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Abstract—Malware using document files as an attack vector
has continued to increase and now constitutes a large portion of
phishing attacks. To avoid anti-virus detection, malware writers
usually implement obfuscation techniques in their source code.
Although obfuscation is related to malicious code detection, little
research has been conducted on obfuscation with regards to
Visual Basic for Applications (VBA) macros.

In this paper, we summarize the obfuscation techniques and
propose an obfuscated macro code detection method using
five machine learning classifiers. To train these classifiers, our
proposed method uses 15 discriminant static features, taking into
account the characteristics of the VBA macros. We evaluated
our approach using a real-world dataset of obfuscated and
non-obfuscated VBA macros extracted from Microsoft Office
document files. The experimental results demonstrate that our
detection approach achieved a F2 score improvement of greater
than 23% compared to those of related studies.

I. INTRODUCTION

Attacks using macros have become a constant threat since

the “Concept”, a wide-spread macro virus written in Visual

Basic for Applications (VBA), which appeared in 1995 [1].

Macro malware was a major threat from the late 1990s to the

early 2000s, but it had declined since the security mechanism

of Microsoft Office was enhanced in 2000 [2], [3]. However,

according to the statistics and security news of Anti-Virus (AV)

companies, attacks using VBA macros have been increasing

again since the second half of 2014 [4], [5]. Since the release

of Microsoft Office 2000, the execution of VBA macros was

disabled by default, but attackers began to deploy simple

social engineering techniques that lure users into enabling the

execution of macros.

The threat reports of AV companies also confirmed the

comeback of script-based malware such as VBA macro

malware. According to the report released by Symantec in

2016, MS Office document file formats dominated the email

attachments (73.2%), even more than executable files [6].

Furthermore, a recent Kaspersky threat report demonstrates

that the Microsoft Office Word VBA macro-based attacks are

included in the top 10 malware families [7]. The latest McAfee

security report, published in September 2017, also covers the

trends of script-based malware and reports a malware type

which includes PowerShell command inside of VBA macro

[8].

∗ Heejo Lee is the corresponding author.

As mentioned above, the security reports of AV vendors

have shown that script-based attacks are on the rise and can be

dangerous. The most frequently mentioned scripting languages

that can be used in malicious code are JavaScript, Visual

Basic Script, PHP, and Powershell. Among these, VBA macro

malware, which is an attack related to MS Office documents,

should not be ignored. Owing to the fact that MS Office

document files are used by a large number of companies and

institutions, malware which leverages MS Office documents

as an attack vector can have a large impact. Attacks related

to VBA macros are usually considered less suspicious than

the executable files because most people are familiar with the

MS Office document files, e.g., .docx or .pptx. In result, this

negligence leads to the proliferation of ongoing VBA macro

attacks.

A primary quality that a successful cyber-attack must have

is the ability to bypass AVs. One of the most effective strate-

gies to bypass AVs is obfuscation, which is the intentional

obscuring of code by making it difficult to understand. In

many script-based malware, obfuscation techniques are fairly

common, and it is generally known that obfuscation works

well against AVs. There have been malicious JavaScript de-

tection studies which categorized obfuscation techniques into

four types and investigated how the detection rate changed

when they were applied [9], [10]. The studies demonstrated

that obfuscation techniques are effective in avoiding the AV

detection.

Currently, many obfuscated VBA macro attacks are un-

derway, but there are still few studies on obfuscated VBA

macro detection. Most document malware detection researches

focused on vulnerability or shellcode detection [11]–[14].

Only recently has it appeared in several studies under

the name of “Downloader” or “Macro malware”. Mimura

et al. [15] conducted a study to extract the Remote Access

Trojan (RAT) in malicious documents files used in Advanced

Persistent Threat (APT) attacks from 2009 to 2015. They clas-

sified the collected document malware as “Downloader” and

“Dropper”. “Downloader” uses VBA macro, and “Dropper”

includes executable files in itself. However, the focus of the

study was on the “Dropper”, rather than the ‘Downloader”.

We have observed that the rate of VBA macro use in APT

attacks has been drastically increasing since 2014, and our

proposed method targets the missing area that has not been

studied by the referenced research. There are few studies
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that leverage machine learning to detect malicious MS Office

documents.

Cohen and Nissim et al. [16], [17] proposed a method to

detect malicious docx files with structural features by using

active learning that emphasizes the updatability of a detection

model. It provided a 94.44% true positive detection rate by

leveraging the hierarchical nature of docx files. It presented

the most prominent 11 features, including 8 structural path

related to the existence of VBA macros.

Conversely, research on detecting attacks related to PDF

documents have been widely carried out. VBA macros in MS

Office files and JavaScript in PDF documents share similar

characteristics. We can detect the obfuscation techniques in

the JavaScript of the PDF files, and there are many studies on

the detection of obfuscated malicious JavaScript. Given that

it is also a scripting language, one may think that we can

apply JavaScript research to VBA macro detection, but it has

never been demonstrated how it would work. There are many

similarities due to the “scripting language in the document”,

but the language itself is different, hence the obfuscated code

is very different. For instance, there is a minification technique

in JavaScript. Although minification can reduce code size by

deleting linefeed, it often appears in malicious script code to

avoid malware detection. This technique is only applicable to

JavaScript, not VBA macros. Owing to the differences between

JavaScript and VBA, independent research focusing on VBA

macros should be conducted.

In this paper, we propose a method to detect obfuscated

VBA macros in MS Office documents by using machine

learning classifiers. First, we investigated the VBA macros

that were actually used as malicious code, and classified the

VBA obfuscation techniques into four categories by referring

to related research. In our experiment, we evaluated the

performance of our proposed obfuscation detection method

which leverages machine learning. 773 malicious and 1,764

benign MS Office files were collected and we conducted

an experiment with 4,212 VBA macro extracted from the

collected files. All VBA macros were manually labeled as

either obfuscated or normal. By performing a manual scan

on large, real-world samples, we demonstrated how many

malicious and benign samples were obfuscated. From this

labeled dataset, we extracted 15 discriminant static features

that reflect the characteristics of the VBA macros and applied

them to five different classifiers, and compared the results

with those of related studies. As a result, we obtained a 23%

improvement in F2 score in our comparative experiment.

