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Abstract A smart grid is verging on a promising technology for reforming global
electrical grids. Currently, attackers compromise security and privacy by mali-
ciously modifying the memory of smart grid devices. To thwart such attacks,
software-based attestation protocols ensure the absence of malicious changes. A
verifier and a target device locally generate their own checksums by memory
traversal, and the verifier attests the target device by comparing the checksums.
For smart grids, however, two challenges are arise in practically deploying the
attestation protocol: verification overhead for large-scale networks and evasion of
attestation by memory replication. To address these challenges, we propose a
novel software-based attestation technique, termed SMATT (Smart Meter
ATTestation), to address the aforementioned two challenges by leveraging mul-
tiple target selection and copy-proof memory. A verifier randomly selects multiple
smart meters, and receives checksums. The verifier only compares the checksums
instead of performing memory traversal, thereby remarkably reducing the com-
putational overhead. To prevent memory replication, we design a customized
copy-proof memory mechanism. The smart meter outputs garbage values when
copy-proof memory sections are being accessed, and thus, attackers cannot rep-
licate the memory. Furthermore, we define an SI epidemic model considering two
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attestation parameters, the number of infectious smart meters and the number of
selected smart meters by a verifier, to enhance the malware detection accuracy of
SMATT. In our experimental environments, SMATT takes only 20 s for a verifier
to attest millions of smart meters. In addition, SMATT detects malware with over
90 % probability, when the malware tampers with 5 % of the memory.

1 Introduction

A smart grid, an ongoing modernization of a power grid, is a system that integrates
existing electricity infrastructure with IT networks. This provides further benefits
to customers and power utilities: reducing electricity costs for customer and
controlling power generation for power utilities [1, 2]. Especially, a smart meter
plays a key role to facilitate such beneficial services, and thus it becomes an
attractive target for an adversary to gain an advantage and cause social chaos
[1, 3–5]. For example, malware infiltration on easily accessible smart meters is a
perplexing problem on a faraway utility, because it can manipulate electricity costs
or fabricate metering information for a targeted home. This vulnerability can be
monetized by attackers.

A technology for malware detection in an embedded device is to check the
integrity of the device’s firmware. In particular, software-based attestation tech-
niques remotely verify whether the memory of the embedded device is maliciously
changed [6, 7]. These techniques are based on a challenge-response protocol.
A verifier sends a challenge to a target device, and then it reads entire memory in a
pseudo-random fashion. The checksum as a result of pseudo-random memory
traversal is sent from the target device to the verifier. Finally, the verifier computes
the checksum in the same fashion, and compares it with the checksum from the
target device.

However, the existing attestation techniques cannot be easily applied to smart
meters. The complexity and scale of power grids cause new challenges: man-
agement of millions of devices and routine maintenance [2]. Especially, from
attestation perspective, it is difficult for the verifier to attest millions of smart
meters due to the heavy processing burden caused by checksum computation.
Furthermore, recent research indicates that malware can subvert memory [8], and
contribute to evasion of attestation [9].

In this paper, we propose a Smart Meter ATTestation mechanism, termed
SMATT, that reduces computational overhead of a verifier and prevents memory
replication to evade attestation. It leverages multiple target selection and copy-
proof memory sections. Multiple meters manufactured with the same configu-
ration, namely identical smart meters, are randomly selected by the verifier.
Then, the verifier only compares the checksums without pseudo-random memory
traversal. As a result, SMATT reduces the verification overhead. To prevent
memory replication attacks, the smart meter sets the copy-proof memory sections
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and monitors memory-related APIs. If the copy-proof memory sections are being
accessed through the APIs, then the smart meter outputs garbage values as if
they are real ones. Attackers obtain memory values ruined by the garbage, and
the replicated smart meter fails to attest. Moreover, we define attestation
parameters to enhance the malware detection accuracy of SMATT by using the
popular SI epidemic model [10]. Our experiments show that SMATT reduces
verification overhead, and detects memory falsification by malware with a high
probability.

