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Abstract—With the rapid proliferation of video event data
recorders (VEDRs), video file data from VEDRs are often used
as the primary evidence in many fields, such as law enforcement.
In this paper, we propose a method for reconstructing corrupted
video files and capturing key events recorded in the video file for
use as valid evidence. The method first extracts image features
from each video frame and constructs a multidimensional vector.
Subsequently, dimension reduction of these vectors is performed
for visualization in low-dimensional space. The proper sequence
of the video frames is restored by using a curve fitting technique
for the low-dimensional vectors. Then, we calculate the change
in the slope of the curve-fitted model to detect key events in
video files. The proposed method generates significant results not
provided by existing file recovery techniques.

Keywords—Digital forensics, Visualization, Video sequence re-
construction, Video event detection

I. INTRODUCTION

With the increasing popularity of video event data recorders
(VEDRs), video files recorded with a VEDR device have been
used as primary evidence in field of law enforcement and
insurance industries [9]. However, several factors can hinder
video files from becoming useful evidence. One is external
impact on the device at the time of recording. The power
supplied to the VEDR device can be temporarily disconnected
owing to the nature of traffic accidents accompanied by phys-
ical impact. In such cases, physical damage can corrupt the
video being recorded or cause video encoding failure. Another
factor is manual intervention by users. Video data can be
lost from intentional acts such as the deletion or modification
of video data by users. Existing file recovery techniques,
such as file carving [8], identify a specific pattern using
meta-information in the header of the file system [4]. These
methods are applicable only if the files are in contiguous space.
However, video files are generally large and easily fragmented.
To solve this problem, signature-based recovery techniques
[10] [1] have been proposed. Signature-based methods restore
individual frames of video data discontinuously stored in the
file system using different types of information, such as codec
specifications. However, even if the frame is restored, there is
still difficulty in restoring the file unit because of the absence
of frame sequence information and partial omissions [5].

From this viewpoint, we extended existing methods to pro-
vide a method for analyzing video data by visually displaying

the correlation between frames based on restored frames. In
the case of VEDR video data recorded consecutively, since the
context of the image is continuous, the preceding and subse-
quent frames contain more similar information than the other
frames. To understand the relationship between these frames,
we extracted image features containing information from each
frame and constructed a multidimensional vector for each
frame. In order to show the relationship between frame vectors,
a dimension reduction method for the frame vector was applied
to visualize in two dimensions. The distribution of the vectors
through visualization shows the approximate structure of the
image file to a human. Then, the frame sequence information
is determined based on the data distribution, and the individual
frames are reconstructed into one video file. The flow of the
video can also be observed through the visualized result, and
the point at which an event occurs, such as a collision, is
detected.

The proposed method overcomes the fact that existing
video restoration techniques cannot recover corrupted video
files owing to limitations in available information. In the
experiment based on frame data extracted from various video
files, the proposed method successfully reconstructed visually
recognizable video and automatically detected the event occur-
ring in the video. In this paper, we demonstrate the proposed
method using two datasets from the National Forensic Service
and eight datasets captured by various VEDR devices in the
market. Recorded video files in datasets were preprocessed
by deleting meta-information so that the proper sequence of
the frames is not given. As a result of analyzing the image
features extracted from individual frames and reconstructing
the videos through the proposed method, 88 percent of the
frames were aligned with the original. With this method,
we can reconstruct video files that are visually perceptible
without meta-information. It is also possible to perform event
detection based on the image feature change rate of the video
frame unit. Existing file recovery techniques only analyze
meta-information or signatures in a file system. The proposed
method overcomes the limitations of other technologies by
using visual aspects in video data.

The rest of this paper is organized as follows. In Section II,
the background and related works on file recovery techniques
and visualization methods is given. In Section III, the proposed
method is described. Experimental results are presented in
Section IV. and conclusions are drawn in Section V.978-1-5090-5569-2/17/$31.00 c©2017 IEEE
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Figure 1: The process of visual analysis in the proposed method

II. BACKGROUND AND RELATED WORK

A. Video File Carving

File carving is a data recovery technique that reconstructs
files based on a database of headers and footers for specific file
types. Thus, file carvers can retrieve files from raw disk images
without using file system metadata. File carving is an important
technique in digital forensic cases because it provides recover
data independent of the type of the file system.