The contributions of this paper are as follows.

• As the first obfuscation detection study applied to VBA

macro, we have summarized the types of obfuscation

techniques and we have shown the extent of obfuscation

applied to real-world VBA macros.

• We presented 15 discriminant static features and, tested

them using five different classifiers. The results of the

comparison with related research show that the perfor-

mance was improved by 23%.

The rest of this paper is organized as follows. Section II

summarizes related studies concerning detection of document

malware. Section III provides the simple explanation about

VBA macro, and categorization of obfuscation techniques. In

Section IV, we propose our obfuscated VBA macro detection

approach with experiment setup. Section V, we evaluate the

classification performance of proposed detection approach.

Finally, Section VI and VII include discussion and conclusion

of this paper.

II. RELATED WORK

Attacks using VBA macros continue to increase. Moreover,

over 98% of malicious VBA macros are obfuscated according

to our manual inspection on a collected sample set (as detailed

in Section IV.B). However, there is a scarcity of studies on the

detection of obfuscation on VBA macros. Given that attacks

using VBA macros have only just begun to increase, most

research is focused on vulnerability or shellcode detection

[11]–[15] rather than on the detection of VBA macros. The

following are the studies that can be applied to attacks using

VBA macros.

A. Malicious VBA macro detection
Until now, a few studies have been proposed and most of

them are based on a machine learning approach. Cohen et al.

[16] conducted research on malware detection for XML-based

documents. This study uses the hierarchical nature of Office

Open XML (OOXML) as a key feature of machine learning to

detect MS Office document malware. It recognized the risks

that could be posed by document files, and well-organized

the types of possible attacks which could result from them.

In their experiment, nine different classification algorithms

were used and Random Forest classifiers demonstrated the best

results among them. In addition, they proved the effectiveness

of their proposed method by comparing the detection results

to those of several AVs. This research using the idea of

structural feature has proven to be effective when dealing with

OOXML file types such as .docx, .docm, or .xlsx. However,

the majority of VBA macro malware are .doc or .xls, which

are not OOXML file types [6].
Subsequently, Nissim et al. [17] added Active Learning

to the SFEM method in 2017. Active Learning methods are

designed to assist the analytical efforts of experts; it led to a

95.5% reduction of labeling efforts. However, their proposed

mechanism is limited to docx files, which is narrower than

OOXML files.
Gaustad [18] presented a research on malicious VBA macro

detection in 2017. This study used a Random Forest classifier

of the ensemble learning with over a thousand static features

to detect malicious documents. However, given that its de-

tection was performed with the static features of malicious

VBA macro codes, it is difficult to identify how obfuscation

techniques were considered in the detection process.

B. Malicious JavaScript code detection
JavaScript is one of the most popular scripting languages.

JavaScript-based attacks are also taking place in PDFs, and

491



have similarities with VBA in that both threats utilize scripting

language in document formats. By retrieving research on ma-

licious JavaScript detection, we are able to explore appropriate

ways to counteract VBA macro malware.

While malicious VBA macro detections in MS Office doc-

uments mainly consist of machine learning methods, there

are a larger variety of approaches to detecting malicious

JavaScript in PDFs. Moreover, a number of research have

been emphasizing on analyzing obfuscations, some focusing

on restoring the obfuscated code to original code by de-

obfuscating it. In the subsections below, we will introduce

the representative studies that have been researched to detect

malicious JavaScript.

Static analysis approach: In malware detection, static

analysis has advantages over dynamic analysis in terms of cost

for inspection, because it generally guarantees a lightweight

inspection. Choi et al. [19] proposed a method to detect

JavaScript obfuscation that leveraged the lexical characteristics

of obfuscated strings. Detection was performed by using an N-

gram distribution, entropy, the string length for all the strings

used, and the parameters of the dangerous function. Xu et

al. [20] analyzed the decoding process of obfuscated code

to detect obfuscation. Their key idea was that obfuscated

malicious JavaScript code has to be de-obfuscated before it

executes its malicious actions. They identified the function

calls that are related with obfuscated malicious JavaScript

code.

Dynamic analysis approach: Liu et al. [21] proposed

a method to detect malicious JavaScript through document

instrumentation. This method inserts monitoring code into a

PDF, so that the inspector knows the context of the runtime

behaviors. Kim et al. [22] proposed J-force, which is a forced

execution engine for JavaScript. J-force was introduced to

detect suspicious hidden behavior, and it achieved a 95%

code coverage on real-world JavaScript samples. Furthermore,

there is a study focusing on the de-obfuscation of mali-

cious JavaScript, JSDES [23]. It is an automated system

for de-obfuscation and analysis of malicious JavaScript code.

This study conducted an extensive survey on the available

JavaScript obfuscation techniques and their usage in malicious

code.

Machine learning approach: Likarish et al. [24] proposed

a method based on the Support Vector Machine (SVM) and a

decision tree to detect malicious JavaScript in web pages. They

proposed a frequency of 50 keywords and 15 properties as

detection features that indicate human-readable characteristics.

Jodavi et al. [25] used one-class SVM classifiers to detect

obfuscation. In training, they pruned the classifier ensemble

using a novel binary Particle Swarm Optimization (PSO)

algorithm to find a near-optimal sub-ensemble. Aebersold et al.

[26] tested the machine learning approach to detect obfuscated

JavaScript in 2016. This study trained four different classifiers

and evaluated them with real-world PDF files. Their approach

and proposed features scored promised results on a benign

dataset, but had a 60.6% recall score on a malicious dataset.

1 Sub StartCalculator()
2 Dim Program As String
3 Dim TaskID As Double
4 On Error Resume Next
5 Program = "calc.exe"
6

7 ’Run calculator program using Shell()
8 TaskID = Shell(Program, 1)
9 If Err <> 0 Then

10 MsgBox "Can’t start " & Program
11 End If
12 End Sub

(a) A macro for running the program “calc.exe” in Windows

1 Sub SendEmail()
2 Dim OutlookApp As Object
3 Dim MItem As Object
4

5 ’Create Outlook object using CreateObject()
6 Set OutlookApp = CreateObject("Outlook.Application")
7

8 For Each cell in
Columns("a").Cells.SpecialCells(xlCellTypeConstants)

9 email_ = cell.Value
10 subject_ = cell.Offset(0, 1).Value
11 body_ = cell.Offset(0, 2).Value
12

13 ’Create Mail Item and send it via Outlook object
14 Set MItem = OutlookApp.CreateItem(0)
15 With MItem
16 .To = email_
17 .Subject = subject_
18 .Body = body_
19 .Display
20 End With
21 Next
22 End Sub

(b) A macro for sending an email via Outlook

Fig. 1: VBA macro code sample

The users of the host applications are able to leverage the

VBA language to write script that access to the functionalities

of host applications.

