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In the machine learning-based detection model, the detection accuracy tends to be proportional to the 

quantity and quality of the training dataset. The machine learning-based SSH detection model’s perfor- 

mance is affected by the size of the training dataset and the ratio of target classes. However, in an actual 

network environment within a short period, it is inconvenient to collect a sufficient and diverse training 

dataset. Even though many training data samples are collected, it takes a lot of effort and time to prepare 

the training dataset through data classification. To overcome these limitations, we generate sophisticated 

samples using the WGAN-GP algorithm and present how to select samples by comparing generator loss. 

The synthetic training dataset with generated samples improves the performance of the SSH detection 

model. Furthermore, we add the new features to include the distinction of inter-packet arrival time. The 

enhanced SSH detection model decreases false positives and provides a 0.999 F 1 -score by applying the 

synthetic dataset and the packet inter-arrival time features. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Advanced persistent threats (APT) targeting major national in- 

titutions or companies and insider information leakage have re- 

ently become increasingly significant security threats. These se- 

urity threats continue to transmit data inside the organization to 

he outside. Moreover, it is challenging to confirm the server IP ad- 

ress information used for hacking and information leakage using 

nfrastructure as a Service (IaaS), which can temporarily create and 

erminate servers in the public cloud, has become common. 

SSH communication is a useful means of attack attempts and 

nformation leakage ( SSH, 2021 ). For example, an attacker can re- 

otely connect to an occupied internal PC by using SSH tunnel- 

ng ( Burande et al., 2014 ). In other cases, a hacker can infect a

C with malware that connects to an external hacking server via 

n SSH tunnel or similar protocol using a background process. The 

SH tunnel can be abused to leak data or send additional attack 

ommands without user recognition. According to FireEye’s APT41 

eport, hackers use SSH communication to remotely access a PC 

nd infect it with malicious code ( Fraser, 2019 ). SSH access at- 

empts have recently been found using SSH over DNS tunneling 

 Berg and Forsberg, 2019 ) to bypass network security controls. SSH 

ommunication is generally inferred based on the service port. 

owever, as the TCP port is not dependent on the communica- 

ion service, it is hard to detect SSH communication with only the 
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CP port information. Deep packet inspection investigating packet 

ayload in detail ( Lin et al., 2008 ) and machine-learning com- 

rehensively analyzing various features can be adopted to detect 

SH communication. Moreover, in the SSH detection model using 

acket-based data, a high-performance system is required because 

 number of packets should be simultaneously stored and analyzed 

 Dharmapurikar et al., 2003 ). Even though the latest technologies 

uch as machine learning and deep learning are applied, a suffi- 

ient training dataset with diverse communication types should be 

repared to provide a high detection rate and accuracy. 

Our previous research ( Lee and Lee, 2021 ) proposed an SSH de- 

ection model using machine learning but shows that the preci- 

ion is significantly low due to the limited and unbalanced training 

ataset. The low precision problem occurs when it is difficult to re- 

ne genuine outliers ( Wang et al., 2013 ). For the improvement of 

recision, a diverse and sufficient dataset is required. If outliers are 

uned only by focusing on improving recall, the decrease of preci- 

ion is followed. In an unbalanced dataset, the precision may be 

ow regardless of the low false positive rate (FPR). In Alshammari 

t al.’s work, even though FPR is 0.017, precision is 0.128 because 

he class ratio of the test dataset is unbalanced. A detection model 

ealing with an unbalanced dataset can improve precision by mod- 

fying the target cost function, sampling, and generating artificial 

ata ( Wang et al., 2019 ). 

In this work, we apply session-based data instead of flow-based 

ata generally used to design the SSH detection model. Session- 

ased data is the information that combines the inbound and out- 

ound flow-based data in the same TCP session. Wheelus et al. 

https://doi.org/10.1016/j.cose.2022.102672
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ropose a session-based dataset (Session Aggregation for Network 

raffic Analysis, SANTA) for detecting internet attacks and security 

reaches. They explain that session-based data can be used to ana- 

yze the context of communication that is obscured by flow-based 

ata. Furthermore, the flow-based and packet-based data do not 

rovide characteristics of the overall session of network communi- 

ation ( Wheelus et al., 2014 ). 

