Digital Investigation 15 (2015) 119—123

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

Letter to the Editor

Comments on the Linux FAT32 allocator and file creation order
reconstruction [Digit Investig 11(4), 224—233]

@ CrossMark

ABSTRACT

Keywords
Linux file system Minnaard proposed a novel method that constructs a creation time bound of files recov-
FAT32 ered without time information. The method exploits a relationship between the creation
Recovered file order of files and their locations on a storage device managed with the Linux FAT32 file
Creation time system. This creation order reconstruction method is valid only in non-wraparound situ-
ations, where the file creation time in a former position is earlier than that in a latter
position. In this article, we show that if the Linux FAT32 file allocator traverses the storage
space more than once, the creation time of a recovered file is possibly earlier than that of a
former file and possibly later than that of a latter file on the Linux FAT32 file system. Also it
is analytically verified that there are at most n candidates for the creation time bound of
each recovered file where n is the number of traversals by the file allocator. Our analysis is
evaluated by examining file allocation patterns of two commercial in-car dashboard

cameras.

© 2015 Elsevier Ltd. All rights reserved.

Introduction

Minnaard analyzed the file allocation pattern of Linux
FAT32 file system and revealed that relative positions of
files on a storage device is directly related with their cre-
ation order (Minnaard, 2014). The relationship between file
locations and their creation order can be utilized to induce
the creation time bound of recovered files whose time-
related metadata was removed by the file deletion opera-
tion. In the relationship addressed by Minnaard, the crea-
tion time of a file in a former position is earlier than that of
a file in a latter position. Then the lower bound of creation
time of a recovered file is the creation time of the neigh-
boring front file with time-related metadata, and its upper
bound of creation time is the creation time of the neigh-
boring rear file with time-related metadata. As a case study,

DOI of original article: http://dx.doi.org/10.1016/j.diin.2014.06.008.

http://dx.doi.org/10.1016/j.diin.2015.09.003
1742-2876/© 2015 Elsevier Ltd. All rights reserved.

the relationship is applied to the creation time bound
reconstruction of cfg files, which are deleted but recovered
with carving softwares, on the TomTom CPS car navigation
device. The relationship is applicable only to non-
wraparound situations, in which the file creation time in
a former location is earlier than that in a latter location. In
other words, the Minnaard's creation order reconstruction
method is not applicable to wraparound situations, in
which the file creation time in a former location is possibly
later than that in a latter location.

In this article, we show that if the Linux FAT32 file
allocator traverses the storage space twice and more, the file
creation time in a former location is possibly later than that
in a latter location. Only where the Linux FAT32 file system
is consistently used and the file allocator traverses the
storage space once, the creation time of a file in a former
location is earlier than that of a file in a latter location. Also
we analyze the accurate creation time bound of files
recovered without time-related metadata even where the
Linux FAT32 file allocator traverses the storage space twice

mailto:http://dx.doi.org/10.1016/j.diin.2014.06.008.
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2015.09.003&domain=pdf
http://dx.doi.org/10.1016/j.diin.2015.09.003
http://dx.doi.org/10.1016/j.diin.2015.09.003
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2015.09.003

120 Letter to the Editor / Digital Investigation 15 (2015) 119—123

and more. It is verified analytically that multiple candidates
for the creation time bound of each file can be established
for the repeated traversals of the file allocator. At most n
candidates for creation time bound of each recovered file
are established, where n is the number of traversals by the
file allocator. Unfortunately, we cannot select one time
bound deterministically among the established candidates
for all cases because there has been no study helping to
differentiate during which traversal the recovered file was
allocated. The practical correctness of our analysis is eval-
uated by examining file allocation patterns of two com-
mercial in-car dashboard cameras: Thinkware Inavi Black
and Finedigital FineVu Pro.

