was the highest at 92%.

TABLE VI: Summary of the features used in related work.

Features  Description Used In:
J1 length in characters [24], [26]
J2 avg. # of chars per line [24], [26]
J3 total number of lines [24], [26]
J4 # of strings [24]

J5 % human readable [24]
J6 % whitespace [24], [26]
J7 % of methods called [24]
J8 avg. string length [24], [26]
J9 avg. argument length [24], [26]
J10 # of comments [24], [26]
J11 avg. comments per line [24]
J12 # words [24]
J13 % words not in comments [24]
J14 % of lines > 150 chars [26]
J15 Shannon entropy of the file [26], [34]
J16 share of chars belonging to a string [26]
J17 % of backslash characters [26]
J18 avg. # of chars per function body [26]
J19 % of chars belonging to a function body [26]
J20 # of function definitions divided by J1 [26]

imize false negatives. As MLP classifier showed relatively high
performances in the basic three metrics, accuracy, precision,
and recall, it also recorded the highest Fy score of 92%. In
a related study that evaluated detection performance with the
F» score [24], we can see that our method is 11.4% higher,
given that 80.6% was its maximum.

We can then ask ourselves the following research question:
“It has been confirmed that the proposed features and clas-
sification method are effective in detecting obfuscated VBA
macro, but how effective would it be to use the malware
detection features of the related studies that have already been
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Fig. 7: The solid curve and dashed curve represents ROC
curves of MLP classifier with proposed feature set and RF
classifier with comparison feature set, respectively.

conducted? Would it not be more effective?”. In response to
this question, we added a comparative experiment to detect
obfuscated VBA macros using the same machine learning
approach to the same dataset. The features used in related
studies [24], [26] are listed in Table VI.

Due to the linguistic differences between JavaScript and
Visual Basic for Applications, many of the features used in ob-
fuscated JavaScript detection are not applicable for obfuscated
VBA macro detection. For example, “# of eval() calls divided
by entire code length” was used in the related paper [26],
which was not implemented in this study because it is difficult
to match the eval() function to corresponding VBA function.
Besides, J14, originally ‘% of lines with more than 1000
characters’, was modified to reflect the characteristics of VBA
macros that can not be applied the minification technique of
removing linefeed. The results of this comparison experiment
are shown in Table V and Figure 6 as ‘J feature set’.

Table V includes the evaluation result of comparison exper-
iment (marked as J1-J20). The accuracy and precision of RF
classifier were the highest at 90.3% and 84.1% among five
classifiers, respectively. However, in all aspects, the classifica-
tion performance was much better when using V features, than
when using J features. In order to comprehensively evaluate
the classification performance, we introduced the Fs score and
the result is depicted in Figure 6. The maximum Fy score was
found in the MLP classifier for V feature set (0.92) and the
RF classifier for J feature set (0.69).

As another comprehensive evaluation method, the AUC of
ROC curves were calculated. Figure 7 shows the ROC curves
of MLP and RF, which scored maximum Fs for proposed
V and J features, respectively. MLP classifier with proposed
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feature set (V features) has an AUC of 0.95, and comparison
experiment (J features) gets 0.812. It shows that our proposed
method outperformed the previous studies by 0.138 on the
AUC basis.

As a result, we obtained up to 92.0% F5 score with proposed
feature set when obfuscation detection was performed using
the MLP classifier. This is 23% higher than the result of using
the features proposed in the related studies. The accuracy,
precision, and recall show better results, and the AUC value of
the ROC curve was 0.950, showing that the proposed method
and features are suitable for obfuscated VBA macro detection.

VI. DISCUSSION
A. Obfuscation detection and malicious code detection

We presented 15 static features for obfuscation detection,
and evaluated our proposed method using various evaluation
metrics. However, this is a method for obfuscation detection,
not malicious code detection. We investigated a sufficient
number of MS Office document files to clarify the relation-
ship between obfuscation and maliciousness. This obfuscation
detection method can play a major role in malicious code
detection, as the rate of obfuscation applied differs greatly
between malicious dataset (98.4%) and benign dataset (1.7%)
as described in Table III.

Currently, the distinction between malicious code detection
and obfuscated code detection is unclear in malware detection
research. As long as cases where obfuscation techniques used
to protect intellectual property rights exist, malicious code
detection should be distinguished from obfuscated code detec-
tion. However, a few of the related studies used the characteris-
tics of obfuscation to detect malicious codes without consider-
ing obfuscation techniques [18], [24]. The confusion between
maliciousness and obfuscation may lead to an increase in
false alarms. Therefore, we generally classified obfuscation
type (O1-0O4) to prevent this mistake, and designed the feature
set to not be biased towards the characteristics of a specific
obfuscation tool.

In order to address the need for a counteraction against
the increasing obfuscated VBA macro malware, we compared
the ability of J feature set and our proposed V feature set
regarding obfuscation detection. The results showed that the
J feature set underperformed against the proposed V feature
set, but this does not mean that the research results regarding
JavaScript is bad. Rather, in regards to detection of obfuscation
in highly obfuscated VBA macro malware (98.4%), applying
existing studies (J feature set)—that does not take into account
the characteristics of obfuscation—is not ideal.