It can be created by aggregating packet-based data or by com- 

ining two bound flow-based data. To compensate for limited fea- 

ures of session-based data, we use inter-packet arrival (IPA) time, 

hich is useful for application prediction. We append the average 

nd variance of IPA time obtained from packet-based data as fea- 

ures to session-based data. The size of session-based data is sig- 

ificantly reduced compared to packet-based and flow-based data. 

We reviewed the generative adversarial network (GAN) algo- 

ithm, which has recently been spotlighted in the field of deep 

earning that deals with images, as a method to gather samples 

imilar to the training dataset collected in an actual network envi- 

onment. In 2014, the GAN algorithm, proposed by Ian Goodfellow, 

enerates meaningful output from random noise using a generator 

nd trains the generator using a discriminator ( Goodfellow et al., 

014 ). GAN is actively applied in fields such as speech signal and 

atural language processing as research on GAN algorithm contin- 

es. Recently, the scope of GAN is expanding, studies applying the 

AN algorithm to network traffic generation and abnormal traffic 

etection are continued ( Al Olaimat et al., 2020; Lin et al., 2018; 

acwan et al., 2021; Ring et al., 2019 ). Among them, Ring et al.

escribes a specific preprocessing for applying the GAN algorithm 

o flow-based data and a data generation method using WGAN-GP 

 Ring et al., 2019 ). WGAN-GP improves the clipping weight of GAN 

nd optimizes the learning as a gradient penalty ( Gulrajani et al., 

017 ). In this work, WGAN-GP generates various samples and syn- 

hesizes an enhanced training dataset. Since the generated samples 

ith the WGAN-GP have continuous values, we apply the softmax 

unction to adjust the discrete values such as class and evaluate the 

alidity of generated samples. After analyzing the effect of the gen- 

rator loss (G-loss) and quantity of generated samples on the SSH 

etection model, we add generated samples to the training dataset, 

hich improves the performance of the SSH detection model. 

Compared to our previous work, this work using the same 

ARPA 99 dataset provides an improvement of 11.74% recall and 

3.58% precision. We describe a novel approach to improve the 

erformance of the SSH detection model by proposing a compact 

ession-based dataset and synthetic dataset using WGAN-GP as fol- 

ows. 

• We reduced the size of the training dataset by converting flow- 

based data into session-based data and propose a method to 

apply features of inter-packet arrival (IPA) time to features of 

the session-based data. 

• We prove that the WGAN-GP algorithm effectively generates 

samples compared to the GAN and WGAN algorithms by con- 

sidering the number of generated samples and the output of 

softmax function. 

• We propose how to select samples by comparing generator 

loss to improve the detection performance of the SSH detection 

model. 

This paper is organized in the following order. Section 2 de- 

cribes the insufficient information in session-based dataset, the 

ifficulty in gathering valid training data, and the validation of 

enerated samples. Section 3 discusses the packet-based and flow- 

ased data commonly used in network traffic classification and de- 

ection. Then a set of deep generative models used for sample gen- 

ration is described. Section 4 covers the preprocessing of session- 

ased dataset and how to select and apply samples generated with 

GAN-GP. Section 5 measures the performance of the SSH detec- 
2 
ion model while changing the rate of generated samples, which 

as a different generator loss to verify Section 4 . Finally, we con- 

lude the paper with a discussion and plans for future work. 