III. BACKGROUND

A. Visual Basic for Applications

Visual Basic for Applications (VBA) is a scripting language

that is implemented within host applications, such as Microsoft

Office Word or Excel [27]. The advantage of VBA is its ability

to automatically and repeatedly use various functions of the

host application and system. Figure 1 displays a sample macro

code that interacts with a system. Figure 1(a) shows the macro

code for executing a program of a system via the VBA function

Shell(). With several lines of code, any program in a computer

can be executed. As shown in Figure 1(b), VBA can be used

to send emails in Excel via an Outlook object. Through VBA,

users can perform a variety of tasks.

The expandability of VBA is convenient for users, but

it can also become an opportunity for attackers. Attackers

can accomplish almost every action that can be used for

malicious behavior, such as downloading or executing, via a

VBA macro. Figure 1 represents the sample code of functions
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TABLE I: Type of obfuscation techniques

# Type Method

O1 Random obfuscation Randomize name

O2 Split obfuscation Split strings

O3 Encoding obfuscation Encode strings

O4 Logic obfuscation Insert and reorder code

1 ’Procedure name is changed to "ueiwjfdjkfdsv"
2 Sub ueiwjfdjkfdsv()
3 ’Variable name is changed to "yruehdjdnnz"
4 Dim yruehdjdnnz As Integer
5 yruehdjdnnz = 2
6 Do While yruehdjdnnz < 45
7 DoEvents: yruehdjdnnz = yruehdjdnnz + 1
8 End Sub

Fig. 2: An example of Random obfuscation

that are triggered by users – however attackers prefer to take

advantage of functions triggered upon opening a document,

such as workbook open() or document open(). Furthermore,

by using simple social engineering techniques which lure users

to enable macros, attackers are able to bypass MS Office’s

security mechanism.

B. Obfuscation Techniques in VBA

The goal of this study is to detect obfuscation with the

textual characteristics of obfuscated macro code. For more

effective detection, we classify obfuscation techniques into

four types by target and method of obfuscation based on the

studies by Collberg et al. [28] and Xu et al. [9]: 1) Random
obfuscation, 2) Split obfuscation, 3) Encoding obfuscation, and

4) Logic obfuscation. Each obfuscation type has different syn-

tactic structure and different uses of functions and operators.

Therefore, we can use the unique characteristics of each type

to detect obfuscation. Table I provides a summary of each

obfuscation type.

The obfuscation techniques affect the manual code in-

spection of human experts. Whether it be a signature-based

AV or machine learning based AV, in order to judge the

maliciousness of code, it must be predetermined by human

experts. These obfuscation techniques are applied to decelerate

the time of analysis, which in turn, delays the countermeasures

after detection. Although each obfuscation technique is quite

simple, when used in combination, they render the code

visually indecipherable. In addition, attackers use obfuscation

tools to create many variants of malware with different hash

values. In the following subsections, the explanation of each

obfuscation technique and our machine learning features to

detect these techniques will be provided with example code.

1) O1 Random Obfuscation: Random obfuscation is a type

of obfuscation that changes the identifiers of VBA macro

code. Identifiers are the names of variables and procedures that

1 Public Const pzonda = "a"
2 Public Const pzonde = "e"
3 Public Const pzondP = "P"
4

5 ’Parameter "wScript.shell" is divided
6 CreateObject("WScript.Sh" + pzonde + "ll")
7 ’Parameter "Process" is divided
8 .Environment(pzondP + "" + "roc" + pzonde + "ss")

Fig. 3: An example of Split obfuscation

are used in VBA macro code. Random obfuscation makes it

difficult to analyze the flow from variables and function calls

by changing the identifiers to random strings.

Figure 2 shows an example of random obfuscation. The

names of the sub procedure and the variables are changed

to random meaningless strings such as ueiwjfdjkfdsv, yruehd-
jdnnz. This change to random strings makes it difficult for

humans to understand the actual operation of the macro code.

The identifying feature of this random obfuscation is in the

naming of the identifiers. Therefore, using Entropy, a measure

of the disorder of the characters of the identifiers, can be one

way of detecting the characteristics of this obfuscation. Related

studies already leverage the entropy of the entire code as one

feature to detect malicious scripts [18], [26]. In addition to

this, given that random obfuscation is applied to identifiers, it

is also possible to use the variance or mean value of length

of identifiers as one feature of obfuscation detection.

Transform of Random Obfuscation

Sub function() → Sub uoweghklsdfdw()

Dim variable → Dim io3u9nlkq8lqk

2) O2 Split Obfuscation: Split obfuscation usually per-

forms obfuscation by dividing parameter data. The morpholog-

ical changes that occur in the process of partitioning data have

proven to be very effective in avoiding signature-based AVs

[9]. As the data is partitioned, it has a form that is different

from the detection signature hence, it is not flagged by the

detection technique. However, when the macro is executed,

the parameter value transferred to the function is the same, so

the macro can successfully execute its malicious action. Figure

3 displays an example of macro code with split obfuscation.

This conversion does not change the actual behavior of the

code, but it avoids the detection of the use of “wScript.shell”

or “Process” as the signature for malware detection.