The main contribution of our work is twofold. First, SMATT reduces the
verification overhead on the verifier; it is efficient for large-scale smart grids that
consist of a large number of smart meters with a small number of verifiers. Second,
SMATT enhances the robustness of attestation by preventing memory replication
attacks.

The remainder of this paper is organized as follows. In Sect. 2, we introduce
several problems, and describe the detail attestation procedure in the next section.
Security analysis and evaluation are followed in Sects. 4 and 5. Finally, Sect. 6
presents our conclusion.

2 Problem Definition

In this section, we describe the weaknesses in software-based attestation protocols
and state the problem that we aim to solve throughout this paper.

2.1 Weaknesses in Software-Based Attestation Protocols

Software-based attestation protocols have been proposed for embedded devices.
Due to the constrained resources of embedded devices, the existing protocols
pursue a lightweight design, and it can be suitable for the smart meter [2].
Nevertheless, there are several remaining issues yet to be solved in terms of
verification overhead and malware infiltration [2].

Immense verification overhead by large-scale networks. Considering the
complexity and scale of smart grids, a large number of smart meters will create a
great computational overhead for a verifier. That is, a verifier linked to many smart
meters should compute the checksums of each smart meter. For example, the
verifier can become exhausted when many attackers send an overwhelming
amount of miscalculated checksums. Therefore, it is a challenge to design an
efficient software-based attestation protocol for the verifier that manages a large
number of smart meters.

Evasion of attestation by memory replication attacks. Malware utilizes a
linear scan of memory to create trial data from all possible memory positions [9].
An attacker can obtain whole memory values including critical information, and
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can produce replicated smart meters. The attacker modifies the firmware of one’s
smart meter in order to make illegal profits such as modifying electricity usage.
Meanwhile, the replicated smart meter transmits correct responses to verifiers and
success to attest. For example, Song et al. [11] designed a one-way attestation
protocol that leverages built-in values as challenges to compute a checksum.
However, the challenges can be predicted by a memory replication attack, and
thus, the attacker can compute the correct checksum.

2.2 Problem Statement

A viable attestation mechanism needs to address the following requirements:

• To reduce verification overhead on the verifier that handles a large number of
smart meters.

• To prevent evasion of attestation by the memory replication attack.

Our goal is to design the attestation protocol that satisfies the two requirements.

3 SMATT: Smart Meter ATTestation

We introduce three assumptions that comply with the NIST guidelines for smart
grids [3]. Then, we describe SMATT in detail. Finally, we determine two attes-
tation parameters to enhance the malware detection accuracy of SMATT.

3.1 Assumptions

SMATT should incorporate the following three technical assumptions.

1. Time synchronization: Accurate and reliable time synchronization is essential
to ensure that equipments operate correctly in the smart grid. Especially, a
metering service based on time-of-use pricing is the reason that time syn-
chronization is necessary.

2. Encrypted communication: Existing key management solutions such as Public
Key Infrastructure (PKI) are considered as the basis of further innovation for
secure communication between smart meters and verifiers [3].

3. Identical smart meters: A manufacturer produces identical smart meters
installed an exact same firmware and configuration. The identical smart meters
generate same checksums as the result of memory traversal. A verifier has
information that indicates the groups of identical smart meters.
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3.2 SMATT Operations

SMATT operations are based on a challenge-response protocol, which consists of
four steps: multiple target selection, copy-proof memory generation, checksum
generation and verification.

Multiple target selection. In existing attestation mechanisms, a verifier should
perform checksum computing operations to attest a single target (smart meter), and
it causes very high computational overhead for the verifier in large-scale networks
like smart grids. Multiple target selection is designed to reduce the overhead
problem by comparing checksums instead of computing them.

A verifier selects multiple identical smart meters to be attested, and receive
checksums. Then, the verifier compares the checksums and is able to identify
which smart meter sends a different checksum. Hence, the verifier can detect
compromised meters without checksum computing operations. A detailed
description is as follows:

1. A verifier has a private key (K�1
V ). Then, it shares a public key (KV ) and a

symmetric key (S) with smart meters. All packets are encrypted by the sym-
metric key (ESf�g).