. Problem analysis 

.1. Insufficient information in session-based dataset 

The network interface divides data into packets, which have the 

ize of a maximum transmission unit (MTU) for efficient trans- 

ission in the limited network bandwidth. In transmitting and re- 

eiving packets, the information of the packet header also reflects 

he properties of the application ( Mahoney, 2003 ). However, when 

ombining the header information of packets into a session to min- 

mize the information size and express the communication briefly, 

he unique properties shown in packet-based data disappear. As 

 representative example, inter-packet arrival time of bidirectional 

ackets, is an important feature that can estimate application prop- 

rties ( Alshammari and Zincir-Heywood, 2011; Sadasivam et al., 

016 ). Still, it is not easy to directly express the response time be- 

ween multiple packets in session-based data. 

.2. Limitations of collecting training dataset 

We presented a model for detecting SSH communication us- 

ng a session-based dataset using a machine learning algorithm in 

ur previous work ( Lee and Lee, 2021 ). The detection model pro- 

ides high recall, but the precision is relatively low. This problem 

s caused by false detection of Non-SSH communications such as 

eb and SMTP as SSH communications. Sufficient training dataset 

re necessary to increase precision ( Xu et al., 2020 ) because they 

an help to improve the detection rate of non-SSH communica- 

ions while maintaining the detection rate of SSH. We expected 

hat various training dataset would improve the detection rate of 

on-SSH communication, so the internet traffic from 8 to 12, May 

006 provided by the MAWI Working Group is added to the train- 

ng dataset. As expected, the increased training dataset improves 

he detection rate of Non-SSH communications. The precision for 

SH communication is increased by 29.4%, but the recall for SSH is 

ecreased by 1.8% in the SSH detection model using random for- 

st. We predicted that the training data corresponding to Non-SSH 

ommunication affected the detection results of the test dataset. 

e estimated that the cause of the reduced recall of SSH is the pe- 

iod and network environment in which the MAWI training dataset 

as collected. In other words, to support the existing high recall 

nd improve precision, it is necessary to gather a sufficient training 

ataset in the same network environment that reflects the proper- 

ies of the communication environment. However, since the train- 

ng dataset should be classified, accurate labeling of the data is 

ssential. Moreover, it takes a lot of effort and time to provide a 

igh-quality training dataset. 

.3. Synthetic dataset validation 

Samples using the GAN algorithm are similar to real data, and 

hey can replace missing data in the original data set ( Kwon et al.,

019 ). Therefore, we tried to obtain a synthetic training dataset by 

pplying GAN. If the output of GAN algorithm offers the class in- 

ormation of samples, the additional labeling work is unnecessary. 

owever, when generating samples using the GAN algorithm, the 

enerated sample needs improvement for mode collapse that is bi- 

sed towards a specific class that is easy to learn. In addition, it is 

ifficult to determine the validity of the generated sample because 

etwork communication data is not recognized by human percep- 

ion, such as images, texts, and voices. In the detection model us- 

ng a synthetic dataset, because the validity of the sample can af- 
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ect the detection performance, we should consider a method for 

erifying the validity of the sample. 

. Related work 

.1. Packet-based data & flow-based data 

Packet-based data is the information obtained through pack- 

ts establishing a session. Packet-based data contains important 

nformation for classifying communication. It can provide addi- 

ional information by analyzing the correlation of packets and 

y inspecting the information included in the packet header. 

atoh et al. explain that packet size and direction are important 

eatures to find the essential singularity of SSH communication 

 Satoh et al., 2012 ). Packet-based data describes the shape of trans- 

ission and reception and inter-packet arrival time during a ses- 

ion ( Garsva et al., 2014 ). Sadasivam et al.’s work show that inter-

acket arrival time of packet-based data is the main feature of the 

ecision tree for classifying successful communication in SSH at- 

acks ( Sadasivam et al., 2016 ). Tcpdump and libpcap are examples 

f packet-based data. The network traffic is represented in detail 

y packet-based data captured from the network path. However, 

ecause traffic is provided in its entirety, the dataset captured in 

 real-world network environment is massive. Due to the massive 

ize of packet-based data, analyzing network communication con- 

umes a lot of computing resources and time. 