Functions such as Shell() and URLDownloadToFile() are

frequently used for attacks in malicious VBA macros, but

legitimate users can also use them in benign VBA macros for

normal programs. Therefore, in order to determine whether

a VBA macro is obfuscated or not, it is necessary to verify

not only the functions it uses, but also the input parameters

of the functions. Split obfuscation obstructs the detection of

malicious code by modifying parameter values.
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1 ’Parameter "savetofile" is changed to "savteRKtofilteRK"
2 Replace("savteRKtofilteRK", "teRK", "e")

(a) Obfuscation using built-in function Replace()

1 ’Each character of URL is changed to number
2 urlAr = Array(1878, 1890, 1890, 1886, 1832, 1832, 1821,

1886, 1871, 1890, 1878, 1875, 1884, 1888, 1895, 1879,
1882, 1891, 1883, 1879, 1884, 1871, 1873, 1879, 1885,
1884, 1820, 1879, 1830, 1820, 1873, 1885, 1883, 1821,
1829, 1828, 1876, 1828, 1874, 1827, 1821, 1827, 1826,
1889, 1874, 1876, 1877, 1829, 1878, 1830, 1880, 1820,
1875, 1894, 1875)

3 urlstr = DecodeArray(urlAr)

(b) Obfuscation using user-defined function DecodeArray()

Fig. 4: An example of Encoding obfuscation

In obfuscated macro code, in order to use the split data, it

is essential to combine it. The combination of data is done

using the join operators ‘&’ and ‘+’, as shown in Figure 3.

The join operators are used in normal macros, but more often

in obfuscated macros. Thus, an excessive appearance of these

characters can be selected as one of the features to detect

obfuscation. In addition to this, given that it also increases the

number and length of string variables, we can also leverage it

as a feature.

Transform of Split Obfuscation

“String” → “St” & “r” & “in” & “g”

3) O3 Encoding Obfuscation: Encoding obfuscation per-

forms obfuscation by modifying function parameters like split

obfuscation. Modification is performed by converting param-

eter data using reversible algorithms such as Base64 or Shift.

Three types of methods are used in encoding obfuscation: 1)

built-in VBA functions, 2) character encoding, and 3) user-

defined functions.

The first type of encoding obfuscation uses the built-in

functions of VBA such as Replace(), Right(), or Left(). Figure

4(a) shows an obfuscation using Replace() which is basically

supported by VBA. As shown in the figure, the parameter

“savetofile” is saved as “savteRKtofilteRK” which replaces “e”

to “teRK”. It prevents macros from being detected by the key-

word “savetofile”. The second type of encoding obfuscation

changes the character encoding by the use of VBA functions

such as Asc(), Hex(), Chr(). These functions change characters

to the number of the ASCII code and vice versa. The last type

of encoding obfuscation uses conversion algorithms that are

manually defined by users, for example, 4(b). Many algorithms

are used with simple bitwise operations, such as shift or xor,

or complex encryptions, such as Base64.

The functions used for encoding obfuscation are used in

non-obfuscated macros as well, but there is a large gap in

the frequency of their appearance. This is because attackers

encode as many strings as possible to prevent AVs from finding

keywords. In the case of “Downloader [15]” which downloads

and executes a malicious executable, the URL, path and related

strings are all encoded by use of the aforementioned functions.

Hence, we can leverage the appearance frequency of encoding

functions as a feature to detect this type of obfuscation.

Transform of Encoding Obfuscation

“A” → Ord(65)

“String” → Replace(“Stripe”,“pe”,“ng”))

“String” → decodeBase64(“U3RyaW5n”)

4) O4 Logic Obfuscation: Logic obfuscation changes the

execution flow of macro code. It complicates the code and

makes analysis difficult. This technique is done by declaring

unused variables or using redundant function calls. It is

not difficult to increase the code size by inserting dummy

codes, and it is already being used by a public VBA macro

obfuscation tool [29]. If the size of the code that needs to

be analyzed increases 100 times by deliberately inserting

redundant dummy code, it means that the time it takes for

the code analyst to troubleshoot the obfuscated code will be

increased by the considerable amount.

Although the logic obfuscation affects the code analysis,

it often results in a significant change in code size. It also

changes several characteristics of code such as the number of

functions and declared variables, function parameters, string

data, etc. Therefore, logic obfuscation has no effect on the

detection rate in our obfuscation detection study using static

features. Rather, if the characteristics of logic obfuscation are

well-summarized, we can leverage them as features to detect

obfuscation. In Section IV, 15 discriminant static features

which reflect the above-mentioned characteristics of the ob-

fuscation techniques will be introduced.

IV. DETECTING OBFUSCATION WITH

A MACHINE LEARNING APPROACH

The obfuscation techniques in VBA macros are explained

in Section III. To detect aforementioned obfuscation tech-

niques, we propose a method based on classification algo-

rithm through supervised machine learning. Although machine

learning based detection method requires several prerequisites

such as sufficient data collection, training set labeling, and

feature selection process, it nevertheless has several advantages

over alternative techniques. Unlike machine learning, static

analyses, such as signature or pattern based detection method,

have limitations when counteracting to unknown malware;

dynamic analysis has a heavy overhead. On the other hand,

machine learning approach has been applied in numerous areas

of the computer science field including anomaly detection, and

has guaranteed and acceptable run time. If the prerequisites are

satisfied, machine learning method can overcome the short-

comings of the above-mentioned approaches and promising

performance can be expected.

This section provides an overview of our experiment pro-

cess. It consists of 1) Data collection, 2) Preprocessing, 3)

Feature extraction & selection, and 4) Classification using
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machine learning classifiers. To thoroughly evaluate the perfor-

mance of our proposed machine learning method, we first ex-

plain how we collected the samples and preprocess them. After

that, the entire process of extracting and selecting features to

effectively detect the obfuscation techniques summarized in

Section III will be described. Finally, the explanation of the

machine learning classifiers will follow.

A. Data collection

Before proceeding with the experiment, we collected Mi-

crosoft Office document files which contained VBA macros.

Owing to the fact that our study targets VBA macros, we

collected “.docm” and “.xlsm” files, which will likely contain

macros, through keyword searches from Google. We also col-

lected all the MS Office files that were classified as malicious

in the malware portal [30]–[32] unconditionally, to ensure

that our proposed method is well-suited to be applied to the

malicious files. The sample collection was done from 2016 to

2017.