Outline of Minnaard's creation order reconstruction
method

The storage device managed with the FAT32 file system
consists of three parts: reserved area, FAT area, and data
area (Carrier, 2005). Reserved area contains file system
information such as boot code, partition information,
sector size, number of sectors per cluster, etc. The mini-
mum unit of data area logically addressable is called cluster.
FAT area contains a linked list of cluster offsets allocated to
each file. Data area contains clusters, where a cluster is a
group of consecutive disk sectors with a fixed size. Content
of each file is recorded in one or more clusters and a cluster
is assigned to recording of at most one file. Through source
code analysis of Linux kernel, it is verified that the file
allocator on Linux FAT32 file system finds available clusters
based on the next available algorithm, whenever needing
space to be allocated to a new file. In the next available
algorithm, available clusters are linearly scanned from the
cluster lastly allocated. The reference to the cluster lastly
allocated is stored in the FSI_Nxt_Free field of the FSINFO
structure, which exists in the reserved area of a FAT32 file
system. The file deletion operation of the Linux FAT32 file
system does not change the value of the FSI_Nxt_Free field.
If the search of the file allocator reaches the end of the data
area, the search is wrapped around and restarted at the
beginning of the data area. In summary, the file allocator
performs only the forward search with wraparound oper-
ations when finding available clusters for a new file.

With existing forensic tools (van Eijk and Roeloffs, 2010;
Nutter, 2008), the file with a ‘cfg’ format can be retrieved
from TomTom GPS car navigation devices and binary con-
tent of the file is interpreted to trace route plans such as a
list of entered addresses, a list of recently used addresses, a
route destination, a route origin and the last recorded po-
sition. If creation time of the cfg files as well as their
location-related information is interpreted, we can obtain
valuable information on when the device visited a partic-
ular place. Forensic tools carve the cfg file in an automatic
way and retrieve many incarnations of the cfg file
commonly named with ‘Mapsetting.cfg’. The latest instance
of the file has time-related metadata in a directory entry,
but old instances do not because their time-related meta-
data is removed by overwriting their corresponding
directory entries. Creation time bound of carved cfg files is
established using a correlation between storage locations
of files and their creation order. The method is designed

based on a premise that the creation time of a carved cfg
file is later than those of former files and earlier than those
of latter files on storage device on Linux FAT32 file system.
Suppose that a carved cfg file identified with #1475 is
located between two undeleted adjacent files with their
respective timestamps: ‘triplog-2014-02-14.dat’ with a
creation time of 2014-02-14 17:22:11 and ‘triplog-2014-02-
15.dat’ with a creation time of 2014-02-15 13:14:15 (which
are the examples mentioned in Table 1 and Table 2 on page
230 of the Minnaard's article). Then it is asserted that the
creation time of the cfg file #1475 is later than 2014-02-14
17:22:11 and earlier than 2014-02-15 13:14:15. That is, the
lower bound of file creation time is 2014-02-14 17:22:11
and the upper bound is 2014-02-15 13:14:15. This creation
order reconstruction method is applicable only to non-
wraparound situations.

Creation time bound analysis for multiple traversals of
file allocator

The Minnaard's creation order reconstruction method is
not applicable to wraparound situations, in which the file
creation time in a former position is possibly later than that
in a latter position. Only where the Linux FAT32 file system
is consistently used without detachment and reattachment
of the storage device and the file allocator traverses the
storage space once, the file creation time in a former posi-
tion is earlier than that in a latter position. As addressed in
the Discussion section of Minnaard's article, if a removable
storage device is exchanged between two computer sys-
tems, the file creation time in a former position of the
removable storage device is possibly later than that in a
latter position. In this section, we also show that if the
Linux FAT32 file allocator traverses the storage space more
than once, the file creation time in a former position is
possibly later than that in a latter position.

Fig. 1 shows an example, where data area of a storage
device is composed of 20 clusters.' Gray boxes denote used
clusters unavailable for allocation of new files, while white
boxes denote unused clusters available for allocation of
new files. In Fig. 1(a), files A, B, C, D and E are sequentially
written with respective cluster size of 3, 4, 3, 5 and 3 upon
the initial state with all clusters empty. Then file A occupies
three clusters from index 1 to index 3. File B occupies four
clusters after index 3 (i.e., from index 4 to index 7). File C
occupies three clusters after index 7, file D occupies five
clusters after index 10, and file E occupies three clusters
after index 15. At this moment, the pointer value of
FSI_Nxt_Free is 18 which is the cluster index lastly allo-
cated. The second step is to delete files B and D. Then
clusters allocated for files B and D (clusters 4, 5, 6, 7,11, 12,
13, 14 and 15) become available for allocation of other new
files, which is depicted in Fig. 1(a). After file deletion op-
erations, the pointer value of FSI_Nxt_Free is not changed.
The third step is to write files F, G and H sequentially with

! For the sake of simplicity, a storage device with a few clusters is given
although the number of clusters in practical storage devices is very large.
Also clusters used for directory entries recording file metadata are
excluded.

