
Computers & Security 148 (2025) 104181

A
0

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

A large-scale analysis of the effectiveness of publicly reported security
patches
Seunghoon Woo, Eunjin Choi, Heejo Lee ∗

Department of Computer Science and Engineering, Korea University, Seoul, 02841, Republic of Korea

A R T I C L E I N F O

Dataset link: https://github.com/wooseunghoo
n/COSE_patchStudy

Keywords:
Security patch
Software vulnerability
Vulnerability propagation
Patch reliability and flexibility
Open-source software security

A B S T R A C T

Public vulnerability reports assist developers in mitigating recurring threats caused by software vulnerabilities.
However, security patches that lack effectiveness (1) may fail to completely resolve target vulnerabilities after
application (i.e., require supplementary patches), or (2) cannot be directly applied to the codebase without
modifying the patch code snippets. In this study, we systematically assessed the effectiveness of security patches
from the perspective of their reliability and flexibility. We define a security patch as reliable or flexible,
respectively, if it can resolve the vulnerability (1) without being complemented by additional patches or (2)
without modifying the patch code snippets. Unlike previous studies that relied on manual inspection, we assess
the reliability of a security patch by determining the presence of supplementary patches that complement
the security patch. To evaluate flexibility, we first locate vulnerable codes in popular open-source software
programs and then determine whether the security patch can be applied without any modifications. Our
experiments on 8,100 security patches obtained from the National Vulnerability Database confirmed that one
in ten of the collected patches lacked effectiveness. We discovered 476 (5.9%) unreliable patches that could
still produce security issues after application; for 84.6% of the detected unreliable patches, the fact that a
supplementary patch is required is not disclosed through public security reports. Furthermore, 377 (4.6%)
security patches were observed to lack flexibility; we confirmed that 49.1% of the detected vulnerable codes
required patch modifications owing to syntax diversity. Our findings revealed that the effectiveness of security
patches can directly affect software security, suggesting the need to enhance the vulnerability reporting process.
1. Introduction

The reuse of open-source software (OSS) plays a key role in in-
novative software development. Developers can easily reuse desired
functionalities from a reliable OSS rather than re-inventing the wheel,
which in turn leads to a faster release of their software products in the
ever-competitive markets (Woo et al., 2021b; Zhan et al., 2021).

Meanwhile, the reuse of OSS without proper management can
threaten the entire system. One representative problem is the prop-
agation of vulnerabilities, which has occurred frequently in recent
code-sharing cultures (Kim et al., 2017; Woo et al., 2022; Kang et al.,
2022; Woo et al., 2023). To prevent recurring threats caused by
propagated vulnerabilities, relevant information about discovered vul-
nerabilities (e.g., security patches, severity, and vulnerability types)
is maintained through public vulnerability databases in the Common
Vulnerabilities and Exposures (CVE) system.

Because developers rely on CVE information to mitigate threats
imposed by vulnerabilities, the quality control of public vulnerability
reports (e.g., Dong et al., 2019; Woo et al., 2021a; Shi et al., 2022)

∗ Corresponding author.
E-mail address: heejo@korea.ac.kr (H. Lee).

has become an important issue in software security. We focused on
the effectiveness of the disclosed security patches from the information
provided in public vulnerability reports. We determined that a security
patch was effective if the target vulnerability was resolved by applying
it without requiring any additional conditions.

A security patch can modify various code parts of the codebase,
and when additional measures are required in any of these parts, we
define the security patch as inefficient. Specifically, we assessed the
effectiveness of the security patches from two perspectives: reliability
and flexibility.

• Patch reliability. We define a security patch as reliable if the
target vulnerability is resolved by applying a disclosed security
patch without requiring any additional patches.

• Patch flexibility. We define a security patch as flexible if a prop-
agated vulnerability is resolved by applying a disclosed security
patch without modifying any patch code snippets.
https://doi.org/10.1016/j.cose.2024.104181
Received 16 September 2023; Received in revised form 15 August 2024; Accepted
vailable online 29 October 2024
167-4048/© 2024 Elsevier Ltd. All rights are reserved, including those for text and
23 October 2024

data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/cose
https://www.elsevier.com/locate/cose
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
mailto:heejo@korea.ac.kr
https://doi.org/10.1016/j.cose.2024.104181
https://doi.org/10.1016/j.cose.2024.104181

S. Woo et al.

m

v

a
a
t

a

s
f
o

a

t
o

e
w
t
s

v

m
8
p
t
r
d
p

t
a

r
p
e
c
a

s

m

t
a
s
m
b

w

f

a
p

Computers & Security 148 (2025) 104181
If a security patch lacks reliability, the target vulnerability may not
be completely resolved even after the patch is applied (Li and Paxson,
2017; Liu et al., 2020). To make matters worse, unreliable patches

ay generate other security issues (Section 3.3.6). Consequently, de-
velopers may misinterpret software that contains incompletely resolved
vulnerabilities as safe to use. Furthermore, most public vulnerability
reports disclose only security patches applied to the main branch of a
ulnerable OSS. When developers reuse OSS codes from branches other

than the main branch, the disclosed patches may not be applied directly
because of the syntax diversity of vulnerable codes (Tan et al., 2022).

To our knowledge, no previous studies have examined the reliability
nd flexibility of security patches on a large scale. Previous studies that
ttempted to analyze patch reliability were limited in scope because
hey examined a small number of software programs (e.g., An et al.,

2014; Park et al., 2012; Piantadosi et al., 2019), manually identified
unreliable patches among a limited number of vulnerabilities (e.g., Li
nd Paxson, 2017; Le et al., 2019; Liu et al., 2020), or focused on a

specific type of vulnerability (e.g., Kim et al., 2010). Although some
tudies have attempted to examine the presence of security patches
rom downstream vendors (e.g., Jiang et al., 2020; Zhang et al., 2021)
r analyze patch management within multiple branches of a single OSS

(e.g., Tan et al., 2022), none have examined the flexibility of security
patches from the perspective of addressing vulnerabilities propagated
to various OSS projects.

In this study, we perform a large-scale analysis of the effectiveness
of security patches. This comprises the following three main steps: (1)
security patch collection, (2) unreliable and inflexible patch detection,
nd (3) result analysis. For the experiments, we gathered 8100 security

patches from the National Vulnerability Database (NVD), written in the
top seven programming languages (including C, C++, and PHP) that
reported the most vulnerabilities (Section 2.2).

Thereafter, we detected unreliable and inflexible patches among
he collected security patches. To detect unreliable patches, we focus
n the complementarity between code commits. Instead of manually

examining each security patch, which requires considerable time and
ffort, we determined that a security patch is unreliable by checking
hether any supplementary patches have been applied to complement

he security patch; this allowed us to assess patch reliability on a large
cale (Section 3.1). Next, to identify inflexible security patches, we

examined whether a security patch could be applied to the propagated
vulnerabilities without any modification. Here, we leverage a state-
of-the-art technique (Woo et al., 2022), which can precisely discover
ulnerable codes propagated in various code syntaxes (Section 4.1).

In our experiments, we observed that one in ten security patches
lacked effectiveness. Specifically, we identified 476 (5.9%) unreliable
patches (Section 3.2), of which 239 were confirmed as requiring supple-

entary patches because they could cause further security issues. For
4.6% of the detected unreliable patches, the fact that supplementary
atches were required to resolve security issues was not disclosed in
he public vulnerability databases. This makes it difficult to address the
isks posed by unreliable patches in real-world software ecosystems. We
iscovered 302 incompletely patched codes in the latest versions of 95
opular OSS projects (Section 3.4).

Furthermore, we identified 377 (4.6%) inflexible security patches
hat could not be applied directly to address the propagated vulner-
bilities (Section 4.2). In fact, 49.1% of the detected vulnerabilities

required patch modification because of the diversity in the syntax of the
propagated vulnerable codes, which frequently occurs when developers
(1) reuse vulnerable code from a branch of an OSS other than the main
branch, or (2) modify some code lines in the propagated vulnerable
functions (Section 4.3.1).

Our findings provide insights into the effectiveness of the cur-
ent security patches and suggest directions for improving the current
ublic vulnerability reporting process (Section 5.1). Furthermore, our
xperimental results can be applied to various fields to enhance the se-
urity of real-world software systems, such as vulnerable code detection
pproaches (Section 5.2).

This study makes the following four main contributions.
2
• Large-scale analysis. For the first time, we present a study on the
effectiveness of security patches on a large scale, by devising
automated code analysis techniques that consider the comple-
mentarity between code commits and leveraging a state-of-the-
art vulnerable code clone detection technique. Consequently, we
identified 476 unreliable and 377 inflexible patches from 8100
security patches obtained from the NVD.

• Practical insights. We not only identified unreliable and inflexible
patches but also examined them from various perspectives to
gain practical insights. Furthermore, we investigated the potential
threats that these patches may pose to popular OSS projects.

• Proposal for improvement. Based on the experimental results, we
proposed a method for vulnerability reporting and security threat
management.

• Disclosure of datasets and results. The dataset and results of our
study are publicly available on GitHub (https://github.com/woo
seunghoon/COSE_patchStudy.)

2. Modeling and dataset

In this section, we introduce our modeling and datasets for assessing
the effectiveness of security patches.

2.1. Modeling and motivation

First, we introduce the modeling and the motivation behind the
tudy.

2.1.1. Definition
Security patch. We define the patch that should be applied to address
a CVE vulnerability as the security patch. In particular, all patches

entioned in the public vulnerability database (e.g., references) of a
specific CVE are considered as security patches for that CVE. Even if a
security patch modifies multiple sections of the codebase, we consider
it comprehensively as a security patch for a specific CVE.

Security patch effectiveness. We consider a security patch to be effec-
tive if it can be applied directly to a vulnerable code and fully resolve
he target vulnerability, without modifying any patch code snippets or
pplying supplementary patches. A security patch can modify multiple
ections of the codebase. If any of these sections require additional
easures to fully resolve the vulnerability, we consider the patch to

e inefficient.

2.1.2. Modeling
In this paper, we evaluate the reliability and flexibility of security

patches. To this end, we intend to model the effectiveness of patches.
The reliability and flexibility of a security patch depend on (1) which
software it is applied to and (2) how well it can be applied. Therefore,

e first modeled the patching targets and applicability of patches.
The applicability of security patches can be classified into the

ollowing three categories.

A1. Applicable. A security patch can be applied to vulnerable codes
to resolve vulnerabilities.

A2. Applicable but incomplete. A security patch can be applied to
vulnerable codes but fails to completely resolve the vulnerability
(e.g., a partial fix).

A3. Inapplicable. A security patch cannot be applied directly to a
target vulnerable code (e.g., when the syntax of the vulnerable
code differs from that disclosed).