Flow-based data is widely used in network communication 

nalysis due to the collection, storage, and analysis limitations of 

acket-based data. Flow-based data is data that combines commu- 

ications with the same source and destination addresses into one. 

low-based data is traffic metadata that combines packet-based 

ata with the same source and destination addresses. The size 

f flow-based data is reduced because a large number of packet- 

ased data are aggregated into one. NetFlow, a representative flow- 

ased data proposed by Cisco systems, is provided by a switch 

r router. Flow-based data is used as a network traffic dataset in 

any studies, including the work of Ring et al. 

In Alshammari et al.’s work, when comparing the SSH detec- 

ion models using packet-based features, the detection model us- 

ng flow-based features shows a high detection rate and a low false 

ositive rate compared to the SSH detection models using packet- 

ased features ( Alshammari and Zincir-Heywood, 2007; 2011 ). 

.2. Deep generative models 

Maximum likelihood based deep generative models are classi- 

ed by the way how to represent or approximate the likelihood. 

he production of explicit density divides deep generative models 

nto explicit models and implicit models. An explicit model con- 

tructs a model that the explicit density function has a maximum 

ikelihood. In contrast, the implicit model does not explicitly de- 

cribes a probability distribution. Variational autoencoder (VAE) is 

 representative explicit model, and GAN is an implicit model suit- 

ble for scaling to high dimensional spaces and relatively low com- 

utational costs ( Goodfellow, 2016 ). 

.2.1. Variational autoencoder 

Variational autoencoder (VAE) is a deep generative model that 

rovides explicit density. VAE consists of input layer, encoder, la- 

ent space, decoder, and output layer. The architecture is similar to 

utoencoder (AE). A neural network is applied to encoders and de- 

oders. An encoder using Gaussian multi-layered perceptron (MLP) 

nd a decoder using Bernoulli MLP are applied to the VAE model 

 Kingma and Welling, 2013 ). 

In AE model, an encoder generates latent variable z by dimen- 

ion reduction, and a decoder constructs the same output layer 
3 
ith the input layer through a decoder. AE can be applied to prin- 

ipal component analysis ( Hinton and Salakhutdinov, 2006 ), infor- 

ation retrieval ( Salakhutdinov and Hinton, 2009 ), anomaly detec- 

ion ( Sakurada and Yairi, 2014 ). However, the purpose of VAE is 

o generate new data. In the latent space of VAE, the mean and 

ariance of latent variable z are provided through the encoder, and 

he distribution follows a standard normal distribution. The de- 

oder reconstructs continuous output data close to the input data 

y using the sampled data from the latent variable distribution. 

he decoder reconstructs continuous output data close to the input 

ata by using the sampled data from the latent variable distribu- 

ion ( Kingma and Welling, 2013 ). VAE has a clear and recognized 

ay to evaluate the quality of the model using the loss function. 

n contrast, in the image generation, generated samples are much 

ore blurred than images generated from GANs ( Genevay et al., 

017 ) 

.2.2. From GAN to WGAN-GP 

In 2014, Ian Goodfellow introduced Generative Adversarial Net- 

orks (GANs). GAN is a framework for estimating generative mod- 

ls via an adversarial process. Yann LeCun described that GAN is 

the most interesting idea in the last 10 years in Machine Learn- 

ng” ( Beckett, 2017 ). To replicate a probability distribution, GAN 

ses loss functions that reflect the distance between the distri- 

ution of the data generated by the GAN and the distribution of 

he real data. The GAN consists of a discriminator D , which rep- 

esents the probability of judging a given sample as a real data, 

nd a generator G , which generates a synthetic sample through a 

oise variable. To obtain realistic but non-real data, GAN plays the 

wo-player minimax game of a discriminator network and a gen- 

rative network. Eq. (1) is the objective function of GAN. In GAN’s 

bjective function, the generator is trained to minimize the value 

f the objective function, and the discriminator is trained to max- 

mize the objective function. In Eq. (1) , G (z) means a generated 

ample by inputting random vector z ( Goodfellow et al., 2014 ). 

in 

G 
max 

D 
V (D, G ) = E x ∼p data (x ) [ log D (x ) ] 