We verified the hash value of the collected files so that there

were no duplicates, and we also excluded the files which did

not have VBA macros. In the next step, we double-checked the

detection results of the VirusTotal [32] and the VBA macros

of files to determine the benign and malicious dataset, so

that the only samples using VBA macros as an attack vector

were included in the malicious dataset. As a result of the data

collection, we obtained 2,537 files in which 773 are benign,

and 1,764 are malicious. Table II displays the summary of our

dataset with the average file size of each sample set. According

to our observation, malicious files tend to be much smaller

in terms of file size, which means that most of the attacks

using VBA macros work to download malware from a remote

address and execute it, and do not actually include malware

in the file itself [15].

Although VirusTotal includes the results of about 60 differ-

ent AV vendors who take advantage of individual detection

mechanism, it is not 100% accurate. Because there is no

conclusive criterion to determine a sample’s maliciousness, we

set a threshold to divide samples into malicious/benign training

dataset. We set this threshold loosely to prevent the training

samples from being mislabeled. In detail, we labeled a sample

as malicious if more than 25 vendors detected it as malicious,

and labeled it as benign if less than or equal to 2 vendors

marked it as malicious. Every sample in between was manually

inspected by three security researchers who specialize in VBA

macros.

B. Preprocessing

The next step for detecting obfuscation is preprocessing. By

preprocessing we mean to extract VBA macros from the col-

lected MS Office document files, remove small (insignificant)

and duplicated macros, and label training samples.

To obtain the VBA macros from Microsoft Office document

file, we need to open the document file directly or parse the

structure of OpenXML (OLE in the previous version of MS

Office 2003). Given that malicious VBA macros are often
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(a) Code length distribution of total 877 non-obfuscated VBA
macros which are randomly selected from collected samples.
The code length of non-obfuscated VBA macros is uniformly
distributed that has no tendency between the samples.
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(b) Code length distribution of total 877 obfuscated VBA macros.
We can see the tendency that a group of VBA macros form a
horizontal line which have similar code length of 1500, 3000, and
15000.

Fig. 5: Code length distribution of (a) non-obfuscated, and (b)

obfuscated VBA macro samples. The x-axis indicates arbitrary

sample in each dataset.

executed when documents are opened, we use oletools in the

extraction of VBA macro codes [33]. Oletools is an open

source Python package to analyze Microsoft Office document

files. It allows us to easily extract the VBA macros without

opening the file.

Although we split our dataset into benign and malicious

to provide the information about the relationship between

maliciousness and obfuscation, the goal of this paper is to

detect obfuscation in VBA macros. VBA macros in benign
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TABLE II: Summary of collected MS Office document files.

Group # by type Avg. size Collected from
Word Excel

Benign dataset

(773 in total)
75 698 1.1MB Google

Malicious dataset

(1,764 in total)
1,410 354 0.06MB [30]–[32]

Total 1,485 1,052

TABLE III: Summary of VBA macros extracted from MS

Office files.

Group # files # macros # obfuscated macros

Benign dataset 773 3,380 58 (1.7%)
Malicious dataset 1,764 832 819 (98.4%)

Total 2,537 4,212 877

datasets could be obfuscated, and vice versa. Therefore, we

manually inspected and marked the macros with obfuscating

features (described in Section III) as “obfuscated”.

In this manual labeling process, we observed that the macros

of less than 150 bytes are not meaningful, either malicious

or benign, because they are only made up of comments

or practice code that had no particular purpose. Therefore,

insignificant macros with too short of a length were excluded

from our dataset.

Table III shows that the majority of malicious VBA macros

are obfuscated. Only 1.7% of the benign macros are obfus-

cated, whereas 98.4% of the malicious macros are obfuscated.

With a huge gap of obfuscation rates in each of the dataset

group, we verified the obfuscation tendency in benign and

malicious macros: malicious macros are more likely to be

obfuscated.

Also, there is a large gap in the number of extracted VBA

macros. As explained in the data collection step, we already

eliminated the duplicates ones, after collecting the Microsoft

Office document files. But there is still a possibility that the

files have macro duplicates. We found that there were about

5k macros for the overall dataset in this process of duplicates

elimination. Finally, the number of macros was narrowed down

to 3,380 and 832 respectively, in the benign and malicious

dataset.

In the case of the benign dataset, the number of macros

increases to more than 4 times as many as the number of

files, because one file could have several macros. However, in

the case of a malicious dataset, even though we only collected

files that contain more than one macro in the data collection

step, the number of macros is halved compared to the number

of files. This means that most of the malicious documents

which contains VBA macros are using the same macros.

In addition to this, we also examined the code length of

the macros belonging to the non-obfuscated and obfuscated

TABLE IV: Summary of 15 static features used in our pro-

posed method.

Features Description Used In:

V1 # of chars in code except comments

V2 # of chars in comments [24], [26]

V3 avg. length of words [26]

V4 var. length of words

V5 appearance frequency of string operators [26]

V6 % of chars belonging to string [26]

V7 avg. length of strings in code [24], [26]

V8 % of text functions called

V9 % of arithmetic functions called

V10 % of type conversion functions called

V11 % of financial functions called

V12 % of functions with rich functionality called

V13 Shannon entropy of the file [26], [34]

V14 avg. length of identifiers

V15 var. length of identifiers

group. The results are shown in Figure 5 (a) and (b). Each

figure displays the code length distribution in normal and

obfuscated VBA macros, respectively. Figure 5 (a) is uni-

formly distributed throughout, this could also be evidence that

our dataset is well-collected, including the informative benign

macros. Alternatively, in Figure 5 (b), it can be seen that the

macros are somewhat grouped to form several horizontal lines.

Generally, we can expect that obfuscated code is reproduced

with a custom obfuscater with different options. Especially

in the malicious case, malware writers are expected to make

variations to avoid the signature-based detection of AVs. We

can interpret the results shown in Figure 5 (b), as the result

of this expectation. This means that there are a large number

of macros which have a similar code length even after the

duplicate elimination.

C. Feature selection

We summarized the types of obfuscation techniques in Sec-

tion III. After observing the results of applying the obfuscation

techniques, we built a set of features based on each of the

obfuscation techniques. The proposed features are depicted in

Table IV. Each of the features targets obfuscation, and some

of them are from related studies. Given that four types of

techniques have distinct characteristics, different combinations

of features are required for an effective detection.

1) Detection of O1 (Random obfuscation): The O1 obfus-

cation technique randomizes the identifier in the macro code.