The applicability of a patch is closely related to the target software
nd branches to which it is applied. Therefore, we then classified the
atching targets of the security patches.

https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy

S. Woo et al. Computers & Security 148 (2025) 104181
Fig. 1. Depiction of the patch application model. We model the patching targets (i.e.,
T1, T2, and T3) and applicability (i.e., A1, A2, and A3) to evaluate the reliability and
flexibility of security patches.

T1. Main branch of the original vulnerable software. Security
patches are first applied when a security issue is detected. Typ-
ically, security patches applied to this branch are disclosed in
public vulnerability databases (Tan et al., 2022).

T2. Other branches of the original vulnerable software. This
refers to branches other than the main branch of the software
where the vulnerability was first discovered and patched.

T3. Affected software. This refers to software (other than the origi-
nal vulnerable software) that contains vulnerabilities.

Fig. 1 depicts the patch application model considered in this study.
Here, A2 may occur in T1, T2, and T3, whereas A3 may occur in T2
and T3.

2.1.3. Analysis targets
Among the pairs of applicability and patching targets, we focused

on two combinations that have not been extensively investigated on a
large scale: (A2, T1) and (A3, T3) cases. Developers anticipate vulnera-
bilities to be resolved by applying disclosed security patches. However,
vulnerabilities can only be resolved by applying patches other than
those disclosed (A2, T1) (Li and Paxson, 2017; Liu et al., 2020).
Furthermore, when a vulnerable code is propagated to other software, a
disclosed security patch may not be applied without modification (A3,
T3) (Woo et al., 2022; Tan et al., 2022). In these scenarios, because
the target vulnerability cannot be resolved by applying the disclosed
security patch, the patch is determined to be ineffective according to
our definition (Section 2.1.1). Therefore, we examined the effectiveness
of security patches from the perspectives of their reliability (A2, T1) and
flexibility (A3, T3).

• Unreliable patch (A2, T1). A security patch has been disclosed
but to completely resolve the vulnerability, a supplementary
patch needs to be applied.

• Inflexible patch (A3, T3). A security patch has been disclosed
but the patch code needs to be modified to apply to the respon-
sible codebase.

The remaining cases are not discussed in depth for the following
reasons.

• A1 is ignored as it does not have any security issues.
• The cases (A2, T2) and (A2, T3) are also excluded because if a

security patch turns out to be unreliable (A2) on T1, it is also
unreliable in other patching targets; therefore, in the case of A2,
we decided that it was sufficient to investigate applicability in T1.

• Since security patches are generated in T1, we excluded (A3, T1)
under the assumption that there are no cases where a patch is
inapplicable in T1.
3
Fig. 2. Example of an unreliable patch.

Fig. 3. Example of a supplementary patch.

• Although a patch may not be applied in T2 due to differences
in code syntax between branches (A3), this has been covered in
previous studies (e.g., Tan et al., 2022) and we can leverage the
results.

Therefore, we considered it urgent to conduct a study on (A2, T1)
and (A3, T3), which can demonstrate the reliability and flexibility of
security patches.

2.1.4. Motivating example
We present an example in which a vulnerability is not fully resolved

because of an unreliable patch. In 2018, a severe vulnerability (CVE-
2018-1000006, CVSS 8.8) that enabled arbitrary command execution
through crafted URLs was discovered in Electron, a widely used
tool for creating cross-platform applications. The Electron team
acknowledged the risk of vulnerability and applied a security patch;
they attempted to block the crafted URLs using a blacklist method
(Fig. 2). However, it was later discovered that blacklists were case-
insensitive, indicating that attackers could still exploit this vulnera-
bility. To completely resolve this vulnerability, the Electron team
applied additional patches to their codebase (Fig. 3).

This example illustrates that unreliable patches pose a threat to
security. In particular, the Electron team made an additional patch
publicly available through vulnerability databases and assigned it a
new CVE ID (CVE-2018-1000118). However, in several cases of unreli-
able patches, the facts that (1) the previous security patch is unreliable
and (2) additional patches should be applied are not disclosed in
public vulnerability databases (Section 3.3.4). Therefore, developers
who reuse vulnerable OSSs may misinterpret that vulnerability can
be resolved by applying an unreliable patch, and until the supple-
mentary patch is applied, their software remains vulnerable to attacks
(real-world cases are presented in Section 3.4).

Hence, we need to assess the effectiveness of security patches to
reduce the attack surface of software containing vulnerable codes.
In addition, we examined the characteristics of ineffective patches to
gain a better understanding and devise more efficient methods for
addressing them.

2.2. Datasets

Here, we introduce the dataset construction approaches used in the
experiment.

S. Woo et al.

r
p

i

9
l
(

u
c
d

J
s
c

o

v

i

i

v

w

f
I
d
w
b
d

c

t
d
w
i
m

p

w

c
𝑐

Computers & Security 148 (2025) 104181
Table 1
Security patch dataset overview.

C/C++ PHP JavaScript Python Java Ruby Total

4420 1862 681 529 341 267 8100

2.2.1. Security patch dataset
To collect security patches, commit-like URLs were retrieved from

eferences in public vulnerability databases, which are among the most
recise patch collection methods (Li and Paxson, 2017; Tan et al., 2021;

Hong et al., 2022). Specifically, we examined the CVEs in the NVD
(using JSON feeds) and verified whether GitHub commit URLs were
ncluded in the references. We targeted GitHub because it is one of the

most popular hosting services and provides various commands and APIs
for examining vast amounts of source code. Thereafter, we collected
the security patches by crawling the identified commits. Consequently,
963 patch commits were collected as of March 2023. Among the col-
ected security patches, C/C++ patches occupied the highest proportion
54.6%), followed by PHP (23%), and JavaScript (8.4%).

However, this dataset contained several security patches that were
nrelated to programming languages (e.g., image files). Thus, we fo-
used only on a few popular programming languages to refine the
ataset and obtain unbiased experimental results. Specifically, we con-

sidered only the top seven languages (C, C++, PHP, JavaScript, Python,
ava, and Ruby) with more than 200 security patches. The seven
elected languages represented more than 80% of the security patches
ollected.

Finally, we collected 8100 security patches from the seven previ-
usly mentioned languages at the code level and used them to evaluate

the effectiveness of security patches. Table 1 summarizes the number
of collected security patches, and Fig. 4 shows the year, Common Vul-
nerability Scoring System (CVSS), and Common Weakness Enumeration
(CWE) distributions of the collected security patches.

When investigating the reliability of patches, we utilize all 8100
ulnerability patches, and when examining patch flexibility, we con-

sider only patches written in C/C++ (54%). Inflexible patches lead to
ssues when modifications in propagated code are assumed. (1) Such

modifications predominantly occur in C/C++, where code-level reuse
s more common than package reuse (Woo et al., 2021b; Na et al.,

2024), and (2) since techniques for detecting modified and propagated
ulnerabilities mostly target C/C++ (Xiao et al., 2020; Woo et al.,

2022), we focus on analyzing patch flexibility in patches and software
ritten in C/C++.

Note that the size of our dataset has expanded by approximately
twice compared to existing relevant approaches (e.g., Li and Paxson,
2017 and Woo et al., 2021a collected approximately 3000 and 4000
security patches, respectively). In particular, Li and Paxson (2017)
ocused on analyzing the efficiency of patches based on their metadata.
t is significant that we included even more C/C++ patches in our
ataset compared to the entire patch dataset of the previous study,
hile also analyzing the propagation of vulnerabilities and the flexi-
ility of C/C++ security patches. Therefore, we determined that our
ataset is sufficient to demonstrate the overall trend in the effectiveness

of security patches.

2.2.2. Software dataset
Two software datasets were constructed for this study. The first

dataset comprises software repositories that have reported the secu-
rity patches that we collected, and we used this dataset to assess
patch reliability. We can easily gather such software repositories by
parsing the commit URLs of the collected security patches, because
these URLs contain the name of the repository (Hong et al., 2022).
Consequently, we obtained 2538 repositories (using the git clone
command) that reported 8100 security patches. The repository that
 a

4
Fig. 4. Year, CVSS (version 2) and CWE distributions for the collected security patches.

reported the highest number of security patches was the Linux ker-
nel; other repositories such as TensorFlow and Spring were also
ollected.

The second dataset comprised popular GitHub repositories and
was used to evaluate the patch flexibility. An inflexible patch can be
detected when a propagated vulnerability has a different syntax than
he disclosed vulnerable code. Therefore, we should first construct a
ataset necessary for detecting propagated vulnerabilities. Specifically,
e focused on C/C++ languages because they are more prevalent

n source code reuse than library-level OSS reuse through package
anagers (Woo et al., 2021b; Xiao et al., 2020). Therefore, we collected

the top 2000 C/C++ repositories on GitHub based on the number of
stargazers, including OSS projects such as the Linux kernel, Redis,
and Git.

3. Patch reliability analysis

In this section, we examine the reliability of collected security
atches.

Analysis scope. In this study, we focused on identifying unreliable
security patches that are indisputable but unknown to the public. This
refers to instances in which developers have acknowledged that the
disclosed security patch is unreliable and have applied for additional
patches, but not disclosed through public vulnerability databases. If
this information is not publicly available, developers may mistakenly
believe that applying an unreliable patch resolves the vulnerability
completely, potentially giving rise to additional security threats (see
Section 2.1.4). Therefore, we focus on clearly identifying such unre-
liable security patches. Notably, if a security patch modifies multiple
areas of the codebase, and if any code modifications lack reliability,

e consider the patch to be unreliable.

3.1. Unreliable patch detection methodology

Consider the commit history (𝐶) of the file containing a vulnerable
ode as a sequence 𝑐0 (initial commit) to 𝑐𝑛 (latest commit), in which
𝑖 denotes an individual commit. Let 𝑐𝑣 be a disclosed security patch.

𝐶 = [𝑐0, 𝑐1,… , 𝑐𝑣,… , 𝑐𝑛−1, 𝑐𝑛]

To detect unreliable patches, we examine all commits applied after
the disclosed security patch commit was applied: if a code commit 𝑐𝑠
(𝑣 < 𝑠) that complements 𝑐𝑣 exists, we consider 𝑐𝑣 as an unreliable patch
nd 𝑐 as the supplementary patch for 𝑐 .
𝑠 𝑣

S. Woo et al.

l
t
k
b
i
v

t
d

c
a
p

e
i
h

m
a
p
f
c
t
(

c
i
(
m
c
m
c

b

r
t
w
c

i

t

l

a
c

s
w

s

p
t

Computers & Security 148 (2025) 104181
◦ Unreliable security patch. We determined that a security patch
is unreliable if it is complemented by supplementary patches.

Subsequently, the following question arises: how can supplementary
patches be detected? One approach is to manually inspect all commits
applied after the security patch. However, this task is impractical for a
arge number of security patches, because it requires significant exper-
ise and time. Instead, we decided to use a hint by investigating pairs of
nown unreliable patches and supplementary patches. We distinguish
etween known and hidden unreliable patches by determining whether
nformation regarding their unreliability has been disclosed in public
ulnerability databases.