2. During usual period, the verifier occasionally transmits the encrypted packet,
ESfflag ¼ false; copy ¼ false; datag; to its managed meters. The flag = false
means that the verifier is in usual period.

3. During attestation period, the verifier (V1) determines a group to be attested. In
Fig. 1 (left), there are two identical groups, G1 = {M1, M4, M8} and
G2 = {M2, M3, M5, M6, M7, M8}, and V1 selects G1. Among the G1, V1
randomly selects multiple smart meters MN to be attested.

4. The verifier sets the flag = true and inserts a challenge, C ¼ EK�1
V
fIDM; seedg.

After decryption using KV , IDM is utilized to identify each selected meter. The
seed becomes the input for the memory traversal algorithm.

5. The selected meter returns a response (R = H(chk)) to the verifier, where H(�)
denotes a cryptographic hash function and chk denotes a checksum.

Fig. 1 Randomly selected smart meters (M1, M4, M8) exchange challenges (C) and responses
(R) with a verifier (V1) (left). During the attestation period (solid arrows), V1 inserts a challenge
(C), and receives a response (R) from the smart meter (right)
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Copy-proof memory section. An attacker can evade attestation using the
memory replication attack (viz., Sect. 2). The effective scheme to prevent the
attack is to utilize memory randomization. The values of special memory sections
are periodically changed, so that the attacker cannot obtain the real values of
whole memory. However, since the smart meter uses a flash memory as storage,
the frequent changes of specific memory section can cause the ‘‘wear-out’’
problem that shortens flash memory life.

Therefore, we define copy-proof memory sections in the smart meter that
addresses the wear-out problem. The copy-proof sections are scattered throughout
the memory, and they are filled with garbage values. The smart meter monitors
memory-related APIs, such as memset and memcpy. During attestation period, the
memory-related APIs output real values of the copy-proof sections. During usual
period, however, the APIs output random garbage values instead of real ones.
Consequently, the attacker cannot replicate the copy-proof sections, and thus, the
attacker’s smart meter containing garbage copy-proof sections fails to attest.
Figure 2 shows conceptual operations that output different memory values
depending on the flag.

Moreover, the smart meter sets copy = true if the memory-related APIs access
to the copy-proof sections during attestation period. Thus, the verifier can rec-
ognize the illegal access to the copy-proof sections if the smart meter sends
packets including copy = true during usual period.

Checksum generation. SMATT adopts a block-based pseudo-random memory
traversal technique that generates a checksum over the memory cells of the smart
meter [7]. A seed (S) substitutes for the input value of RC4(�), which is a pseudo-
random number generator. The memory traversal addresses (A) meets
size_of_memory by modulo operation. memory_traversal(A, size_of_block) reads
memory from address A to A+size_of_block, and outputs its result to MEMi, where
MEMi denotes the memory values of the ith traversal. The chk is derived from the
concatenation of MEMi and CP MEMi, where CP MEMi denotes the memory
values of copy-proof sections of the ith traversal. After generating the chk, A
becomes the new seed for the next step. These four sequences are repeated until
the number of iterations reaches a predefined maximum iteration number (T).
Finally, the chk is hashed by a cryptographic hash function such as SHA-1 to avoid
exposing the original chk. Equation (1) represents the checksum generation.

Fig. 2 Memory-related APIs are monitored by SMATT. When copy-proof selections are being
accessed through those APIs, SMATT determines whether the outputs become real values
according to the flag
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HðchkÞ ¼ Hð
XT

i¼1
ðMEMijjCP MEMiÞ ð1Þ

Checksum verification. Selected meters send a H(chk) to a verifier. In the
verifier, the H(chk) is compared with that of each selected meter. If these H(chk)’s
are identical, the verifier determines that the smart meters are valid. Thus, SMATT
reduces verification overhead because the verifier does not need to perform
memory traversal.

3.3 Determining Attestation Parameters

SMATT leverages randomization and multiple target selection to reduce verifi-
cation overhead and prevent evasion of attestation. However, if there are a suffi-
cient number of compromised meters, only compromised meters can be selected
by a verifier.