The identifier refers to both the function names and variable

names, and O1 can be applied to both of them. As a result of

O1 obfuscation, the randomness of the macro code increases.

To measure the randomness of macros, we use the Shannon

entropy of the file as the feature V13 [35]. The computation

of the entropy is performed on the basis of each character

of the macro code. If pi is considered to be the rate at which
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character i appears in the entire macro code, entropy H follows

Shannon’s Entropy formula.

H(X) = −
∑

i

pi log2 pi

We use 2 additional features, V14 and V15 to capture

the characteristics of O1. Because the identifiers with O1

techniques have various lengths, we calculate the length of

the identifier. V14 is the average length of identifiers used in

macro codes, V15 is the variance of each identifier length.

2) Detection of O2 (Split obfuscation): In the VBA macros

with O2, more strings and string operators are observed than

normal macros for the purpose of avoiding the detection of

AVs. It also contains many unused dummy strings. For this

type of obfuscation, we use V5-V7. V5 contains the number

of occurrences of string operators such as ‘+’, ‘=’ or ‘&’,

which are used for string concatenation. Feature V6 is % of

characters belonging to strings, and V7 calculates the average

length of strings. These three features can indicate the unusual

appearance of strings in obfuscated macros.

3) Detection of O3 (Encoding obfuscation): Encoding ob-

fuscation is related to the use of various function calls. It is

often used with O2, hiding keywords that can be detected

by AVs, e.g., URL or .exe. It also uses infrequent financial

functions which are only used for accounting and financial

calculations to create more varied variants. To capture the

characteristics of O3, we use V8-V11, while attempting to

cover as many types as possible. The examples of the functions

included for each feature are listed as follows. The rest of

functions can be found by referring to the VBA language

specification [27].

• V8 (text functions): Asc(), Chr(), Mid(), Join(), InStr(),

Replace(), Right(), StrConv(), etc.

• V9 (arithmetic functions): Abs(), Atn(), Cos(), Exp(),

Log(), Randomize(), Round(), Tan(), Sqr(), etc.

• V10 (type conversion functions): CBool(), CByte(),

CChar(), CStr(), CDec(), CUInt(), CShort(), etc.

• V11 (financial functions): DDB(), FV(), IPmt(), PV(),

Pmt(), Rate(), SLN(), SYD(), etc.

4) Detection of O4 (Logic obfuscation): O4 changes the

entire shape of the targeted code by inserting dummy codes

and reordering the code. As we mentioned in Section III, code

reordering does not affect our proposed method as we use

static features. We use V1-V4 to capture the dummy code

insertion, which leads to an increase in code size. Before

describing each feature, we use “words” to represent the units

delimited by whitespace and VBA programming language

symbols. “words” is used as a part of the features to detect

maliciousness in [24]; it is also included in our features as

V3 and V4 because it is a discriminant feature for dividing

obfuscated and non-obfuscated code. V3 and V4 represent the

average and the variance of “word” length, respectively.

To balance the effect of each feature on the training classi-

fiers, a normalization process is required. Aebersold et al. [26]

divided the value of features, which need to be normalized, by

the length of the entire scripts. Instead, we assign the length

of the comments-excluded macro code to V1, and the length

of comments to V2. Then we use V1 as the normalization unit

for more effective training.

V1-V11 and V13-V15 are selected to capture the charac-

teristics of each obfuscation technique. In addition, there are

a few unique functions observed in the obfuscated macros.

Obfuscation is usually applied to code that has something to

hide rather than tiny, insignificant code. Obfuscation is used to

protect the intellectual property of the program code, or to hide

malicious behavior in malware. In both cases, obfuscated code

has a significant role that programmer wants to hide, hence

it often leads to the use of certain functions with relatively

rich functionality. For examples, the Shell() function is able to

run executable programs, CallByName() can execute methods

of objects which have full functionality in the VBA macro.

Including these functions, V12 counts the use of functions

that can write, download, or execute files.

D. Machine learning classifiers

We choose five different supervised machine learning clas-

sifiers to evaluate the performance of our proposed method:

Random forest (RF), Support Vector Machine (SVM), Linear

Discriminant Analysis (LDA), Bernoulli Naive Bayes (BNB),

and Multi-Layer Perceptron (MLP). In addition to the four

classifiers already used in previous studies [24], [26], we

introduced the MLP classifier which is a class of artificial

neural network models. We choose Scikit-learn [36] to use the

aforementioned classifiers. Instead of describing the details of

each classifier, we provide a customization parameter as well

as a brief description of each classifier in this part of the paper.

Support Vector Machine (SVM) [37] finds the optimal, or

maximum-margin hyperplane in a feature space that can sepa-

rate a feature space into two classes (in our work, two classes

indicate obfuscated and non-obfuscated). In our experiment,

we use C=150, γ =0.03 as a parameter.

Random Forest (RF) [38] is an ensemble learning method

for classification or regression. It constructs multiple decision

trees in the training phase. It is known that Random Forest is

less likely to have an overfitting problem than a decision tree

[39].

Multi-Layer Perceptron (MLP) [40] is a feed-forward ar-

tificial neural network model that conducts supervised learning

by backpropagation using one or more hidden layers between

the input and output layer.

Linear Discriminant Analysis (LDA) [41], which is a form

of supervised dimensionality reduction, is a generalization of

Fisher’s linear discriminant [42] that finds the linear subspace

which maximizes the separation between two classes.

Naive Bayes [43] classifiers are a set of simple probabilistic

classifiers based on applying the Bayes’ Theorem with naive

independence assumptions between the features used. We use

Bernoulli Naive Bayes (BNB) in the evaluation of proposed

method.
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TABLE V: Evaluation results of proposed approach.

Feature set Classifier Accuracy Precision Recall

V1-V15

SVM 0.955 0.881 0.906

RF 0.965 0.982 0.848

MLP 0.970 0.938 0.915
LDA 0.901 0.842 0.64

BNB 0.891 0.75 0.713

J1-J20

SVM 0.753 0.445 0.751

RF 0.903 0.841 0.657

MLP 0.834 0.76 0.316

LDA 0.826 0.677 0.318

BNB 0.701 0.391 0.775

V. EVALUATION

In this section, the evaluation results based on the method

proposed in section IV will be described. We extracted the

feature matrix from the preprocessed dataset with the features

introduced in Table IV. After the five different classifiers

have undergone the training process, we will evaluate the

classification performance with several evaluation metrics.