3.1.1. Preliminary experiment
When an unreliable patch is detected, developers typically generate

a supplementary patch and sometimes assign a new CVE ID to it. Here,
he new CVE often specifies an incompletely resolved CVE ID in the
escription (e.g., ‘‘caused by an incomplete fix for CVE ID’’).

Accordingly, we scanned all CVEs that included the keyword ‘‘in-
omplete fix for CVE’’, and obtained 488 pairs of known unreliable
nd supplementary patches. After manual inspection, we targeted 236
airs that released code-level security patches via external references

(e.g., Git and Bugzilla). Thereafter, we analyzed the code change pat-
terns between known unreliable and supplementary patch pairs, and
xamined the code lines that were added or deleted in each patch to
nvestigate whether any patterns existed that could be used to detect
idden unreliable patches.

Interestingly, we confirmed that 72% (169) of the known supple-
entary patches corrected code lines modified in the unreliable patch
gain, in the same function. In the remaining cases, supplementary
atches modified different code areas with the same function or modi-
ied code lines with different functions. Because most of the remaining
ases did not exhibit a specific code change pattern, it was difficult
o consider them for automatically detecting hidden unreliable patches
this is discussed in Section 6). By contrast, we determined that hidden

unreliable patches could be detected by leveraging the code change
patterns observed in the majority of disclosed supplementary patches.

3.1.2. Unreliable patch detection
To detect unreliable security patches, we verified whether a commit

hanged the code lines modified in the disclosed patches. However,
f we simply consider a commit that re-modifies code lines deleted
added) from the disclosed patch (𝑐𝑣) as a supplementary patch (𝑐𝑠),
any false alarms can be produced when 𝑐𝑣 modifies short and general

ode lines. Moreover, it is error-prone to consider the line numbers of
odified codes; the line numbers may vary as code changes proceed in

ommits between 𝑐𝑣 and 𝑐𝑠.
To reduce false alarms, we thus tracked only commits that modified

the same code locations. However, using a function name to detect
the same function may produce false alarms when the function name
changes. In addition, using a Git command (e.g., git log and git
lame) that can trace the commit history of a function may fail to

provide a precise result, for instance, when the function is moved to
another file. Furthermore, even in a function, code lines with the same
syntax can exist in multiple locations.

To overcome the aforementioned issues, we consider both of the
following two factors to determine whether two commits modify the
same function: (1) the name of the function and (2) the syntax sim-
ilarity between the modified functions in each commit. Instead of
elying solely on easily changeable metadata, we aimed to determine
he same function by considering the syntax similarity. Furthermore,
e considered the nearby code lines of the code lines modified in each

ommit to clarify the code locations.
Let us consider the notations in Table 2. If 𝑐𝑠 that satisfies the follow-

ng three conditions is identified, we decide that 𝑐𝑠 is a supplementary
patch and 𝑐 is an unreliable patch.
𝑣

5
Table 2
Defined notations.

Notation Description

H(i,j) A hunk for function 𝑓𝑖 modified in 𝑐𝑗 .
ADD(i,j), DEL(i,j) Code lines added or deleted in H(i,j).
NR(l,n) Nearby 𝑛 code lines of the code line 𝑙.
NM(𝑓𝑖) The function name of 𝑓𝑖.
SIM(𝑓𝑖, 𝑓𝑗) The syntax similarity between 𝑓𝑖 and 𝑓𝑗 .

∙ Condition 1: Common function. There should exist a function (𝑓𝑐)
hat is commonly modified in both 𝑐𝑠 and 𝑐𝑣.

∃ 𝑓𝑣 ∈ 𝑐𝑣,∃ 𝑓𝑠 ∈ 𝑐𝑠 |
(

NM(𝑓𝑣) =NM(𝑓𝑠)
)

∨
(

SIM(𝑓𝑣, 𝑓𝑠) ≥ 𝜃
)

∙ Condition 2: Same code location. The hunk H(𝑐 , 𝑠), excluding
ADD(𝑐 , 𝑠), should contain at least one code line adjacent to the code
ines added or deleted in H(𝑐 , 𝑣).

∃𝑙 ∈
(

H(𝑐 , 𝑠)⧵ADD(𝑐 , 𝑠)) | 𝑙 ∈NR(𝑙𝑣, 𝑛),
𝑤ℎ𝑒𝑟𝑒 𝑙𝑣 ∈

(

ADD(𝑐 , 𝑣) ∪DEL(𝑐 , 𝑣))

∙ Condition 3: Same code modification. A minimum deletion (resp.
ddition) of one code line from H(𝑐 , 𝑣) should be included in the set of
ode lines added (resp. deleted) from H(𝑐 , 𝑠).

(

∃ 𝑙 ∈ ADD(𝑐 , 𝑣) | 𝑙 ∈ DEL(𝑐 , 𝑠))∨
(

∃ 𝑙 ∈ DEL(𝑐 , 𝑣) | 𝑙 ∈ ADD(𝑐 , 𝑠))

Fig. 5 depicts the workflow for unreliable patch detection. Under
Conditions 2 and 3, code lines containing only whitespaces and curly
braces were ignored to reduce false alarms. When extracting functions
modified in commits, we utilized the universal Ctags (2022) function
parser, which has advantages in as concerns speed and language exten-
ibility and can parse functions from various programming languages
ithin a short time. In addition, we used the Jaccard index (Jaccard,

1912; Murphy, 1996) to measure the function similarity (considering
a function as a set of code lines). We conducted the experiment by
changing 𝜃 (used under Condition 1) from 0 to 1 in increments of 0.1.
We introduced the analysis results of unreliable patches based on the
correct answers obtained by manual validation; experiments related to
the parameter are presented in Section 3.2.3. We used 𝑛 as the default
value of three provided by the GitHub patch.

3.2. Unreliable patch detection results

3.2.1. Unreliable patch distribution
In our setup, we discovered that 476 (5.9%) of the 8100 collected

security patches lacked reliability, excluding the known unreliable and
upplementary patch pairs examined in Section 3.2. An unreliable

patch can be complemented multiple times; thus, 557 supplementary
atches were detected. In addition, we observed that 128 supplemen-
ary patches completely reverted the code lines modified in the unre-

liable security patch (i.e., regression cases). Notably, our approach has
successfully detected a significantly larger number of unreliable patches
compared to the existing approaches, which manually identified less
than 50 unreliable patches (e.g., Li and Paxson, 2017 discovered 43
unreliable patches from 4000 security patches).

Specifically, more than 90% of the unreliable patches were found
in the C/C++ repositories, and the repository containing the highest
number of unreliable patches was the Linux kernel (152), followed
by rdesktop (114) and ImageMagick (66). Based on our manual
analysis, most unreliable patches frequently occur in memory-related

S. Woo et al.

a
p
t
t
h
t

v
c
w
p

p
i

d
c

p

m
a
i

r
v
s
t

f

t

a
d
w
b
p
t

Computers & Security 148 (2025) 104181
Fig. 5. High-level overview of unreliable patch detection.

Fig. 6. Distributions of the detected unreliable patches by year (Fig. 6(a)) and by CVSS
(Fig. 6(b)).

vulnerabilities (see Section 3.3.3). Since most memory-related vulner-
bilities are reported in C/C++, a considerable number of unreliable
atches were consequently found in C/C++. Fig. 6 shows the distribu-
ions of discovered unreliable patches by year and CVSS. In many cases,
he severity was medium, but nearly 20% of unreliable patches had a
igh severity, indicating the need for appropriate measures to address
hem.

Interestingly, the CVSS distribution was very similar between the
overall security patches (see Fig. 4(b)) and the unreliable patches.
The difference was that the proportion of low-severity vulnerabilities
was slightly lower in unreliable patches, while the proportions of high
and medium-severity vulnerabilities were slightly higher. Although the
difference is not significant, the fact that the proportion of higher-
risk vulnerabilities is greater in unreliable patches compared to the
distribution of general security patches highlights the importance of
addressing unreliable patches. Additionally, there was no significant
difference in the distribution by year (see Fig. 4(a)). However, since
ulnerabilities reported more recently have relatively fewer subsequent
ommits, the proportion of unreliable patches detected by our method
as somewhat lower compared to the overall distribution of security
atches.

Finding 1. We observed that 476 (5.9%) disclosed security patches
lacked reliability. To address the responsible vulnerabilities com-
pletely, the disclosed security patch should be complemented by
supplementary patches.

3.2.2. Supplementation to resolve security issues
Not all detected supplementary patches are required for security

urposes. For instance, a supplementary patch may be applied to
ncrease the efficiency of the previous patch (e.g., code refactoring).

Hence, we identified supplementary patches applied to address
security issues through the following criteria: whether the commit
escription (1) specifies the CVE ID or seven-character prefix of the
ommit ID of the unreliable patch (Li and Paxson, 2017), or (2)

contains the keywords ‘‘fix’’, ‘‘vulnerab’’, ‘‘CVE’’, ‘‘bug’’, ‘‘incomplete’’,
or ‘‘incorrect’’. We can use more keywords (e.g., ‘‘overflow’’) as used in
the existing studies (Hong et al., 2021; Islam and Zibran, 2021), but we
 p

6
Fig. 7. Results of measuring efficiency of 𝜃.

intended to strictly deduce only commits concerning security issues by
considering the six keywords.

Consequently, we observed that 354 (63.6%) supplementary
atches (239 unreliable patches) were applied for security purposes; 72

supplementary patches specified either the CVE ID or the commit ID of
unreliable patches, and 348 supplementary patches contained one or

ore of the aforementioned keywords. This case is critical because the
pplication of disclosed security patches may produce further security
ssues, such as the generation of new vulnerabilities (Section 3.3.6). The

remaining supplementary patches were primarily applied for (1) code
efactoring, (2) fixing compilation errors, and (3) code cleanup because
ulnerable codes were no longer used. Although these may not produce
ecurity threats, they may cause functional issues in the entire software;
herefore, supplementary patches should be applied.

Finding 2. We confirmed that 354 (63.6%) supplementary patches
(239 unreliable patches) were intended to resolve the security issues.
If such supplementary patches are not applied, then the security of
the entire software may be compromised (Section 3.4).

3.2.3. Parameter sensitivity.
We use 𝜃 to determine whether two commits are targeting the same

unction (Section 3.1). To measure threshold sensitivity, we evaluated
each unreliable patch detection result while increasing 𝜃 by 0.1 from
0 to 1.0. We measured the efficiency of 𝜃 by manually analyzing the
detection results: a detected supplementary patch was determined to
be correct if it changed again the same code locations modified in
the unreliable patch. Fig. 7 presents the measurement results. First,
as we argued in Section 3.1, many false alarms were detected when
𝜃 was 0 (80.7% false positive rate). In contrast, when 𝜃 was greater
than or equal to 0.1, false positives significantly dropped. Instead, as 𝜃
increased, the number of detected incorrect patches slightly decreased.
Because we manually examined all the detection results in our experi-
ment, we could cover 476 unreliable security patches. Nonetheless, we
confirmed that the optimal values for detecting unreliable patches in
an automated manner in our experimental setup are 𝜃 of 0.1 or 0.2.