Letter to the Editor / Digital Investigation 15 (2015) 119—123 121

6 7 8 9 10

00| A A A B B

B B C C C

10| D D D D D

E | E| Ea

(a)

FSI_Nxt Free Pointer

6 7 8 9 10

00| A A A F F

G G C C C

10| H H H I

IWE|E|E|F|F

(b)

FSI_Nxt Free Pointer

Fig. 1. Working example 1 of Linux FAT32 file system.

respective cluster size of 4, 2 and 3. From index 18 in
FSI_Nxt_Free, the file allocator searches four available
clusters for allocation of file F but reaches the end of data
area. To obtain more available clusters, the file allocator
searches available clusters from the beginning of data area.
Then file F occupies four clusters 19, 20, 4 and 5 as shown in
Fig. 1(b). File G occupies two available clusters behind index
5 lastly allocated. File H occupies three available clusters
behind index 7 lastly allocated. Because clusters 8,9 and 10
are already used for file C, clusters 11, 12 and 13 are allo-
cated to file H. The fourth step is to delete files C and E. Then
clusters allocated for file C and E (clusters 8, 9,10, 16,17 and
18) become available. The final fifth step is to write file I
with cluster size of 2 after index 13 lastly allocated, which is
depicted in Fig. 1(b). At this moment, the creation time of
the deleted file Cis earlier than those of former files such as
files Fand G. Contents of deleted files can be recovered with
carving tools (van Eijk and Roeloffs, 2010; Nutter, 2008) if
they remain in unused clusters, but time-related metadata
of deleted files stored in directory entries is removed by
overwriting their corresponding directory entries for
recording metadata of other files.

Fig. 2 shows another example, where file sizes are equal
to those in the example of Fig. 1. Like as the example in
Fig. 1, the first step is to write files A, B, C, D and E upon the
initial state. The second step is to delete files B, C and D.
Then clusters allocated for files B, C and D (from cluster 4 to
cluster 15) become available, which is depicted in Fig. 2(a).
At this moment, the pointer value of FSI_Nxt_Free is 18
which is the cluster index lastly allocated. The third step is
to write files F, G and H sequentially. Similarly to the
example in Fig. 1, the file allocator reaches the end of data
area when searching available clusters for file F and restarts
the search operation from the beginning of data area. The
fourth step is to delete files H and E. Then clusters allocated
for file H and E (clusters 8, 9, 10, 16, 17 and 18) become
available. The final fifth step is to write file I and file]
sequentially after index 13 lastly allocated, where the
cluster size of file] is 3. At this moment depicted in Fig. 2(b),

the creation time of the deleted file H is later than that of a
latter file F.

Next, we analyze the creation time bound of recovered
files for multiple traversals of the Linux FAT32 file allocator.
We verify that there are at most n candidates for the cre-
ation time bound of each deleted file, where n is the
number of traversals by the Linux FAT32 file allocator. In
Fig. 3, file X; denotes some file allocated during the i-th
traversal. In the case that file X; is deleted before the second
traversal passes the clusters used for file X, file X, occupies
these clusters during the second traversal. When file X5 is
deleted and recovered, its creation time is bounded only by
the files allocated during the second traversal but not by
the files allocated during the first traversal. On the contrary,
in the case that file X; is deleted after the second traversal
passes the clusters used for file X3, file X; still remains in
these clusters during the second traversal because the
Linux FAT32 file allocator performs only the forward search
with wraparound operation. When file X; is recovered, its
creation time is bounded only by the files allocated during
the first traversal. Unfortunately, there is no information
remaining about deleted files and thus we cannot differ-
entiate during which traversal the deleted file was
allocated.

Minnaard addressed that if there exist data behind the
end of the lastly allocated file, the file allocator traverses
the storage space more than once (Minnaard, 2014). Based
on this criterion, it can be determined whether the file
allocator traverses the storage space more than once or not.
However, it is unknown how to determine at which
traversal a deleted file was allocated for multiple-traversals
cases of the file allocator. There is no reported information
to differentiate the two cases of Figs. 1(b) and 2(b). In the
example of Fig. 1(b), the deleted file C is allocated during
the first traversal, whereas the deleted file H in the example
of Fig. 2(b) is allocated during the second traversal. Hence,
the creation time of the recovered file C in Fig. 1(b) is
bounded by two files A and F neighboring with timestamps
among the files allocated during the first traversal, or