In other words, the verifier cannot distinguish between legitimate meters and
compromised meters, since the compromised meters can provide the same
incorrect checksum. To avoid the situation, a verifier should select one legitimate
meter at least; Eq. (2) shows the condition

k [ IðtÞ; ð2Þ

where I(t) denote the malware spreading ratio at a time t, and k denote the number
of meters to be selected by a verifier. Here, we define two attestation parameters,
I(t) and k, in order to enhance the malware detection accuracy of SMATT.

Determining I(t). Supposing a smart meter becomes either susceptible (S) or
infected (I). We utilize a deterministic epidemic model, the SI model to analyze
malware propagation in the smart grid. The SI epidemic model [10] for smart
meters is described in Eq. (3).

dI

dt
¼ aSI; ð3Þ

where a is the infection rate of smart meters. It depends on the number of
susceptibles (S) and infectives (I). Also, Eq. (4) explains a:

a ¼ bx

N
; ð4Þ

where x means contacts per unit of time. b is the probability of infection when an
infective contacts a susceptible. N means the total number of smart meters. Since
we assume that a smart meter can be either S or I, S becomes N - I. Now, we can
derive Eq. (5):

dI

dt
¼ a � ðN � IÞI ¼ aNI � aI: ð5Þ
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Then, Eq. (6) is also derived by the general solution.

IðtÞ ¼ N

1þ cNe�aNt
; ð6Þ

where c is a constant that depends on the initial conditions.
We use the same environment considered in the reports [12, 13]. The number of

smart meters per house is 3 (gas, electricity, and water meters), and there are
105,000 meter=km2 in an urban area such as London. The maximum contacts per
unit of time is set to 0.1/s. Hence, we set I0 = 3, N = 105, 000 and x = 0.1, and
obtain Eq. (7). The result of Eq. (7) is shown in Fig. 3 (left).

IðtÞ ¼ N

1þ 1
3 ðN � 3Þe�aNt

: ð7Þ

Determining k. Next, we determine the k. As we mentioned, a verifier should
select at least one legitimate meter. That is, k is greater than the number of infected
smart meters during attestation. By using the parameter, I(t), the verifier sets
k [ I(l), where l means the attestation cycle. The k related to I(l) is shown in
Fig. 3 (right). Depending on the availability of network resources, an administrator
can consider two possible cases to determine the k:

• In the case of a low-bandwidth smart grid network, a verifier should set k high.
For example, if b = 0.9 and l = 90, then k = N 9 0.1.

• In the case of a high-bandwidth smart grid network, a verifier should set k low.
For example, if b= 0.9 and l = 60, then k = N 9 0.01.

Fig. 3 According to research on malware propagation [17], malware has the characteristics of
slow start and exponential propagation (left). The malware spreading ratio at a time t (I(t))
determines the number of meters to be selected (k). That is, k should be greater than the number
of infected smart meters at a time l, where l means the attestation cycle (right)
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4 Security Analysis

In this section, we analyze the efficiency of SMATT in terms of time complexity,
and we describe how SMATT prevents evasion of attestation by malware.

4.1 Verification Overhead

In practice, estimated numbers of meters per sector range from approximately
12,000 to 35,000 in London [12]. It can be seen that there is a large variation in the
number of meters per sector. However, SMATT does not need memory traversal
of the verifier. The time complexity of checksum verification in SMATT takes
O(N), while that of the existing attestation protocols takes O Nm ln m

b

� �
, where N is

the number of smart meters, b means the size of a block, and m denotes the
memory size [7, 14].

4.2 Malware Infiltration

We define feasible attack scenarios, and then we discuss how SMATT thwarts
them.

Attack scenarios and countermeasures. An attacker with the objective of
monetization aims to inject malware into easily accessible smart meters. The
malware contributes to evasion of attestation by using a proxy attack and a
memory attack.