3.3. Characteristics of unreliable patches

We then provide answers to several questions related to the charac-
eristics of the detected unreliable patches.

3.3.1. Who mainly complements unreliable patches?
To answer this question, we examined the authors of the unreli-

ble and corresponding supplementary patches. When analyzing the
etected 557 unreliable and supplementary patch pairs (Section 3.2.1),
e observed that 257 (46.1%) supplementary patches were applied
y the same author of the unreliable patch, and for the remaining
atches, we confirmed that a different developer discovered issues in
he unreliable and applied supplementary patches. This indicates that a

considerable number of developers evaluated the reliability of security
patches to a certain extent after applying them. In addition, there was
a tendency for developers who did not apply for the security patch to
articipate in testing and evaluating it.

S. Woo et al.

s

o

c

c
s
m
r
f
(
p

c

r

p

m

a
t
l
d

Computers & Security 148 (2025) 104181
Fig. 8. Representation of elapsed time (days) between the application of unreliable
and supplementary patches.

3.3.2. How fast are unreliable patches complemented?
To investigate this, we examined the time elapsed between the

unreliable and supplementary patch commit dates. Fig. 8 shows the
measurement results. We confirmed that many supplementary patches
(68.6%) were applied within 100 days after the unreliable patches were
applied. On average, supplementary patches were applied 168 days (a
median of 64 days) after unreliable patches were applied. Although
some supplementary patches were applied for more than 1000 days
after the application of unreliable patches, OSS developers managed
the effectiveness of the security patches to some extent after the initial
ecurity patch was applied.

Finding 3. More than half of the supplementary patches were
applied within 100 days of unreliable patch application (an average
of 168 days and a median of 64 days).

3.3.3. In what types of vulnerabilities do unreliable patches occur fre-
quently?

To answer this question, we examined the CWEs of the identified un-
reliable patches. The five vulnerability types listed in Table 3 frequently
appeared in the unreliable patches. All five CWEs in Table 3 belong
to the most dangerous vulnerability type in 2023 (Common Weak-
ness Enumeration, 2023). In addition, these five CWEs matched five
f the six most-collected CWEs in the security patch dataset (Fig. 4(c)).

Interestingly, only five unreliable patches (out of 1034 security patches)
were found in CWE-79 (Cross-site Scripting), which was the most
ollected vulnerability type in the dataset.

In fact, memory-related vulnerabilities are not easily resolved at
once and generally require multiple security patches (Hong et al.,
2020). Especially in the Linux kernel, which can be considered
as a representative OSS community, memory-related vulnerabilities
are typically patched through multiple security patches (Lee et al.,
2018). Additionally, while Cross-site Scripting vulnerabilities can be-
ome more complex to resolve in intricate codebases, the solutions,
uch as escaping, are generally well-known. Consequently, we deter-
ined that it is rare for ineffective patches to be applied. For this

eason, we concluded that many unreliable patches had been identified
or types of vulnerabilities caused by memory management issues
e.g., Out-of-bounds Read and Write; see Table 3), whereas unreliable
atches are rarely found for Cross-site Scripting vulnerabilities.

3.3.4. Is it publicly disclosed that the security patch is unreliable and thus
a supplementary patch is required?

We analyzed the disclosure statuses of the unreliable and sup-
plementary patches discovered in the experiment, excluding known
unreliable and supplementary patch pairs (Section 3.1). Previously,
we used the keyword ‘‘incomplete fix for CVE’’ to scan known incom-
plete patches. Here, we used the CVE IDs of the detected incomplete
 g

7
Table 3
Frequently appeared vulnerability types in unreliable patches.

Vulnerability types #Unreliable patches

∙ Out-of-bounds Read (CWE-125) 136
∙ Out-of-bounds Write (CWE-787) 84
∙ Improper Input Validation (CWE-20) 64
∙ Improper Restriction of Operations within

the Bounds of a Memory Buffer (CWE-119)
50

∙ NULL Pointer Dereference (CWE-476) 30

patches and the commit IDs of the supplementary patches. Specifi-
ally, we scanned CVEs that (1) included the CVE ID of unreliable

patches in their descriptions and (2) contained the commit ID of the
supplementary patches in their references (e.g., GitHub commit URLs).

Our experiment confirmed that only 86 (15.4%) of the detected 557
unreliable and supplementary patch pairs (Section 3.2) satisfied at least
one condition. In particular, 35 CVEs satisfied the CVE ID condition,
and 54 CVEs contained the commit IDs of unreliable patches; only three
CVEs satisfying these two conditions were discovered.

Notably, among the remaining 471 unpublished unreliable and sup-
plementary patch pairs, 65.65% (309) were cases where supplementary
patches were needed for security purposes. In other words, out of
the total supplementary patches that should be applied for security
purposes, only 12.71% were explicitly provided through public vul-
nerability databases. This result implies that, although supplementary
patches to complement unreliable security patches already exist in the
commit history, in most cases, it was not publicly disclosed that the
security patch was unreliable and that a supplementary patch should
be applied. The fact that, even in cases where supplementary patches
are needed for security purposes, most of the information about these
patches is not publicly available highlights a challenge we need to
address for a safer software ecosystem (see Section 5).

Finding 4. Among the detected supplementary patches, only 86
(15.4%) were disclosed in public vulnerability databases. In particu-
lar, out of the 471 undisclosed unreliable and supplementary patch
pairs, 65.61% (309) were cases where supplementary patches were
applied for security purposes. Such inactive disclosures may become
an obstacle to resolving threats caused by unreliable patches.

3.3.5. What about the amount of code change in unreliable patches?
We answer this question by examining the number of (1) modified

functions, (2) deleted code lines, and (3) added code lines in both
eliable (i.e., security patches that are not discovered as unreliable) and

unreliable security patches. We leveraged the Ctags (2022) function
arser to determine the number of modified functions in the patch.

Fig. 9 shows the experimental results.
First, there was no significant difference in the number of functions

odified by reliable and unreliable patches (Fig. 9(a)). The average
number of modified functions was 4.6 and 6.1 in reliable and unreliable
patches, respectively (a median of two in both cases). However, we
observed a considerable difference in the number of code lines deleted
in each patch (Fig. 9(b)). In particular, unreliable patches often deleted
far fewer code lines (average of 24 and median of three code lines)
than reliable patches (average of 72 and median of three code lines).
Moreover, as shown in Fig. 9(c), we observed that the reliable patches
dded more code lines (average of 103 and median of 13 code lines)
han the unreliable patches (average of 97 and median of 11 code
ines). In brief, although the number of modified code lines may not
irectly affect the patch reliability, we observed that unreliable patches
enerally modify fewer code lines than reliable patches.

S. Woo et al.

u

l

w
G

m
c

B
(

Computers & Security 148 (2025) 104181
Fig. 9. CDFs related to reliable and unreliable patches.

Fig. 10. Disclosed security patch for CVE-2021-32762.

3.3.6. Case studies
In our detection results, most cases required supplementary patches

because the existing security patches did not fully address the in-
tended vulnerabilities (i.e., partial fix). However, in some cases, un-
reliable patches inadvertently produce new vulnerabilities. For better
understanding, we present representative examples for each case.

Patch regression case. In 2021, the Redis1 team discovered an
integer overflow vulnerability (CVE-2021-32762, CVSS 8.8) in Hire-
dis, which was contained in the Redis codebase. The patches were
disclosed using a public vulnerability database after applying the initial
security patch (Fig. 10). However, they confirmed that the patch code
nintentionally produced a memory leak vulnerability; the variable r

in line #5 in Fig. 10 was allocated by the hi_calloc function, but
the createArrayObject function can be terminated without freeing
r. Hence, the Redis team reverted the security patch and applied a
new patch (Fig. 11) for resolving both integer overflow and memory
eak vulnerabilities. The latter patch (Fig. 11) is a case in which a CVE

ID was not assigned but was detected in our experiments. We reported
this to the Redis team and asked them to include a supplementary
patch for CVE-2021-32762 (currently under discussion). This example
is a representative case where a security patch unintentionally produces
new vulnerabilities, making the application of supplementary patches
essential. Developers need to review whether a security patch produces
new issues once applied. Additionally, for vulnerabilities in reused
third-party libraries, it is important to verify the reliability of the
security patch using methods such as those we propose before applying
it to the reused codebase.

Incomplete patch case. In 2022, a vulnerable code that could cause
a buffer overflow vulnerability (CVE-2022-26490, CVSS 7.8) in the
Linux kernel was discovered. To resolve this vulnerability, the
Linux kernel team added logic to verify whether the length of the
variable AID was valid (Fig. 12). However, they later confirmed that a
memory leak vulnerability had occurred and that the memory allocated
in the code was not properly freed. Therefore, a supplementary patch

1 https://github.com/redis/redis.
8
Fig. 11. Supplementary patch for CVE-2021-32762.

Fig. 12. Disclosed security patch for CVE-2022-26490.

was applied (Fig. 13) to resolve the memory leak vulnerability. This
supplementary patch is not managed as a CVE and exists only as a
commit in the Linux kernel repository. We requested the Linux
kernel team to include the supplementary patch as a reference for
CVE-2022-26490, and are currently reconciling it. This is the most com-
mon case found among unreliable patches, where the initial security
patch only partially addressed the issue, necessitating a supplementary
patch. Similarly, in this case, applying the supplementary patch is
essential to fully resolve the security issue.

3.4. Impact of unreliable patches

To understand the effect of unreliable patches on software security,
e examined the existence of incompletely patched codes in popular
itHub projects.

3.4.1. Methodology
We first extracted incompletely patched functions using unreliable

patches and then detected incompletely patched function clones from
the latest versions (as of November 2022) of 2000 popular C/C++ OSS
projects (Section 2.2.2). We targeted only C/C++ languages because

ost of the detected unreliable patches were written in C/C++, and
ode copying and pasting are prevalent in C/C++ languages (Kim et al.,

2017; Xiao et al., 2020; Woo et al., 2021a). The detailed process is as
follows.

S1. Extracting incompletely patched functions. In this study, we
leveraged the methods used in existing vulnerable code detection ap-
proaches (Kim et al., 2017; Xiao et al., 2020; Woo et al., 2022).

ecause we collected security patches in the form of GitHub commits
Section 2.2.1), we used (1) the Git index of the patched source files and

(2) the code line numbers to which unreliable patches were applied.
Hence, we first accessed the index of the patched source file from
the repository reporting the security patch (e.g., using the git show
command), and thereafter extracted functions (𝑓𝑣) that contain patched
code lines of the unreliable security patches using a function parser
(e.g., Ctags, 2022).