File carvers use databases containing headers and footers,
and search the disk image for occurrences of the headers and
footers. In case of video files, the video file encoded by video
codec store decoding header information at the start or end
of the video file. Na et al. [7] restores the video file using a
combination of frame data and decoding header information.

However, file carvers cannot restore files if data are not
in contiguous space. Since a video file typically has a large
volume of the data, it is highly likely to be split into several
fragments. To resolve this problem, various techniques have
been proposed by using a file meta-information such as a size
of the file. Although those techniques produce good results in
certain situations, it is still difficult to use it generally.

B. Visualization in Data Analysis

Data analysts need to understand a structure of data while
analyzing complex data, and visualization methods can be
helpful at this time. Recently, stochastic neighbor embedding
(SNE) [3] and its extensions have drawn the attention of
researchers for conducting dimensionality reduction and visu-
alization tasks. SNE converts the high-dimensional Euclidean
distances between data points into a conditional probability
distribution related to Gaussian, which represents the pairwise
similarity, and then requires the low-dimensional data to retain
the same probability distribution. t-stochastic neighbor embed-
ding (t-SNE) [6] is an extension of the SNE. SNE assumes
normal distribution when measuring similarity between data,
and t-SNE assumes t-distribution with 1 degree of freedom
when calculating similarity between data. Since the range of
the gradient descent value of the cost function that measures
whether or not the high-dimensional data is well mapped to
the low dimension is changed by distribution types, t-SNE
represents the cluster relation in high-dimensional data at low
levels better than SNE [14].

III. VIDEO DATA ANALYSIS USING VISUALIZATION

Existing technologies tend to rely on the remaining meta-
information in video files. This means that if the meta-
information is lost, the recovery rate is significantly lower.

However, the proposed method is based on the analysis of
frame-by-frame fragments obtained by existing techniques.
The proposed technique can be divided into three phases, as
shown in Fig. 1.

• Extracting phase: We extract image-based features in
Fig. 2 from the frame and construct a feature vector
to represent the frame.

• Visualizing phase: The feature vectors are visualized
using a dimension reduction technique to provide
visually meaningful results, while maintaining the
relationship between the frames.

• Analyzing phase: Through the above results, we re-
construct the sequence of video frames and recover the
original video file. In addition, specific driving events
can be identified through an analysis of the feature
vector space.

Block

Color histogram

Corner information

Figure 2: Components for the frame analysis

A. Extraction of Features from Video Frames

A video frame is the smallest semantic unit of a video
file. However, it only has information about one image when
there is no meta-information in the video file. Thus, we cannot
know the correlation with other frames. In order to understand
the correlation between video frames, we tried to construct
a feature vector representing a frame by extracting image-
based features [12]. The feature vector was constructed by
considering the following points:

• Image feature: The VEDR device records the running
of the vehicle consistently, so it records continuous
scenes. Therefore, it is possible to use a global feature
such as a color histogram to compare the similarity
between frames. However, the global feature does
not distinguish the background from the object, and
does not detect the geometric change caused by the
movement of the object. To overcome these problems,
we combined local features to achieve complementary
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Figure 3: Creating blocks based on the vanishing point: (1) Raw image, (2) Divided with cells, (3) Set the vanishing point, (4)
Blocks generated by the vanishing point

effects. In the case of the local features, the VEDR
video should be robust to translation and rotation of
the object because it is the main content of the vehicle
driving. Thus, we applied the FAST corner detection
method which satisfies the above characteristics as the
local feature used in our method.

• Cell: Since typical VEDR devices basically record at
least 30 frames per second, the computations for fea-
ture extraction increase exponentially with recording
time. In this method, each frame was divided into
small pieces with fixed sizes called cells. The cells
were used as the minimum unit of each vector in the
calculation process.