Before going into the details of evaluation, we briefly explain

the evaluation metrics to be used in this section.

For more precise and quantitative measures of our clas-

sification performance, we use several evaluation metrics:

Accuracy, Precision, Recall, Fβ score, and AUC of ROC curve.

We use accuracy, precision and recall to evaluate the basic

classification performance, and choose β=2 of the Fβ score to

emphasize the security aspect. F2 score is often used when

weighing recall more than precision. By putting an emphasis

on recall, we can make sure malicious VBA macro is not

executed on the users’ system. In addition, we use the Receiver

Operating Characteristic (ROC) curves and Area Under the

Curve (AUC), which is the one of the standard convention,

to show the comparison of classification results in a more

intuitive manner.

We used 4,212 macros for the evaluation of classification

performance, 877 of which are marked as obfuscated. Al-

though our dataset is large enough to evaluate the classification

performance of the proposed method, we use 10-fold Cross

Validation (CV) to improve the statistical reliability. Therefore,

the experimental results to be described below are the results

of applying the 10-fold cross validation.

Table V shows the classification results with basic evalua-

tion metrics. The feature set we proposed is marked as V1-V15

in the leftmost column. As a result of the evaluation, SVM, RF

and MLP classifiers show relatively high performance among

five classifiers. In particular, RF recorded a precision of 98.2%

and MLP recorded a recall of 91.5%. However, LDA and

BNB classifiers were found to be inadequate for detecting

obfuscated VBA macro.

The evaluation result with F2 score is depicted in Figure

6. The result of the proposed method is the bars labeled

‘V feature set’. Because obfuscation detection is primarily

concerned with security purposes, we emphasize recall to min-

Fig. 6: The results of machine learning classification using the

proposed feature set are expressed as F2 score. When using

the MLP classifier, the result was the highest at 92%.

TABLE VI: Summary of the features used in related work.

Features Description Used In:

J1 length in characters [24], [26]

J2 avg. # of chars per line [24], [26]

J3 total number of lines [24], [26]

J4 # of strings [24]

J5 % human readable [24]

J6 % whitespace [24], [26]

J7 % of methods called [24]

J8 avg. string length [24], [26]

J9 avg. argument length [24], [26]

J10 # of comments [24], [26]

J11 avg. comments per line [24]

J12 # words [24]

J13 % words not in comments [24]

J14 % of lines > 150 chars [26]

J15 Shannon entropy of the file [26], [34]

J16 share of chars belonging to a string [26]

J17 % of backslash characters [26]

J18 avg. # of chars per function body [26]

J19 % of chars belonging to a function body [26]

J20 # of function definitions divided by J1 [26]

imize false negatives. As MLP classifier showed relatively high

performances in the basic three metrics, accuracy, precision,

and recall, it also recorded the highest F2 score of 92%. In

a related study that evaluated detection performance with the

F2 score [24], we can see that our method is 11.4% higher,

given that 80.6% was its maximum.

We can then ask ourselves the following research question:

“It has been confirmed that the proposed features and clas-

sification method are effective in detecting obfuscated VBA

macro, but how effective would it be to use the malware

detection features of the related studies that have already been
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Fig. 7: The solid curve and dashed curve represents ROC

curves of MLP classifier with proposed feature set and RF

classifier with comparison feature set, respectively.

conducted? Would it not be more effective?”. In response to

this question, we added a comparative experiment to detect

obfuscated VBA macros using the same machine learning

approach to the same dataset. The features used in related

studies [24], [26] are listed in Table VI.

Due to the linguistic differences between JavaScript and

Visual Basic for Applications, many of the features used in ob-

fuscated JavaScript detection are not applicable for obfuscated

VBA macro detection. For example, “# of eval() calls divided

by entire code length” was used in the related paper [26],

which was not implemented in this study because it is difficult

to match the eval() function to corresponding VBA function.

Besides, J14, originally ‘% of lines with more than 1000

characters’, was modified to reflect the characteristics of VBA

macros that can not be applied the minification technique of

removing linefeed. The results of this comparison experiment

are shown in Table V and Figure 6 as ‘J feature set’.

Table V includes the evaluation result of comparison exper-

iment (marked as J1-J20). The accuracy and precision of RF

classifier were the highest at 90.3% and 84.1% among five

classifiers, respectively. However, in all aspects, the classifica-

tion performance was much better when using V features, than

when using J features. In order to comprehensively evaluate

the classification performance, we introduced the F2 score and

the result is depicted in Figure 6. The maximum F2 score was

found in the MLP classifier for V feature set (0.92) and the

RF classifier for J feature set (0.69).

As another comprehensive evaluation method, the AUC of

ROC curves were calculated. Figure 7 shows the ROC curves

of MLP and RF, which scored maximum F2 for proposed

V and J features, respectively. MLP classifier with proposed

feature set (V features) has an AUC of 0.95, and comparison

experiment (J features) gets 0.812. It shows that our proposed

method outperformed the previous studies by 0.138 on the

AUC basis.

As a result, we obtained up to 92.0% F2 score with proposed

feature set when obfuscation detection was performed using

the MLP classifier. This is 23% higher than the result of using

the features proposed in the related studies. The accuracy,

precision, and recall show better results, and the AUC value of

the ROC curve was 0.950, showing that the proposed method

and features are suitable for obfuscated VBA macro detection.

VI. DISCUSSION

A. Obfuscation detection and malicious code detection

We presented 15 static features for obfuscation detection,

and evaluated our proposed method using various evaluation

metrics. However, this is a method for obfuscation detection,

not malicious code detection. We investigated a sufficient

number of MS Office document files to clarify the relation-

ship between obfuscation and maliciousness. This obfuscation

detection method can play a major role in malicious code

detection, as the rate of obfuscation applied differs greatly

between malicious dataset (98.4%) and benign dataset (1.7%)

as described in Table III.