S2. Discovering propagated incompletely patched functions. To
detect code clones of 𝑓 , we leveraged VUDDY (Kim et al., 2017),
𝑣

https://github.com/redis/redis

S. Woo et al.

t
p
b
(
t

o

i

i
t
t
v
n
p
c

(

v
f
a
w

e
n
e
h

Computers & Security 148 (2025) 104181
Fig. 13. Supplementary patch for CVE-2022-26490.

which has the potential for scalable detection of vulnerable code clones
with slight code modifications. Because VUDDY is sensitive to code
changes, we determined that it is suitable for precisely detecting code
clones of incompletely patched functions in which other patches (e.g.,
supplementary patches) are not applied. VUDDY calculates the MD5
hash value of each 𝑓𝑣 after applying normalization (removing whites-
paces and comments) and abstraction (replacing every occurrence of
parameters, variable names and types, and function calls to specific
symbols) to 𝑓𝑣. VUDDY then calculates the hash values of all functions
in the target program. Finally, VUDDY detects code clones of 𝑓𝑣 by
discovering a function that shows the same hash value as that of 𝑓𝑣, in
the target program.

Note that VUDDY is not applicable to detect vulnerabilities where
the code has been modified outside its abstraction targets. However,
this characteristic is rather effective in our experiment for detecting
he propagated vulnerabilities we intend to find (i.e., incompletely
atched function clones). If we use previous approaches that are capa-
le of discovering vulnerabilities propagated with syntax modifications
e.g., (Xiao et al., 2020; Woo et al., 2022)), codes with supplemen-
ary patches applied can be included in the detection results. Because

our goal is to detect vulnerabilities with only unreliable patches ap-
plied, a strict propagated vulnerability detection technique is necessary.
Therefore, we used VUDDY in this experiment.

3.4.2. Result analysis
From our experiment, we confirmed that 95 (4.75%) OSS projects

contained at least one incompletely patched function; 302 incom-
pletely patched functions were discovered. Upon manually verifying
the detection results, we observed that VUDDY precisely identified
function clones to which the unreliable patches were applied, but the
supplementary patches were not applied.

Several OSS projects contain incompletely patched functions that
do not pose a security threat (e.g., code refactoring issues). However,
in some popular OSS projects, incompletely patched functions have
been discovered, which can compromise the security of the entire
system. For instance, we detected that the Greenplum database
(GPDB) contains an incompletely resolved integer overflow vulnera-
bility, FreeBSD includes an incompletely addressed buffer over-read
vulnerability, and OpeenToonz contains an incompletely patched
denial-of-service vulnerability, all of which have the potential to be
exploited by attackers. In all three cases, the supplementary patches
were not disclosed in public vulnerability databases. We responsibly
reported the vulnerabilities to the GPDB, FreeBSD, and Opeen-
Toonz teams and responded that they would resolve the vulnerabilities
through subsequent OSS updates. We provide a detailed explanation
of how we integrate our patch effectiveness analysis mechanism with
existing vulnerability detection techniques to address such threats in
Section 5.2. Our experimental results confirm that an incompletely
patched code can compromise the security of an entire system.
9
Fig. 14. Disclosed security patch for CVE-2017-14107.

Finding 5. Among the 2000 popular C/C++ OSS projects on
GitHub, 95 (4.75%) contained at least one incompletely patched
code. Specifically, in some OSS projects, the security of the en-
tire software can be compromised because of incompletely patched
codes. This supports our argument regarding the need to identify and
address unreliable patches.

4. Patch flexibility analysis

In this section, we examine patch flexibility. An inflexible patch is
ne in which the disclosed security patch cannot be directly applied to

resolve a vulnerability.

Motivating example. A subtle code syntax change results in a case
n which the entire disclosed patch cannot be applied. In 2017, a

vulnerability that could cause a denial-of-service attack was discovered
n Libzip (CVE-2017-14107, CVSS 6.5). The PHP team confirmed that
he vulnerable code was included in their codebase, and attempted
o resolve this vulnerability. However, because PHP reused the older
ersion of Libzip with code modifications, the disclosed patch could
ot be applied directly to vulnerable codes in the PHP codebase. In
articular, the code lines added by the disclosed security patch include
alls to functions that are not used in PHP (line #12 in Fig. 14). Thus,

the PHP team applied the patch by modifying the function call code line
to fit their codebase and resolve the vulnerability (line #11 in Fig. 15).

4.1. Inflexible patch detection methodology

Discovering inflexible patches involves the following two steps:
1) detecting propagated vulnerabilities and (2) examining whether

disclosed security patches can be applied to detected vulnerabilities.
Because code-level vulnerability propagation is predominant in C/C++
languages (as explained in Section 3.4), we focused on the 4420 C/C++
ulnerabilities collected from our dataset (Table 1) to examine the
lexibility of the security patches. If a security patch modifies multiple
reas of the codebase and the patch is not applied directly in any area,
e consider this patch to be inflexible.

4.1.1. Propagated vulnerability detection
To detect propagated vulnerabilities, we used MOVERY (Woo et al.,

2022), a precise approach that can detect propagated vulnerabilities
ven if the syntax is significantly different from the disclosed vul-
erable code. Unlike the previous vulnerability propagation detection
xperiments (see Section 3.4), our goal is to detect vulnerabilities that
ave propagated with modifications to the code syntax, where security

patches cannot be directly applied. To this end, we decided to use
MOVERY, which specializes in our objectives.

To this end, we need to extract vulnerable and patched func-
tions from security patches and apply preprocessing. The process of
extracting the functions modified in the security patch is described

S. Woo et al. Computers & Security 148 (2025) 104181
Fig. 15. Inflexible patch example in Libzip and PHP.

in Section 3.4.1. After extracting vulnerable and patched functions,
by referring to their paper, we applied preprocessing to extract core
code lines that are directly related to vulnerabilities, for example, the
vulnerable code lines deleted in a security patch (essential code lines),
and code lines that have control or data dependencies with the essential
code lines (dependent code lines). During this process, it is necessary
to generate control and data dependency graphs for each vulnerable
and patched function. We used the Joern (Yamaguchi et al., 2014)
parser (used by MOVERY), which can perform semantic analysis on
the target function. Because the Joern parser provides control and data
dependencies between code lines, we could extract the core code lines
required by MOVERY.

Finally, we used the core code lines extracted for each security
patch as MOVERY’s dataset and detected the propagated vulnerabilities
from 2000 popular C/C++ OSS projects (Section 2.2.2). To examine a
sufficient number of vulnerabilities, we considered an older version of
each OSS project released closer to January 2021.

4.1.2. Inflexible patch detection
Inflexible patches were detected by examining whether security

patches could be applied without any changes. Let 𝑓𝑝 be the propagated
vulnerable function. We define that a security patch 𝑐𝑣 cannot be
directly applied (e.g., using the ‘‘patch’’ command) if (1) the deleted
code lines in the patch and (2) the code lines near those modified in
the patch are not included in the propagated vulnerable function. We
used the same notations listed in Table 2.

∙ Condition 1: Containing deleted code lines. Every code line that
was deleted in the original vulnerable function (𝑓𝑣) should be included
in 𝑓𝑝.

∀ 𝑙 ∈ DEL(𝑣, 𝑣) | (𝑙 ∈ 𝑓𝑝
)

∙ Condition 2: Containing nearby code lines. All 𝑛 code lines
adjacent to the code lines added or deleted in 𝑓𝑣 should be included
in 𝑓𝑝.

∀ 𝑙 ∈ NR(𝑙𝑣, 𝑛) | 𝑙 ∈ 𝑓𝑝, where 𝑙𝑣 ∈
(

ADD(𝑣, 𝑣) ∪ DEL(𝑣, 𝑣))

We set 𝑛 to three, the default value for GitHub patches. Fig. 16
depicts the high-level workflow of inflexible patch detection.

4.2. Inflexible patch detection results

From 2000 target programs, MOVERY discovered 3989 vulnerable
function clones with 693 assigned CVE IDs. Among them, 3222 (80.8%)
vulnerable code clones exhibited a different syntax from the disclosed
vulnerabilities, i.e., at least one code line was changed. Thereafter, we
detected inflexible patches under the conditions in Section 4.1.2. If at
10
Fig. 16. Overview of inflexible patch detection.

least one propagated vulnerable code required patch modification, we
considered this security patch inflexible.

Consequently, we detected 377 inflexible patches; we failed to
apply the disclosed patches to 1959 (49.1%) vulnerable code clones
(377 CVE IDs assigned) owing to syntax diversity. Specifically, 390
vulnerable code clones that did not include code lines deleted from the
security patch, and the remaining 1569 vulnerable code clones did not
include the code lines near those modified in the patch. The Linux
kernel repository contained the highest number of inflexible patches
(76 patches), followed by TCPdump (28 patches) and FFmpeg (21
patches). The Linux kernel is frequently modified to suit its pur-
pose, especially when used in various embedded systems or operating
systems. For this reason, many inflexible patches might be discovered
in the Linux kernel.

Finding 6. Many propagated vulnerabilities (80.8%) exhibited a dif-
ferent syntax from the disclosed vulnerable functions. In particular,
the security patches for 377 (54.4%) of the 693 CVEs could not be
used directly to resolve the propagated vulnerabilities.

4.3. Characteristics of inflexible patches

Here we examined the characteristics of the detected inflexible
patches by answering several questions.

4.3.1. What are the causes of syntax diversity?
We observed that the syntax of a propagated vulnerable function

could vary for two main reasons.

• Different branch case. The vulnerable function of an OSS branch
other than the branch where the disclosed vulnerable function
exists is reused in the target program; thus, the syntax differs from
that of the disclosed vulnerable code (Tan et al., 2022).

• Code modification case. The case in which developers modi-
fied code lines in the vulnerable function during or after OSS
reuse (Woo et al., 2022).

To examine each case, we investigated 1959 vulnerable code clones
to which security patches could not be directly applied. If the syntax of
a vulnerable function clone exists in any branch of an OSS, it is defined
as a different branch case; otherwise, it is defined as a code modification
case. This can be easily verified by extracting all the functions from
every version of the OSS included in our dataset.

Consequently, we identified 615 (31.4%) different branch cases and
1344 (68.6%) code modification cases. We observed that developers
frequently managed OSS components by reflecting only the necessary
code patches (i.e., changing only some code lines in a function) rather
than maintaining all OSS components in the latest version, e.g., owing
to compatibility issues. Therefore, a considerable number of vulnerable
code clones exhibit the syntax of a function that exists in an older OSS
branch or a completely different syntax from the disclosed vulnerable
function. In addition, several propagated vulnerabilities can be resolved
by slightly modifying the disclosed patches, however, there were also
cases in which a completely new security patch had to be created.