• Vanishing point: One of the unique characteristics of a
VEDR is that the device is attached to a fixed location
in the vehicle. Therefore, the vanishing point is at the
same position in every frame. While an object moves
among the frames, a geometric change in the object
will be proportional to its distance from the vanishing
point. Hence, these changes must be calculated relative
to the location.

Fig. 3 shows the steps for extracting the feature vector
from frames. In step 1, each frame is divided into connected
cells with the same specific size. In step 2, the vanishing
point is extracted from an arbitrary frame in order to apply
the characteristics of the vanishing point as mentioned above.
Since the VEDR device is mounted in a fixed location, such
as the dashboard, the same vanishing point is applied to all
the frames. To reflect the absolute movement of an object
regardless of its distance from the vanishing point Dv , we
performed inverse perspective transformations based on the
vanishing points. The calculated region was divided into grids
of a certain height Ph and width Pw, and then reflected onto
the original region to create a block that bundles the cells Nc

included in each grid.

Nc = Dv ∗ Pw ∗ Ph

In step 3, the features from each block were extracted.
The features to be extracted are a color histogram as a global
feature and corner information as a local feature. The color his-
togram was constructed for every pixel in each block. However,
since the amount of computations increases exponentially with
the number of color channels Kc

n, the histogram was produced
first by discretization of the colors into a number of bins Nb.
Therefore, the size of the histogram Nh can be calculated as

Nh = Nb ∗Kc
n

For the corner information, we applied the FAST corner
detection method [11] to the entire image. Since the corner
information was used to determine whether the same object is
detected in each image, it was configured in units of frames
different from the local features stored in block units. Finally,
the color histogram of each block and the corner information
of the frame were arranged to form a multidimensional feature
vector for each frame. The feature vector of each frame
containing i blocks with j features is written as[

X1,1, X1,2, · · · , Xi,1, Xi,2, · · · , Xi,j

]
B. Visualization of Feature Vectors Using Dimension Reduc-
tion

The multi-dimensional vector generated in the previous
step does not show the relationships between each frame by it-
self. For perceptually meaningful results, dimension reduction
was performed for the visualization of the frames. However,
it should be noted that there are many dimension reduction
techniques, and each one has different features; hence. we



Figure 4: Feature vectors projected in 2D scattered points

should consider the characteristics of VEDR video data. First,
video data is the sum of discrete frames. This means that
VEDR video data has a nonlinear structure, but second, it
still has a continuous context. All frames before and after
contain similar image information. Lastly, it can cause a crowd
problem. When a vehicle is stationary, the recorded image will
be almost same during that period, making it hard to find
differences between frames. With these considerations, t-SNE
is the most suitable method to reduce the dimensionality of
VEDR feature vectors [13]. t-SNE is a dimension reduction
technique for nonlinear data that preserves the local properties
of the data manifold in the low-dimensional representation and
reflects the continuous context of frames. It is also robust in
the crowd problem by using a student t-distribution.

High-dimensional feature vectors are reduced to two di-
mensions and visualized with a scatter plot graph in Fig. 4.
Each point corresponds to each frame of the VEDR video and

Figure 5: Curve-fitting result of feature vectors

shows that similar frames are placed closed together. We can
recognize intuitively the order of video frames and categorize
an individual video with the curve-linear shape of a point
cloud.

C. Reconstruction of Video Sequences

The feature vectors in the low-dimensional domain main-
tain the gradually changing shape that they had in the higher
dimension owing to the continuous context of the VEDR
video mentioned above. As a result, the visualized result in
the two-dimensional graph has a curved-shaped distribution.
This means that the feature vectors of the frame are gradually
changing, that is, the flow of the video. Therefore, finding the
representative model fitted to this distribution will give a rough
indication of the proper sequence of the video.