122 Letter to the Editor / Digital Investigation 15 (2015) 119—123

6 7 8 9 10

00| A A A B B

B B C C C

10| D D D D D

E | E| Ea

(a) FSI_Nxt Free Pointer

6 7 8

(o]
o

00| A A A F F

G G H H H

10 I | J J] W E E E F F

(b) FSI Nxt Free Pointer

Fig. 2. Working example 2 of Linux FAT32 file system.

dat? agea data area
sta end
Ist traverse L G — >
. ﬁle Xz _______________
2nd traverse == flex,d >
° -

[} [}

[} [}

[}
n-th traverse Ii __________ file X, >

Fig. 3. Illustration for creation time bound of a deleted file.

bounded by two files G and H neighboring with time-
stamps among the files allocated during the second
traversal. When T(x) denotes the creation time of file x, the
creation time bound of the recovered file C in Fig. 1(b) is
T(A)<T(C)<T(F) or T(G)<T(C)<T(H). The creation time
bound of the recovered file H in Fig. 2(b) is
T(A) < T(H) <T(F) or T(G) < T(H) < T(I).

By a similar reason, if a deleted file is recovered when
the file allocator performs the n-th traversal, there are n
allocation cases for the deleted file, each case representing
the allocation during the i-th traversal for 1 <i<n as
shown in Fig. 3. To the best of our knowledge, there has
been no study that finds a hint to differentiate at which
traversal the deleted file was allocated for multiple tra-
versals of the file allocator. Consequently, the creation time
of each deleted file must be bounded by at most n sets of
available files separately, each set representing the avail-
able files allocated during the i-th traversal for 1 <i < n.In
the example of Fig. 1(b), a set {A, F} represents the avail-
able files allocated during the first traversal and a set
{F, G, H, I} represents the available files allocated during
the second traversal.

Experiments of commercial multimedia digital
devices

For practical correctness of our analysis, we examine the
file allocation pattern of two commercial in-car dashboard
cameras: Inavi Black FXD700 Mach of Thinkware Corpo-
ration and FineVu Pro II of Finedigital Corporation. The two
devices employ Linux operating system and store recorded
video contents in SD flash memory cards. FTK Imager tool is
used to dump the binary image of a memory card, and
WinHex tool is used to interpret all binary codes of the
dumped image.

In experiments of the Inavi Black device, the default
setting of 1920 x 1080 resolution is applied and a FAT32
formatted memory card with 7.47 Gbytes size is used. Its
kernel version is 2.6.37. Video contents recorded for a long
time are divided into multiple video files with the
maximum recording time of 1 min. All video files are
constructed to have the AVI structure and the size of 1-min
recording video file is about 80 Mbytes. Video files can be
classified into multiple groups: driving-time recording
video, swaying-moments recording video, manual

Letter to the Editor / Digital Investigation 15 (2015) 119—123 123

recording video, etc. The first wraparound event of the file
allocator occurs at about 80 min running. Before the first
wraparound event, the file allocator stores the video files
sequentially from the beginning of the data area. A video
file recorded earlier is located in a former position of data
area and that recorded later is located in a latter position,
which follows the pattern addressed in the Minnaard's
article.

When the file allocator approaches the end of data area,
the device automatically deletes some files in order to
prepare enough available space. When selecting the files
being deleted, driving-time recording video files are pref-
erentially selected rather than the other class video files
such as swaying-moments video files that may include
critical scenes caused by shocking of external contacts.
Among driving-time video files, those with earlier creation
time are preferentially deleted. As a result, the files being
deleted are selected non-linearly from the beginning of
data area and thus available spaces generated from the
deleted files are not always neighboring. After the first
wraparound event, the file allocator searches for available
space from the beginning of data area. The file allocator
assigns a small available space to a large video file ac-
cording to the next available algorithm. We examined the
file allocation pattern until the fifth wraparound event
occurs, and confirmed that the file allocator follows the
pattern described in Section (Creation time bound analysis
for multiple traversals of file allocator).

In experiments of the FineVu device with kernel version
of 2.6.18, 1920 x 1080 resolution is applied and a FAT32
formatted memory card with 14.95 Gbytes size is used.
Video contents recorded for a long time are divided into
multiple video files with the maximum recording time of
3 min. All video files have the AVI structure and the size of
3-min recording video file is about 180 Mbytes. The first
wraparound event occurs at about 150 min running. The
rest file allocation behavior of this device is identical to that
of the Inavi Black device. We confirmed that the file allo-
cator of this device follows the pattern given by Minnaard
before the first wraparound event, and follows our analysis
given in Section (Creation time bound analysis for multiple
traversals of file allocator) between the first wraparound
event and the fifth wraparound event.