B. Case studies: anti-analysis techniques in VBA

The obfuscation techniques observed in VBA macros are
categorized into four types (O1-O4) in Section III. When using
features based on the O1-O4, we succeeded in identifying ob-
fuscation with an accuracy of 97%. In addition to obfuscation,
however, several tricks have been found for the purpose of
hindering the analysis and understanding of the code. In this



Private Sub Document_Open ()
UYjwCZdgnz = ActiveDocument.Variables ("waGnXV") .Value ()
mambaFRUTISsIn UserForml.Labell.Caption
| Shell UYjwCZdgnz, 0
5 Shell mambaFRUTISsIn,
End Sub

0

(a) A sample macro code which uses hiding string data. If the code
analyst has only the above code, it can not be determined whether
it is malicious or not before checking what ‘UYjwCZdgnz’ and
‘mambaFRUTISsIn’ contain.

Public Sub RemoveIDAndFormatRow ()

2 shtiletMurinoASALLLP acs.responseBody
ProjectAndNow.Write shtiletMurinoASALLLP
4 CoachesReport ""
Exit Sub

6 Rows.Select

’'Broken code here

8 Sel.ection.RowHeight
9 Colu.mns ("A:A") .Delete
Colu.mns ("A") .ColumnWidth
11 Colu.mns ("C") .ColumnWidth
12 Colu.mns ("I:R").ColumnWidth
13| End Sub

15

25
24.71
11

(b) Inserting broken code causes an error when code parser tries to
interpret “Sel” or “Colu” nonexistent objects.

Fig. 8: Example code of anti-analysis technique

paper, we call these tricks to hinder code analysis as anti-
analysis technique and distinguish it from obfuscation tech-
nique. Obfuscation (O1-04) is used generically in scripting
code and makes a significant difference in the appearance of
existing code. However, anti-analysis technique is limited in
scope that can be applied to code and is designed to prevent
specific analysis method.

The anti-analysis techniques to be introduced are not di-
rectly addressed or included in the proposed method. However,
they also interfere with the process of analyzing the code and
tend to be found together in obfuscated VBA macros. For
further malware detection research, we organize the basic anti-
analysis techniques observed in VBA macro as follows: 1)
Hiding string data, 2) Inserting broken code, and 3) Changing
the flow.

1) Hiding string data: Microsoft Office documents provide
useful data spaces for storing string data. For example, one can
store string data as the document’s property value, the Caption
value of CommandButton, Label, and Form controls, or the
ControlTipText value of UserForm controls [44]. If a malware
writer hides malicious string values in these fields or even in
the cell value of an Excel document and the malware refers to
them, this prevent the use of static analysis techniques which
analyze the VBA macro source code. Figure 8 (a) shows the
case of hiding string data technique.

2) Inserting broken code: This technique is frequently
adopted in obfuscated VBA macros. It is done by inserting
broken code which causes run-time error. However, as Figure 8
(b) shows, the instruction pointer actually exits in line number
5, before reaching the broken code starting from line number
8. So this anti-analysis technique does not affect the actual
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behavior of the macro code, but it is considered as a syntax
error when trying to parse the code.

3) Changing the flow: Another anti-analysis strategy, which
can be used together with the aforementioned anti-analysis
techniques, is achieved by switching the execution flow. It is
done by using a conditional branching statement, together with
checking certain condition is satisfied. Certain condition may
be an http response code that verifies that the connection is
well established, or it may be the number of recently opened
files to prevent sandboxing analysis [45].

VII. CONCLUSION

This paper is the first research to propose obfuscated VBA
macro detection using machine learning method. Attacks using
VBA macro have been increasing since 2014. Given the
familiarity of the MS Office document, this type of attack
should not be taken lightly. Even though AV agencies are
increasingly reporting attacks using VBA macro, little research
has been conducted to mitigate them.

Unlike the conventional malware which exploits the vul-
nerability of programs, attacks using VBA macro utilize
legitimate functions provided by MS Office document. These
threats are not caused by a programmers mistake, nor are
mitigated by a security update. A general way to avoid this
kind of cyber attack is to improve the security awareness of
the end users. It includes: not downloading attachments from
untrusted e-mails, and recognizing the potential damage that
even one malicious document can bring.

Research on identifying obfuscation techniques, which are
applied to VBA macros in the document, is one of the coun-
termeasures to prevent malware infection before malicious
code is executed. We collected 4,212 benign and malicious
VBA macros to investigate how many macros were obfuscated.
98.4% of the malicious macros files were obfuscated, one the
other hand, only 1.7% of the benign macros were obfuscated.

In this paper, we proposed obfuscated VBA macro detection
with machine learning based approach. We have classified
VBA macro obfuscation techniques into four types and intro-
duced a feature set for effective obfuscation detection. In the
process of selecting detection features, several features were
selected from JavaScript related studies after being modified
to reflect the characteristics of VBA macro, or excluded
if not applicable for VBA macro. We then evaluated the
classification result of the five suggested machine learning
classifiers using various evaluation metrics. The evaluation
results demonstrated that our detection approach achieved a
F5 score improvement of greater than 23% compared to those
of related studies.
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