The Principal curve [2] is one of the nonlinear curve fitting
methods that satisfy these conditions. This method is defined
as “self-consistent” smooth curves that pass through the middle
of a data cloud. In Fig. 5, we can fit the standard model of the
video sequence using this method. With a given curve-fitted
model, in order to reconstruct the sequence, we move from the
beginning to the end of the curve and reconstruct the order by
calculating the nearest frame.

D. Detecting of Driving Events

By using the previous curve-fitted model, we can detect
certain events in the video. Particular events such as car crash
or sharp turn can occur during driving. These events can cause
sudden changes in the image data of frames, and these are
reflected in the relation between feature vectors.

By using the curve-fitted model, we can compute the
direction of each frame vector and the rate of change. With
this result, performing second derivative on the curve can
determine where sudden changes occurred and that suspicious
event point can be noted. Whether the change is rapid or not is
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Figure 6: Sample frames of a video file: (1) Driving state, (2-3) Accident state, (4) Stop state

judged through adoptive threshold calculation. Since the state
of the recorded video varies depending on the characteristics
of the road or the flow of surrounding vehicles, an adoptive
threshold value was used.

IV. EXPERIMENTAL RESULTS

There are no large-scale datasets for vehicle driving videos
recorded with VEDR devices. Therefore, we manually col-
lected eight datasets containing normal driving scenes captured
using the most popular VEDR devices . The other two datasets
were evidence of traffic accident cases from the National
Forensic Service. Fig. 6 shows sample frames of these datasets.

To verify the results of our method, each video file in the
dataset was manually divided into frames, and each frame
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Figure 7: Performance of the frame sequence reconstruction
technique

was labeled in the proper sequence to compare the recon-
structed sequence with the original video. Video scenes were
also manually classified to three types: “Driving state”, “stop
state”, “accident state”. For each video scene, video files were
fragmented into 5 pieces in any size, and 50 percent of each
video file was overwritten.

State Matching
Ratio

Mean
Mislocated
Distance

Standard
Derivation

Overall 0.89 0.26 0.61
Driving 0.92 0.34 0.65

Stop 0.71 0.42 0.82
Accident 0.94 0.1 0.3

Table I: Match ratio and mean mislocated distance of the
reconstruction result

Table I shows the results of the frame sequence reconstruc-
tion. The mean distance shows how much the reconstructed
frame sequence differed from the original. The closer a value
is to zero, the greater the similarity between the order of the
reconstructed and original results. In the three types of scenes,
the reconstructed results were better in the “normal driving
state” and “accident state.” This is because when the vehicle
is stationary, the extracted image features have similar values
because of the low scene transitions.

Fig. 7 shows the match ratio according to types of a video
scene. Manual technique connects frames using the video file
meta-information including the size information of each frame
called Sample-to-Size (STSZ) box. Thus, In case of the manual
technique, the type of the video scene did not affect the match
ratio. The match ratio was up to 90 percent for the driving state
and accident state in both case. However, In case of the stop
state, the proposed method had lower performance than manual
technique. This is because of similar visual elements in stop
state scenes. Although the overall performance of the proposed
method is slightly lower than the manual technique, there
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Figure 8: Precision-Recall graph of the event detection result

are two advantages to using proposed method: 1) the manual
technique using the meta-information cannot works when the
portion of video file meta-information was overwritten. 2) It is
relying on the type of the video codec to use meta-information
for connecting frames. In the case of the visual analysis, All
video files encoded any video codecs always contain visual
elements in each video frame, we can use the proposed method
without knowing of the video file meta-information.

Fig. 8 shows the results of the ”incident event” detection.
The second derivative results of the curved-fitted model finds
all of the points at which rapid changes occurred, but also
included changes due to sudden changes in the background
or illumination, regardless of the accident. However, false
negative is 0, which detects all incident events in the video
file.

V. CONCLUSION

In this paper, we introduced a method for analyzing VEDR
video data using visualization. Existing methods have only
restored video fragments frame by frame using lost meta-
information. Unlike those methods, the proposed technique
analyzes video fragments and reconstructs them into one
meaningful video file. It also automatically detects significant
events, such as accident scenes, in the video file.
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