S. Woo et al.

r

i
p
e
s
f
t
c
(
n
f

m

c

b

s

I
v
r

p

Computers & Security 148 (2025) 104181
Fig. 17. CDFs of CVSS for flexible and inflexible patches.

Fig. 18. PPM measurement results.

This result promotes various studies, such as automated patch gener-
ation and the detection of vulnerable codes propagated with different
syntaxes.

Finding 7. Because developers frequently reuse OSS codes in older
branches and modify them during the OSS reuse process, a consid-
erable number of propagated vulnerable codes (49.1%) cannot be
resolved by directly applying disclosed security patches.

4.3.2. What is the relationship between the flexibility and severity of secu-
ity patches?

To answer this question, we first classified 693 CVEs discovered
n 2000 target programs as flexible (316 patches) and inflexible (377
atches) and subsequently investigated the CVSS for all CVEs. We
xamined the relationship between patch flexibility and vulnerability
everity by comparing the CVSS distribution between flexible and in-
lexible patches. Fig. 17 shows the measurement results. We confirmed
hat the flexible and inflexible security patches exhibited nearly identi-
al CVSS distributions; the average CVSS was 5.7 and 5.72, respectively
a median of five in both cases). The results confirmed that there was
o notable relationship between the severity of vulnerabilities and the
lexibility of patches in our setup.

4.3.3. What is the proportion of vulnerable clones requiring patch modifi-
cations?

For each of the 693 CVEs detected in Section 4.2, we measured
the proportion requiring patch modifications among the discovered
vulnerable code clones. We define a metric called proportion of patch
modifications (PPM) to measure the number of propagated vulnerable
codes requiring patch modifications. The higher the PPM, the lower the
flexibility of the security patch.

𝙿𝙿𝙼 (𝙲𝚅𝙴) = # of vulnerable code clones require modified patches
of total detected vulnerable code clones for the 𝙲𝚅𝙴

Fig. 18 shows the measured PPMs for 693 CVEs. There are two major
cases in which the syntax of vulnerable codes is highly changed (211
CVEs) or hardly changed (338 CVEs). The 211 vulnerabilities, which
are difficult to apply disclosed security patches to vulnerable clones,
require more attention when attempting to resolve them. Interestingly,
the former was mainly observed in different branch cases, and the
latter case mostly occurred in code modification cases (Section 4.3.1),
indicating that the extent to which developers modified the OSS code
during the reuse process was generally less than that occurring during
OSS updates.
11
Fig. 19. SCR measurement results.

Finding 8. CVE vulnerabilities exhibited two major patterns as they
propagated: either significantly changed (30.4%) or almost the same
syntax (48.8%). In the former case, because it is difficult to apply
a disclosed security patch to a propagated vulnerable code, more
attention is required to resolve the security issue.

4.3.4. How much has the syntax of the propagated vulnerable code been
odified?

Next, we examined the degree of syntax changes in vulnerable code
lones that require patch modifications. Let 𝑉 be a set of all code lines

in the vulnerable code clone that requires patch modifications, and 𝐷
e a set of all code lines in the disclosed vulnerable function. After we

measure the syntax similarity (0 to 1) between 𝑉 and 𝐷, we calculate
the syntax change rate (SCR) by subtracting the similarity value from
1. We use Jaccard similarity (Murphy, 1996) to measure the syntax
imilarity between two functions.

𝚂𝙲𝚁 (𝚅) = 1 − (|𝑉 ∩𝐷|∕|𝑉 ∪𝐷|)
Fig. 19 shows the results of the SCR measurements. For the 1959

vulnerable clones that required patch modifications, the average SCR
was 0.51 (with a median of 0.5). Overall, SCRs between 0.5 and 0.7
appeared most frequently (34.7%), and the remaining were evenly
distributed. In particular, the SCR appeared higher (e.g., more than 0.5)
in different branch cases and tended to be lower (e.g., less than 0.5) in
code modification cases. The lowest SCR was 0.01, implying that even
though only a small code fragment is changed, the disclosed patch may
need to be modified.

Finding 9. The SCRs of the vulnerable code clones requiring patch
modifications were the highest between 0.5 and 0.7. Even with small
syntax changes (e.g., SCR ≤ 0.2), several vulnerable code clones
where patches need to be modified were discovered, confirming that
more attention is required in patch modifications.

5. Suggestions and applications

In our experiments, we confirmed that 779 (9.6%) disclosed security
patches lacked effectiveness; 476 unreliable and 377 inflexible patches
were detected (74 patches belonged to both groups). In the case of
unreliable patches, 84.6% of them were not disclosed to the public.
n the experiments on inflexible patches, we confirmed that many
ulnerable codes were propagated with various code syntaxes, thereby
equiring patch modifications.

In this section, we present suggestions and introduce possible appli-
cations of our findings.

5.1. Suggestions

We present suggestions for mitigating threats posed by ineffective
atches, from the perspectives of (1) public vulnerability databases,

(2) OSS teams reporting software vulnerabilities, and (3) developers
reusing OSS codebases.

S. Woo et al.

u
p

p
m
p

r

a
t

t
s

b
b
a

a

s
p
u

d
S

b

Computers & Security 148 (2025) 104181
(1) Establishing ongoing vulnerability reporting process. Because
ongoing vulnerability reporting is not mandatory for OSS devel-
opers and security analysts, several unreliable and supplementary
patches remain unreported in public vulnerability reports. If an
ongoing vulnerability reporting process is established instead of a
one-time process, more time is obtained to verify the reliability of
the security patches; thus, the security of the software ecosystem
can be further enhanced by reducing possible attack surfaces.

(2) Providing security patches across various OSS branches. To
address inflexible patches, OSS teams can provide multiple secu-
rity patches applicable to each OSS branch; however, for most
CVEs, only security patches generated based on the main branch
of the OSS are provided (Tan et al., 2022). By generating and
providing security patches applicable to each OSS branch, the OSS
team can address possible vulnerabilities contained in various
branches, and developers who reuse the OSS codebase can resolve
the propagated vulnerabilities by simply applying the provided
security patches.

(3) Devising an automated tool to address unreliable patches.
Developers can periodically check the commits of the OSS they
are reusing to confirm whether supplementary patches for secu-
rity patches have been applied. If this task is automated (e.g.,
using the methodology proposed in this study), software security
can be improved by supplementing unreliable security patches
with minimal effort.

We believe that our suggestions are neither overly complicated nor
nrealistic. In brief, efforts by various stakeholders are required to
revent threats arising from ineffective patches.

5.2. Applications

Our approach for identifying unreliable and inflexible patches and
detection results can be applied to various fields.

Security patch collection. One such example is security patch collec-
tion. Patch collection studies (e.g., Wang et al., 2021; Tan et al., 2021;
Hong et al., 2022) that focus on collecting a wide range of security
atches can leverage our unreliable and inflexible patch detection
ethod to complement the collected security patches and expand the
atch datasets.

Vulnerable code detection. Many existing approaches in this field
(e.g., Jang et al., 2012; Kim et al., 2017; Xiao et al., 2020; Woo et al.,
2022) have detected propagated vulnerabilities using the following
three steps: collecting security patches, extracting vulnerable codes,
and discovering vulnerable code clones. These include incompletely
patched vulnerable codes (e.g., still vulnerable) in the vulnerability
dataset, thereby discovering more vulnerable code clones in practice,
as discussed in Section 3.4.

Verifying data quality of public vulnerability reports. Finally, our
esults can be used to verify the quality of data in public vulnerability

databases (e.g., Mu et al., 2018; Dong et al., 2019; Woo et al., 2021a).
Our finding that some disclosed security patches may lack reliability
nd flexibility can provide new insights into related studies, supplement
heir results, or foster future studies.

Case study. We describe a case where the method we propose for de-
ecting unreliable patches has been effectively applied to the real-world
oftware ecosystem in practice.

We introduce a case found in the latest version of Greenplum
Database (GPDB)2, a widely utilized open source data warehouse
ased on PostgreSQL. In 2014, multiple integer overflow vulnera-
ilities were discovered in PostgreSQL; they immediately patched
ll the discovered vulnerabilities (see Fig. 20). However, in 2020, the

2 https://github.com/greenplum-db/gpdb-archive.
12
Fig. 20. Incomplete patch snippet for CVE-2014-0064 in PostgreSQL.

Fig. 21. Supplementary patch snippet for CVE-2014-0064 (commit 95f7dd) identified
by our approach.

PostgreSQL team found that an excessively long input still causes
overflow even in the patched code; therefore, they further added the
check code for out-of-range values (see Fig. 21).

We confirmed that the latest version of GPDB includes the code
pplied only up to the incomplete patch. We responsibly reported this

issue to the GPDB team; they replied that they will fix this vulnerability
through updating PostgreSQL in the next version of GPDB. As of August
2024, we have confirmed that the vulnerability has been patched in the
latest version of GPDB.

Our experimental results showed that some popular OSS projects
till contain potentially vulnerable code that requires applying a sup-
lementary patch. From this perspective, our approach to identifying
nreliable patches can be effectively applied to prevent real threats by

integrating it with vulnerable code detection techniques.

6. Discussion

We discuss several considerations related to this study.

Unreliable patch detection coverage. In our experiments, we consid-
ered cases in which the supplementary patches changed the code lines
to be modified into unreliable patches. This was our decision for the
scalable analysis of 8100 security patches. The unreliable patches we
have identified undoubtedly require additional patches. However, the
critical factor is whether this has an impact on software security. We
have confirmed that 63.6% of the detected supplementary patches, in-
cluding cases where vulnerabilities were triggered only with unreliable
patches applied, were implemented owing to security issues.

Meanwhile, 28% of known unreliable patches were complemented
ifferently as confirmed in the preliminary experiment (see
ection 3.1.1), and our current study hardly covers such unreliable

patches (i.e., false negatives). Several methods can be used to identify
unreliable patches that our experiments failed to cover. For instance,
after modeling vulnerability manifestation patterns, such as those per-
formed by Huang et al. (2019), we can verify whether these patterns
still emerge after applying the disclosed patches. As another example,
y leveraging (Kwon et al., 2021), we can test whether the Proofs of

Concept for vulnerability still work after applying the disclosed patches.
Nevertheless, we believe that our method of detecting 476 previously
hidden unreliable patches is valuable from the perspective of examining

https://github.com/greenplum-db/gpdb-archive

S. Woo et al.

i
d
d

a
d
t
d
b
e

b
l
C
t
a

a

t
p
b

a

p

e
d
m
p
b
s
p

m

r

t
t

t

o
w
u
s
n
s
c
s
c

m

a

Computers & Security 148 (2025) 104181
the reliability of security patches on a large scale. Expansion of the
detection coverage will be performed in future.