+ E z∼p z (z) [ log (1 − D (G (z))) ] (1) 

f the GAN’s generator repeatedly generates the same output, 

nd the next discriminator must reject the corresponding out- 

ut. However, when the next discriminator stays at the local 

inimum, it causes a mode collapse problem with limited sam- 

le variety. Wasserstein GAN (WGAN) solves the mode collapse 

roblem by using the distance between the probability distribu- 

ion of real samples and that of generated samples instead of 

he discriminator-based objective function. Representative distance 

easures between probability distributions include Total Variation 

TV), Kullback–Leibler (KL), and Jensen–Shannon (JS) distance, but 

hey do not converge when the compared probability distribu- 

ions match each other. Since Earth Mover’s (EM’s) distance is cal- 

ulated as a continuous function even when probability distribu- 

ions match, WGAN trains an optimal model using EM distance as 

n objective function. Eq. (2) describes the objective function of 

GAN. If the optimal generator g θ satisfies the Lipschitz condi- 

ion ( Eq. (3) ), Critic loss ( Eq. (2) ) is always differentiable to ob-

ain an optimal value. WGAN executes weight clipping to satisfy 

he Lipschitz condition for each batch section and forcibly adjusts 

he weight parameters to exist in the compact space, [-c,c] sec- 

ion ( Arjovsky et al., 2017; Weng, 2019 ). 

ritic Loss = max 
w ∈ W 

E x ∼P r [ f w 

(x ) ] − E z∼p z (z) [ f w 

(g θ (z) ] (2) 

 f (x 1 ) − f (x 2 ) |≤ K | x 1 − x 2 | (Lipschit z condit ion ) (3) 
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GAN supports the stable training of GAN by using EM’s dis- 

ance. However, the poor sample generation and convergence fail- 

re of objective function still exist. Gulajani et al. explain that the 

ause of the problem is the Lipschitz constraint applied to WGAN’s 

ritic loss. They proposed WGAN-GP, which can improve clipping 

eight using gradient penalty. When comparing to WGAN that 

djusts the weight parameters, WGAN-GP helps achieve optimal 

earning by adding a gradient penalty to the WGAN’s loss function. 

q. (6) (Critic Loss) is an objective function of WGAN-GP. In Eq. (4) ,

andom sample ˆ x is calculated using real sample x and generated 

ample ˜ x . In Eq. (5) , if ˆ x ’s EM distance slope || ∇ ˆ x D ( ̂  x ) || 2 is not 1,

he penalty is applied. λ is the optimal value experimentally con- 

rmed during the training process. Generator loss ( Eq. (7) ) is able 

o describe the reality or similarity of generated samples compared 

o real samples. Samples with low generator loss generally provide 

ood sample quality (so similar to real samples), but at the same 

ime, they can cause underfitting problems. In the area of anomaly 

etection, underfitting samples have a negative effect on detecting 

dditional anomaly behaviors. 

ˆ x = εx + (1 − ε) ̃  x (4) 

rdient P enalty = λE ˆ x ∼P ˆ x 

[
(‖∇ ˆ x D ( ̂  x ) ‖ 2 − 1) 2 

]
(5) 

Critic Loss = E ˜ x ∼P g 
[ D ( ̃  x ) ] − E x ∼P r [ D (x ) ] + Grdient P enalty (6) 

Generator Loss = −E [ D (G (z)) ] (7) 

n the study of Gulajani et al., WGAN-GP showed strong modeling 

erformance and stability compared to DCGAN, LSGAN, and WGAN 

 Gulrajani et al., 2017 ). 