Directory entries store metadata of each file, including
the file creation time and the offset of clusters assigned to
file storing. If the metadata of a deleted file remains in its
corresponding directory entry, the exact creation time of a
deleted but recovered file can be retrieved by matching the
cluster offset of the recovered file with metadata of all
directory entries. However, the file allocators of these de-
vices overwrite the deleted directory entries with metadata
of new files according to the first available algorithm that
scans available entry linearly from the beginning whenever
needing a new entry. In this case, the directory entries of
deleted files are overwritten in most cases.

Additionally, we examine the file allocation pattern of a
FAT32 formatted memory card upon PCs with Windows XP
and Windows 7. The Windows FAT32 file allocator searches
for available space linearly from the beginning of data area

after each wraparound event. As addressed in the Min-
naard's article, the Windows FAT32 file allocator searches
according to the next fit algorithm that skips available
spaces smaller than the size of a file being stored. The
following behavior is not mentioned in the Minnaard's
article. The Windows FAT32 file system searches for avail-
able directory entry according to a variant of the next
available algorithm, whereas the Linux FAT32 file system
does according to the pure first available algorithm. The
Windows FAT32 file system searches according to the next
available algorithm until the last directory entry in a cluster
is assigned to metadata recording of a new file. After the
last directory entry is assigned, it searches for available
entry from the first directory entry of the cluster according
to the first available algorithm. Assigned entries are
released and become available if their corresponding files
are deleted. When all entries of the cluster are unavailable,
another available cluster is allotted to further recording of
directory entries. Similarly, available entries of the newly
allotted cluster are assigned according to the next available
algorithm until the last entry of the cluster is assigned. In
the case of Windows FAT32 file systems, the metadata of
recently deleted files remains in their corresponding
directory entries in most cases.

Acknowledgments

This research was supported by the Public Welfare &
Safety Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Sci-
ence, ICT & Future Planning (2012M3A2A1051118).

References

Carrier B. File system forensic analysis. Addison-Wesley; 2005.

Minnaard W. The Linux FAT32 allocator and file creation order recon-
struction. Digit Investig 2014;11(4):224—-33.

Nutter B. Pinpointing TomTom location records: a forensic analysis. Digit
Investig September 2008;5(1—-2):10—8.

van Eijk O, Roeloffs M. Forensic acquisition and analysis of the random
access memory of TomTom GPS navigation systems. Digit Investig
May 2010;6(3—4):178—88.

Wan Yeon Lee

Dept. of Computer Science,
Dongduk Women's University,
Seoul 136-714,

South Korea

Hyuckmin Kwon, Heejo Lee”

Dept. of Computer Science and Engineering,
Korea University,

Seoul 136-713,

South Korea

* Corresponding author.
E-mail address: heejo@korea.ac.kr (H. Lee)

16 April 2015
Available online 21 October 2015

http://refhub.elsevier.com/S1742-2876(15)00099-7/sref1
http://refhub.elsevier.com/S1742-2876(15)00099-7/sref2
http://refhub.elsevier.com/S1742-2876(15)00099-7/sref2
http://refhub.elsevier.com/S1742-2876(15)00099-7/sref2
http://refhub.elsevier.com/S1742-2876(15)00099-7/sref3
http://refhub.elsevier.com/S1742-2876(15)00099-7/sref3
http://refhub.elsevier.com/S1742-2876(15)00099-7/sref3
http://refhub.elsevier.com/S1742-2876(15)00099-7/sref3
http://refhub.elsevier.com/S1742-2876(15)00099-7/sref4
http://refhub.elsevier.com/S1742-2876(15)00099-7/sref4
http://refhub.elsevier.com/S1742-2876(15)00099-7/sref4
http://refhub.elsevier.com/S1742-2876(15)00099-7/sref4
http://refhub.elsevier.com/S1742-2876(15)00099-7/sref4
mailto:heejo@korea.ac.kr

	Comments on the Linux FAT32 allocator and file creation order reconstruction [Digit Investig 11(4), 224–233]
	Introduction
	Outline of Minnaard's creation order reconstruction method
	Creation time bound analysis for multiple traversals of file allocator
	Experiments of commercial multimedia digital devices
	Acknowledgments
	References