Threats to validity. First, although we consider all collectible patches
using clear criteria (Section 2.2), the benchmark security patches used
n this study may not be representative. For instance, inflexible patch
etection results may be obtained differently depending on the software
ataset used to scan the vulnerable code clones. Second, we did not

consider false positives and negatives of MOVERY in the inflexible
patch discovery because MOVERY exhibited more than 96% precision
nd recall in their accuracy evaluation (Woo et al., 2022). Nonetheless,
epending on the vulnerable code clone detection results of MOVERY,
he inflexible patch detection results may also differ. Finally, when
etecting inflexible patches, we considered only C/C++ languages
ecause of the issue of available external tools; other languages may
xhibit different trends.

Responsible disclosure. For the cases of unreliable patches caused
y a security issue, we continue to request to include the commit
inks of supplementary patches in the ‘‘references’’ of the corresponding
VEs. We also reported the vulnerabilities mentioned in Section 3.4 to
he responsible OSS teams. Currently, we have submitted ten reports;
lthough most of the response teams were providing negative answers

(e.g., no obligation to modify CVE because the code is safe in the latest
version), we plan to continue with the request.

7. Related works

In this section, we introduce a number of related studies.

Analyzing the effectiveness of security patches. Several studies
have examined the reliability of security patches. Liu et al. (2020)
nd Piantadosi et al. (2019) evaluated the security of real-world OSS

projects and observed that an incomplete patch significantly impacted
the recurrence of vulnerabilities. Li and Paxson (2017) evaluated more
han 4000 disclosed security patches and manually analyzed 26 incom-
lete and 17 regressive security patches. Park et al. (2012) examined
ugs that were fixed multiple times in three OSS projects, and ob-

served that majority of them were caused by incomplete patches. All
were aware of the importance of unreliable patch analysis, and some
ttempted to detect unreliable patches manually. However, they are

limited in their ability to discover and examine unreliable patches
from thousands of security patches in an automated manner, as was
erformed in this study.

In addition, some studies have attempted to analyze the flexibility of
security patches. Frei et al. (2006), Shahzad et al. (2012), Farhang et al.
(2019), and Alexopoulos et al. (2022) conducted patch studies focusing
on the life cycle of vulnerabilities. Zhang et al. (2021) and Jiang
t al. (2020) examined the patch propagation from Linux kernels to
ownstream vendors. Tan et al. (2022) investigated the security patch
anagement within multiple branches of a single OSS project. They
rovided valuable insights into the propagation of security patches,
ut none investigated the flexibility of security patches from the per-
pective of resolving vulnerabilities propagated to a wide range of OSS
rojects.

Verifying public vulnerability reports. Several studies have
attempted to verify the data quality of public vulnerability reports. Woo
et al. (2021a) discovered the correct origin of vulnerabilities to resolve
propagated vulnerabilities in a timely manner. Bettenburg et al. (2008),
Chaparro et al. (2017), and Nappa et al. (2015) attempted to identify

issing information in public vulnerability reports to help mitigate
vulnerabilities. Guo et al. (2010) analyzed the characteristics of public
eports to effectively resolve bugs, and Mu et al. (2018) suggested that

the current public vulnerability reports are insufficient to reproduce
and analyze vulnerabilities. Dong et al. (2019) attempted to alleviate
he inconsistencies between descriptions and affected software informa-
ion in public vulnerability reports. Although their goal was to verify
13
the data quality of public vulnerability reports, none of the studies
attempted to examine the reliability of disclosed security patches. If
the disclosed security patches lack reliability, the credibility of their
findings (e.g., Woo et al., 2021a) may also be impaired. Therefore, our
study examines public vulnerability reports from a different perspective
o complement their results (Section 6).

8. Conclusion

In this study, we assessed the effectiveness of 8100 security patches
btained from an NVD, with 4538 OSS repositories. In our experiments,
e found that one in ten security patches lacked effectiveness. Although
nreliable patches can compromise the security of an entire system,
upplementary patches are rarely disclosed (15.4%) through public vul-
erability reports. Moreover, in many cases (49.1%), we confirmed that
ecurity patches cannot be directly applied to propagated vulnerable
ode owing to syntax diversity. Our findings on the effectiveness of
ecurity patches, which have not been extensively investigated, will
ontribute toward improving the data quality of public vulnerability

databases and help developers mitigate potential threats. The experi-
ental data and results are publicly available at https://github.com/

WOOSEUNGHOON/COSE_patchStudy.

CRediT authorship contribution statement

Seunghoon Woo: Writing – original draft, Validation, Software,
Methodology, Conceptualization. Eunjin Choi: Validation, Methodol-
ogy, Conceptualization. Heejo Lee: Writing – review & editing, Project
administration, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by the Institute of Information & Com-
munications Technology Planning & Evaluation (IITP), Republic of
Korea grant funded by the Korea government (MSIT) (No. RS-2022-
II220277, Development of SBOM Technologies for Securing Software
Supply Chains, No. IITP-2024-RS-2022-II221198, Convergence Security
Core Talent Training Business (Korea University), IITP-2024-RS-2020-
II201819 (10%) ICT Creative Consilience program, and No. RS-2024-
00440780, Development of Automated SBOM and VEX Verification
Technologies for Securing Software Supply Chains). In addition, this
research was supported by Korea Creative Content Agency, Repub-
lic of Korea grant funded by the Ministry of Culture, Sports and
Tourism in 2024 (Project Name: International Collaborative Research
nd Global Talent Development for the Development of Copyright

Management and Protection Technologies for Generative AI, Project
Number: RS-2024-00345025).

Data availability

The dataset and results of our study are publicly available on GitHub
https://github.com/wooseunghoon/COSE_patchStudy.

https://github.com/WOOSEUNGHOON/COSE_patchStudy
https://github.com/WOOSEUNGHOON/COSE_patchStudy
https://github.com/WOOSEUNGHOON/COSE_patchStudy
https://github.com/wooseunghoon/COSE_patchStudy

S. Woo et al. Computers & Security 148 (2025) 104181
References

Alexopoulos, N., Brack, M., Wagner, J.P., Grube, T., Mühlhäuser, M., 2022. How long
do vulnerabilities live in the code? A large-scale empirical measurement study on
FOSS vulnerability lifetimes. In: 31st USENIX Security Symposium. USENIX Security
22, pp. 359–376.

An, L., Khomh, F., Adams, B., 2014. Supplementary bug fixes vs. Re-opened bugs. In:
2014 IEEE 14th International Working Conference on Source Code Analysis and
Manipulation. IEEE, pp. 205–214.

Bettenburg, N., Premraj, R., Zimmermann, T., Kim, S., 2008. Duplicate bug reports
considered harmful... Really? In: 2008 IEEE International Conference on Software
Maintenance. pp. 337–345.

Chaparro, O., Lu, J., Zampetti, F., Moreno, L., Di Penta, M., Marcus, A., Bavota, G.,
Ng, V., 2017. Detecting missing information in bug descriptions. In: Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering. ESEC/FSE,
pp. 396–407.

Common Weakness Enumeration, 2023. 2023 CWE top 25 most dangerous software
weaknesses. https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html.

Ctags, 2022. Universal ctags. https://github.com/universal-ctags/ctags.
Dong, Y., Guo, W., Chen, Y., Xing, X., Zhang, Y., Wang, G., 2019. Towards the detection

of inconsistencies in public security vulnerability reports. In: 28th USENIX Security
Symposium. USENIX Security 19, pp. 869–885.

Farhang, S., Kirdan, M.B., Laszka, A., Grossklags, J., 2019. Hey google, what exactly
do your security patches tell us? A large-scale empirical study on android patched
vulnerabilities. arXiv preprint arXiv:1905.09352.

Frei, S., May, M., Fiedler, U., Plattner, B., 2006. Large-scale vulnerability analysis. In:
Proceedings of the 2006 SIGCOMM Workshop on Large-Scale Attack Defense. pp.
131–138.

Guo, P.J., Zimmermann, T., Nagappan, N., Murphy, B., 2010. Characterizing and
predicting which bugs get fixed: An empirical study of microsoft windows. In:
Proceedings of the 32nd International Conference on Software Engineering. ICSE,
pp. 495–504.

Hong, S., Lee, J., Lee, J., Oh, H., 2020. SAVER: Scalable, precise, and safe memory-
error repair. In: Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. pp. 271–283.

Hong, H., Woo, S., Choi, E., Choi, J., Lee, H., 2022. xVDB: A high-coverage approach
for constructing a vulnerability database. IEEE Access 10, 85050–85063.

Hong, H., Woo, S., Lee, H., 2021. Dicos: Discovering insecure code snippets from
stack overflow posts by leveraging user discussions. In: Annual Computer Security
Applications Conference. ACSAC, pp. 194–206.

Huang, Z., Lie, D., Tan, G., Jaeger, T., 2019. Using safety properties to generate
vulnerability patches. In: 2019 IEEE Symposium on Security and Privacy. SP, IEEE,
pp. 539–554.

Islam, M.R., Zibran, M.F., 2021. What changes in where? An empirical study of
bug-fixing change patterns. ACM SIGAPP Appl. Comput. Rev. 20 (4), 18–34.

Jaccard, P., 1912. The distribution of the flora in the alpine zone. 1. New Phytol. 11
(2), 37–50.

Jang, J., Agrawal, A., Brumley, D., 2012. ReDeBug: Finding unpatched code clones
in entire OS distributions. In: 2012 IEEE Symposium on Security and Privacy. SP,
IEEE, pp. 48–62.

Jiang, Z., Zhang, Y., Xu, J., Wen, Q., Wang, Z., Zhang, X., Xing, X., Yang, M.,
Yang, Z., 2020. Pdiff: Semantic-based patch presence testing for downstream
kernels.. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security. CCS, pp. 1149–1163.

Kang, W., Son, B., Heo, K., 2022. TRACER: Signature-based static analysis for detecting
recurring vulnerabilities. In: Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security. CCS, pp. 1695–1708.

Kim, M., Sinha, S., Görg, C., Shah, H., Harrold, M.J., Nanda, M.G., 2010. Automated
bug neighborhood analysis for identifying incomplete bug fixes. In: 2010 Third
International Conference on Software Testing, Verification and Validation. IEEE,
pp. 383–392.

Kim, S., Woo, S., Lee, H., Oh, H., 2017. VUDDY: A scalable approach for vulnerable
code clone discovery. In: 2017 IEEE Symposium on Security and Privacy. SP, IEEE,
pp. 595–614.

Kwon, S., Woo, S., Seong, G., Lee, H., 2021. OCTOPOCS: Automatic verification of
propagated vulnerable code using reformed proofs of concept. In: Proceedings of
the 51st Annual IEEE/IFIP International Conference on Dependable Systems and
Networks. DSN, IEEE, pp. 174–185.