Currently, the distinction between malicious code detection

and obfuscated code detection is unclear in malware detection

research. As long as cases where obfuscation techniques used

to protect intellectual property rights exist, malicious code

detection should be distinguished from obfuscated code detec-

tion. However, a few of the related studies used the characteris-

tics of obfuscation to detect malicious codes without consider-

ing obfuscation techniques [18], [24]. The confusion between

maliciousness and obfuscation may lead to an increase in

false alarms. Therefore, we generally classified obfuscation

type (O1-O4) to prevent this mistake, and designed the feature

set to not be biased towards the characteristics of a specific

obfuscation tool.

In order to address the need for a counteraction against

the increasing obfuscated VBA macro malware, we compared

the ability of J feature set and our proposed V feature set

regarding obfuscation detection. The results showed that the

J feature set underperformed against the proposed V feature

set, but this does not mean that the research results regarding

JavaScript is bad. Rather, in regards to detection of obfuscation

in highly obfuscated VBA macro malware (98.4%), applying

existing studies (J feature set)—that does not take into account

the characteristics of obfuscation—is not ideal.

B. Case studies: anti-analysis techniques in VBA

The obfuscation techniques observed in VBA macros are

categorized into four types (O1-O4) in Section III. When using

features based on the O1-O4, we succeeded in identifying ob-

fuscation with an accuracy of 97%. In addition to obfuscation,

however, several tricks have been found for the purpose of

hindering the analysis and understanding of the code. In this
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1 Private Sub Document_Open()
2 UYjwCZdgnz = ActiveDocument.Variables("waGnXV").Value()
3 mambaFRUTISsIn = UserForm1.Label1.Caption
4 Shell UYjwCZdgnz, 0
5 Shell mambaFRUTISsIn, 0
6 End Sub

(a) A sample macro code which uses hiding string data. If the code
analyst has only the above code, it can not be determined whether

it is malicious or not before checking what ‘UYjwCZdgnz’ and
‘mambaFRUTISsIn’ contain.

1 Public Sub RemoveIDAndFormatRow()
2 shtiletMurinoASALLLP = acs.responseBody
3 ProjectAndNow.Write shtiletMurinoASALLLP
4 CoachesReport ""
5 Exit Sub
6 Rows.Select
7 ’Broken code here
8 Sel.ection.RowHeight = 15
9 Colu.mns("A:A").Delete

10 Colu.mns("A").ColumnWidth = 25
11 Colu.mns("C").ColumnWidth = 24.71
12 Colu.mns("I:R").ColumnWidth = 11
13 End Sub

(b) Inserting broken code causes an error when code parser tries to
interpret “Sel” or “Colu” nonexistent objects.

Fig. 8: Example code of anti-analysis technique

paper, we call these tricks to hinder code analysis as anti-

analysis technique and distinguish it from obfuscation tech-

nique. Obfuscation (O1-O4) is used generically in scripting

code and makes a significant difference in the appearance of

existing code. However, anti-analysis technique is limited in

scope that can be applied to code and is designed to prevent

specific analysis method.

The anti-analysis techniques to be introduced are not di-

rectly addressed or included in the proposed method. However,

they also interfere with the process of analyzing the code and

tend to be found together in obfuscated VBA macros. For

further malware detection research, we organize the basic anti-

analysis techniques observed in VBA macro as follows: 1)

Hiding string data, 2) Inserting broken code, and 3) Changing

the flow.

1) Hiding string data: Microsoft Office documents provide

useful data spaces for storing string data. For example, one can

store string data as the document’s property value, the Caption

value of CommandButton, Label, and Form controls, or the

ControlTipText value of UserForm controls [44]. If a malware

writer hides malicious string values in these fields or even in

the cell value of an Excel document and the malware refers to

them, this prevent the use of static analysis techniques which

analyze the VBA macro source code. Figure 8 (a) shows the

case of hiding string data technique.

2) Inserting broken code: This technique is frequently

adopted in obfuscated VBA macros. It is done by inserting

broken code which causes run-time error. However, as Figure 8

(b) shows, the instruction pointer actually exits in line number

5, before reaching the broken code starting from line number

8. So this anti-analysis technique does not affect the actual

behavior of the macro code, but it is considered as a syntax

error when trying to parse the code.
3) Changing the flow: Another anti-analysis strategy, which

can be used together with the aforementioned anti-analysis

techniques, is achieved by switching the execution flow. It is

done by using a conditional branching statement, together with

checking certain condition is satisfied. Certain condition may

be an http response code that verifies that the connection is

well established, or it may be the number of recently opened

files to prevent sandboxing analysis [45].

VII. CONCLUSION

This paper is the first research to propose obfuscated VBA

macro detection using machine learning method. Attacks using

VBA macro have been increasing since 2014. Given the

familiarity of the MS Office document, this type of attack

should not be taken lightly. Even though AV agencies are

increasingly reporting attacks using VBA macro, little research

has been conducted to mitigate them.
Unlike the conventional malware which exploits the vul-

nerability of programs, attacks using VBA macro utilize

legitimate functions provided by MS Office document. These

threats are not caused by a programmers mistake, nor are

mitigated by a security update. A general way to avoid this

kind of cyber attack is to improve the security awareness of

the end users. It includes: not downloading attachments from

untrusted e-mails, and recognizing the potential damage that

even one malicious document can bring.
Research on identifying obfuscation techniques, which are

applied to VBA macros in the document, is one of the coun-

termeasures to prevent malware infection before malicious

code is executed. We collected 4,212 benign and malicious

VBA macros to investigate how many macros were obfuscated.

98.4% of the malicious macros files were obfuscated, one the

other hand, only 1.7% of the benign macros were obfuscated.
In this paper, we proposed obfuscated VBA macro detection

with machine learning based approach. We have classified

VBA macro obfuscation techniques into four types and intro-

duced a feature set for effective obfuscation detection. In the

process of selecting detection features, several features were

selected from JavaScript related studies after being modified

to reflect the characteristics of VBA macro, or excluded

if not applicable for VBA macro. We then evaluated the

classification result of the five suggested machine learning

classifiers using various evaluation metrics. The evaluation

results demonstrated that our detection approach achieved a

F2 score improvement of greater than 23% compared to those

of related studies.
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