A proxy attack scenario. The attacker installs a proxy meter that generates a
correct checksum instead of a compromised meter, and evades attestation. The
attacker abuses 2 m: compromised and proxy meters. The compromised meter
simply forwards the attestation request from the verifier to the proxy meter. Then,
the proxy meter returns the correct checksum to the compromised meter. This
enables the compromised one to evade attestation by forwarding the checksum to
the verifier.

Unfortunately, the ID of each meter prevents against the proxy meter. The
compromised meter should encrypt the challenge that includes the proxy ID, and
sends it to the proxy meter. Because malware cannot infer the private key for the
encryption, it has no chance to generate the new challenge, and evasion of
attestation by the proxy meter is defeated.

A memory replication attack scenario. The attacker abuses the compromised
meter that sends the correct checksum to the verifier, and evades attestation. By the
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memory replication attack, the attacker obtains knowledge of the entire program
memory and the correct checksum. The compromised meter returns the checksum
to the verifier when attestation begins.

In SMATT, however, copy-proof sections prevent the memory replication
attack. Since SMATT differentiates the output values of the copy-proof sections
when the attacker attempts to access, the attacker cannot replicate the smart meter
memory and fails to attest. A sophisticated attacker attempts to access the copy-
proof sections only during attestation period, because it is the only time that
SMATT gives real values. Nevertheless, the attacker cannot anticipate when
attestation period begins (false = true) because of the packet encryption; there-
fore, the attacker cannot help guessing the timing of attestation period, and it leads
flag = false and copy = true, which means illegal access to the copy-proof
sections during usual period.

5 Experiment and Results

We first establish an experimental environment. Then, we examine the computa-
tional overhead of the verifier in the environment, and measure the malware
detection rate.

5.1 Experimental Environment

SMATT is implemented on two Android devices (as smart meters) and a laptop (a
verifier). Verifier’s hardware specification is Intel(R) Atom 1.60 GHz CPU
and1 GB RAM, while the two Android devices are the Google development
smartphone (Nexus-dev1), Scorpion 1 GHz CPU and 512 MB RAM. The Android
smartphone provides similar hardware specifications to the smart meter [15];
moreover, Google announced that the Android OS can be applied at home in the
smart grid [16].

5.2 Verification Overhead

We examine verification overhead by measuring the time overhead to attest lots of
smart meters. The Android device simulates lots of smart meters by sending
k checksums at once. And, we assume several variables related to smart grid
requirements and the attestation parameters that we mentioned in Sect. 3. Based on
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the requirements [12, 13], the network latency between the verifier and a smart
meter is 5,000 ms and the data size is 35 bytes. In addition, we set k = N 9 0.2
and N = 105,000. In our environment, SMATT takes 20,047 ms, which is more
efficient than the time of the typical software-based attestation as the verifier
respectively sends a challenge to each smart meter. The time is approximately
6 days in the worst case. Therefore, the experimental result shows that SMATT
has low verification overhead.

5.3 Malware Detection

We vary the fraction of malware in smart meter memory to measure the proba-
bility of malware detection. Figure 4 shows the probability of malware detection.
SMATT on an Android device has a different fraction of malware ranging from 5
to 30 %, since the attacker can exploit the available space, approximately 11.6 %,
on average [8] to inject malware. If malware takes 10 % of program memory, a
smart meter should traverse memory contents approximately 30 times. Although
malware changes a small amount of memory contents, such as 5 % of program
memory, it can be detected by traversing memory 50 times. The experimental
result shows that SMATT detects malware with a high probability.

Fig. 4 The probability of malware detection: SMATT thwarts over 90 % of the attacks, if the
malware tampers with 5 % of the memory of the smart meter
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6 Conclusion

In this paper, we propose a novel software-based attestation protocol for smart
meters, SMATT, which provides a technique to reduces the processing burden of a
verifier and prevents evasion of attestation by memory replication attacks.
Multiple target selection contributes to simplify the verification operation of a
verifier, and copy-proof memory protects against memory replication attacks. We
analyze the attestation parameters to enhance the malware detection accuracy of
SMATT. In our experiments, SMATT is remarkably faster than typical attestation
protocols due to its reduction of verification overhead, and it has a high detection
probability with low memory falsification rates.
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