Le, X.-B.D., Bao, L., Lo, D., Xia, X., Li, S., Pasareanu, C., 2019. On reliability of
patch correctness assessment. In: 2019 IEEE/ACM 41st International Conference
on Software Engineering. ICSE, IEEE, pp. 524–535.

Lee, J., Hong, S., Oh, H., 2018. MemFix: Static analysis-based repair of memory
deallocation errors for C. In: Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. pp. 95–106.

Li, F., Paxson, V., 2017. A large-scale empirical study of security patches. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. CCS, pp. 2201–2215.
14
Liu, B., Meng, G., Zou, W., Gong, Q., Li, F., Lin, M., Sun, D., Huo, W., Zhang, C., 2020.
A large-scale empirical study on vulnerability distribution within projects and the
lessons learned. In: 2020 IEEE/ACM 42nd International Conference on Software
Engineering. ICSE, IEEE, pp. 1547–1559.

Mu, D., Cuevas, A., Yang, L., Hu, H., Xing, X., Mao, B., Wang, G., 2018. Understanding
the reproducibility of crowd-reported security vulnerabilities. In: 27th USENIX
Security Symposium. USENIX Security 18, pp. 919–936.

Murphy, A.H., 1996. The finley affair: A signal event in the history of forecast
verification. Weather Forecast. 11 (1), 3–20.

Na, Y., Woo, S., Lee, J., Lee, H., 2024. CNEPS: A precise approach for examining de-
pendencies among third-party C/C++ open-source components. In: Proceedings of
the 46th International Conference on Software Engineering. ICSE, pp. 2918–2929.

Nappa, A., Johnson, R., Bilge, L., Caballero, J., Dumitras, T., 2015. The attack of the
clones: A study of the impact of shared code on vulnerability patching. In: 2015
IEEE Symposium on Security and Privacy. SP, pp. 692–708.

Park, J., Kim, M., Ray, B., Bae, D.-H., 2012. An empirical study of supplementary bug
fixes. In: Proceedings of the 9th IEEE Working Conference on Mining Software
Repositories. MSR, IEEE, pp. 40–49.

Piantadosi, V., Scalabrino, S., Oliveto, R., 2019. Fixing of security vulnerabilities in
open source projects: A case study of apache HTTP server and apache tomcat.
In: Proceedings of the 12th IEEE Conference on Software Testing, Validation and
Verification. ICST, IEEE, pp. 68–78.

Shahzad, M., Shafiq, M.Z., Liu, A.X., 2012. A large scale exploratory analysis of software
vulnerability life cycles. In: 2012 34th International Conference on Software
Engineering. ICSE, IEEE, pp. 771–781.

Shi, Y., Zhang, Y., Luo, T., Mao, X., Yang, M., 2022. Precise (un) affected version
analysis for web vulnerabilities. In: 37th IEEE/ACM International Conference on
Automated Software Engineering. ASE.

Tan, X., Zhang, Y., Cao, J., Sun, K., Zhang, M., Yang, M., 2022. Understanding the
practice of security patch management across multiple branches in OSS projects.
In: Proceedings of the ACM Web Conference 2022. WWW, pp. 767–777.

Tan, X., Zhang, Y., Mi, C., Cao, J., Sun, K., Lin, Y., Yang, M., 2021. Locating the security
patches for disclosed OSS vulnerabilities with vulnerability-commit correlation
ranking. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. CCS, pp. 3282–3299.

Wang, X., Wang, S., Feng, P., Sun, K., Jajodia, S., 2021. PatchDB: A large-scale
security patch dataset. In: Proceedings of the 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. DSN, IEEE, pp. 149–160.

Woo, S., Choi, E., Lee, H., Oh, H., 2023. V1SCAN: Discovering 1-day vulnerabili-
ties in reused c/c++ open-source software components using code classification
techniques. In: 32nd USENIX Security Symposium. USENIX Security 23, pp.
6541–6556.

Woo, S., Hong, H., Choi, E., Lee, H., 2022. MOVERY: A precise approach for modified
vulnerable code clone discovery from modified open-source software components.
In: 31st USENIX Security Symposium. USENIX Security 22, pp. 3037–3053.

Woo, S., Lee, D., Park, S., Lee, H., Dietrich, S., 2021a. V0Finder: Discovering the correct
origin of publicly reported software vulnerabilities. In: 30th USENIX Security
Symposium. USENIX Security 21, pp. 3041–3058.

Woo, S., Park, S., Kim, S., Lee, H., Oh, H., 2021b. CENTRIS: A precise and scalable
approach for identifying modified open-source software reuse. In: 2021 IEEE/ACM
43rd International Conference on Software Engineering. ICSE, IEEE, pp. 860–872.

Xiao, Y., Chen, B., Yu, C., Xu, Z., Yuan, Z., Li, F., Liu, B., Liu, Y., Huo, W.,
Zou, W., Shi, W., 2020. MVP: Detecting vulnerabilities using patch-enhanced
vulnerability signatures. In: 29th USENIX Security Symposium. USENIX Security
20, pp. 1165–1182.

Yamaguchi, F., Golde, N., Arp, D., Rieck, K., 2014. Modeling and discovering vulner-
abilities with code property graphs. In: 2014 IEEE Symposium on Security and
Privacy. SP, IEEE, pp. 590–604.

Zhan, X., Liu, T., Fan, L., Li, L., Chen, S., Luo, X., Liu, Y., 2021. Research on third-party
libraries in android apps: A taxonomy and systematic literature review. IEEE Trans.
Softw. Eng..

Zhang, Z., Zhang, H., Qian, Z., Lau, B., 2021. An investigation of the android kernel
patch ecosystem. In: 30th USENIX Security Symposium. USENIX Security 21, pp.
3649–3666.

Seunghoon Woo received the B.S., M.S., and Ph.D. degrees
in computer science and engineering from Korea University.
He is currently an Assistant Professor with the Department
of Computer Science and Engineering, Korea University.
He served as Chief Scientist at Labrador Labs from 2022
to 2023. He has published papers on software security
and software engineering in top conferences, such as S&P,
USENIX Security, and ICSE. His research interests include
software security, vulnerability detection, and supply chain
security.

http://refhub.elsevier.com/S0167-4048(24)00486-3/sb1
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb1
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb1
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb1
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb1
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb1
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb1
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb2
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb2
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb2
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb2
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb2
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb3
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb3
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb3
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb3
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb3
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb4
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb4
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb4
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb4
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb4
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb4
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb4
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://github.com/universal-ctags/ctags
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb7
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb7
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb7
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb7
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb7
http://arxiv.org/abs/1905.09352
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb9
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb9
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb9
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb9
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb9
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb10
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb10
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb10
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb10
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb10
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb10
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb10
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb11
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb11
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb11
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb11
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb11
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb12
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb12
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb12
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb13
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb13
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb13
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb13
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb13
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb14
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb14
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb14
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb14
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb14
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb15
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb15
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb15
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb16
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb16
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb16
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb17
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb17
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb17
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb17
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb17
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb18
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb18
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb18
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb18
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb18
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb18
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb18
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb19
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb19
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb19
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb19
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb19
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb20
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb20
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb20
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb20
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb20
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb20
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb20
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb21
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb21
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb21
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb21
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb21
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb22
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb22
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb22
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb22
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb22
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb22
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb22
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb23
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb23
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb23
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb23
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb23
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb24
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb24
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb24
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb24
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb24
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb24
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb24
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb25
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb25
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb25
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb25
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb25
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb26
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb26
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb26
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb26
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb26
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb26
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb26
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb27
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb27
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb27
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb27
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb27
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb28
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb28
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb28
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb29
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb29
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb29
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb29
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb29
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb30
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb30
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb30
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb30
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb30
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb31
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb31
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb31
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb31
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb31
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb32
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb32
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb32
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb32
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb32
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb32
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb32
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb33
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb33
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb33
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb33
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb33
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb34
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb34
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb34
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb34
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb34
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb35
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb35
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb35
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb35
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb35
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb36
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb36
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb36
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb36
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb36
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb36
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb36
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb37
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb37
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb37
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb37
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb37
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb38
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb38
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb38
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb38
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb38
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb38
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb38
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb39
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb39
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb39
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb39
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb39
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb40
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb40
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb40
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb40
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb40
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb41
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb41
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb41
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb41
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb41
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb42
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb42
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb42
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb42
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb42
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb42
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb42
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb43
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb43
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb43
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb43
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb43
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb44
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb44
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb44
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb44
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb44
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb45
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb45
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb45
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb45
http://refhub.elsevier.com/S0167-4048(24)00486-3/sb45

S. Woo et al. Computers & Security 148 (2025) 104181
Eunjin Choi received the B.S. degree in Computer Sci-
ence and Engineering from Inha University, in 2020, and
M.S. degree in the Department of Computer Science and
Engineering from Korea University, Seoul, South Korea, in
2022. Her research interests include vulnerability detection,
vulnerability analysis, and digital forensics.
15
Heejo Lee (Member, IEEE) received the B.S., M.S., and
Ph.D. degrees in computer science and engineering from
POSTECH, South Korea. He is currently a Professor with
the Department of Computer Science and Engineering, Korea
University, and the Director of the Center for Software
Security and Assurance (CSSA). He is a Founding Member
and the Co-CEO of Labrador Labs. Before joining Korea
University, he was the CTO with AhnLab Inc., from 2001
to 2003, and a Postdoctoral Researcher with Purdue Univer-
sity, from 2000 to 2001. He is the Editor of the Journal of
Communications and Networks and the IEEE Transactions
on Vehicular Technology.

	A large-scale analysis of the effectiveness of publicly reported security patches
	Introduction
	Modeling and dataset
	Modeling and motivation
	Definition
	Modeling
	Analysis targets
	Motivating example

	Datasets
	Security patch dataset
	Software dataset

	Patch reliability analysis
	Unreliable patch detection methodology
	Preliminary experiment
	Unreliable patch detection

	Unreliable patch detection results
	Unreliable patch distribution
	Supplementation to resolve security issues
	Parameter sensitivity.

	Characteristics of unreliable patches
	Who mainly complements unreliable patches?
	How fast are unreliable patches complemented?
	In what types of vulnerabilities do unreliable patches occur frequently?
	Is it publicly disclosed that the security patch is unreliable and thus a supplementary patch is required?
	What about the amount of code change in unreliable patches?
	Case studies

	Impact of unreliable patches
	Methodology
	Result analysis

	Patch flexibility analysis
	Inflexible patch detection methodology
	Propagated vulnerability detection
	Inflexible patch detection

	Inflexible patch detection results
	Characteristics of inflexible patches
	What are the causes of syntax diversity?
	What is the relationship between the flexibility and severity of security patches?
	What is the proportion of vulnerable clones requiring patch modifications?
	How much has the syntax of the propagated vulnerable code been modified?

	Suggestions and applications
	Suggestions
	Applications

	Discussion
	Related Works
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