. Methodology 

.1. Overview 

In this work, we use a dataset converted from packet-based 

ata to session-based data. A deep generative model generates 

amples for the synthetic training dataset. First, we convert the 

nter-packet arrival time of the packet-based features into mean 

nd variance to add the feature on the session-based data. Next, 

e generate samples using the WGAN-GP algorithm and filter sam- 

les using the softmax function and generator loss. The synthetic 

ataset, mixed with the original and filtered samples, is used as 

he training dataset. Finally, we present the performance of the 

andom forest-based detection model. Fig. 1 is a diagram illustrat- 

ng the process from data collection to SSH communication detec- 

ion. This section describes session-based dataset transform, pre- 

rocessing, major feature extraction, GAN algorithm assessment, 

nd sample selection using generator loss. 

.2. Dataset preparation 

.2.1. Session-based dataset transform 

The dataset used in this paper is the 1st, 3rd, and 4th- 

eek data of DARPA99 ( LINCOLN, 1999 ). In the tcpdump data 

f DARPA99, we converted the packet collection time and TCP/IP 

eader information into a session-based dataset. Whereas flow- 

ased data, which is unidirectional, session-based data is bidirec- 

ional and expresses data sending and receiving as one. The size 

f session-based data is further reduced because it is expressed by 

ombining two flow-based data. A session log provided by a fire- 

all or web proxy is an example of representative session-based 

ata. Table 1 shows the number of rows, file size and conversion 
4 
ime (from packet-based data) of the training dataset (Week4 of 

ARPA99) when it is expressed as packet-based data, flow-based 

ata, or session-based data. 

Regarding the studies of Alshammari and Zincir- 

eywood (2011) , Sadasivam et al. (2016) , and Yu et al. (2017) ,

e judged that inter-packet arrival (IPA) time affects the SSH 

etection rate. The IPA time is calculated using the time records 

f packets belonging to the same session. The IPA time differs 

rom the duration of flow-based data. Duration refers to the time 

nterval between the first packet’s detection and the last packet’s 

etection in a flow with the same bound. On the other hand, IPA 

ime refers to the interval time of continuous packets in a session. 

henever a packet occurs in flow-based data, the difference 

n duration is limited to displaying only the characteristics of 

he transmitter or receiver. However, the IPA time can inspect 

he response time showing the properties of the application 

etween the transmitter and the receiver during communication 

 Wheelus et al., 2014 ). We add the mean and variance of the IPA

ime to the features of the session-based dataset. Fig. 2 depicts 

he difference between the interval time of flow-based data and 

he IPA time of session-based time. 

Session-based data is combined by analyzing source IP, desti- 

ation IP, source port, destination port, packet size, and 3-hands 

hake information included in the TCP header. The process of com- 

ining sessions is as follows. First, the row corresponding to the 

YN packet of the 3-hands shake is extracted. Next, after the time 

f the SYN packet, packets with the same IP and port are combined 

ntil a FIN packet comes out. If there is no response packet after 

00 s have elapsed since the last packet, we conclude that the ses- 

ion is terminated and terminate the session combination. Table 2 

hows the session-based data after combining packets. 

We can reduce the data size for the training dataset and test 

ataset from 20,398,592 rows to 595,524 rows by transforming 

acket-based data into session-based data. It took about 101 min 

o transform the packet-based data into the session-based data 

aving the feature of IPA time. (We used a workstation with the 

ollowing specification: 6-core (3.59 GHz) CPU, 32 GB Memory, and 

indows 10 21H1.) 

.2.2. Preprocessing 

A dataset that has been transformed into a session-based 

ataset from one session shows only the properties of its session. 

or comparative analysis between similar communications, asso- 

iation analysis with other sessions is required. In particular, the 

ount of source addresses connected to the same server and the 

ccess frequency are valuable indicators in estimating the attribute 

f communication. This session information is used to detect ab- 

ormal communication behavior in IDS/IPS ( Moon et al., 2017 ). We 

efine additional features as the result of comparative analysis be- 

ween the characteristics of the session and similar communica- 

ion. Table 3 lists the features of the dataset to be applied to the 

SH detection model. In machine learning and deep learning algo- 

ithms, datasets with linear characteristics are easy to classify, so 

e apply a log function to some features to reduce the distribution 

ensity of the data and show the linear characteristics as much as 

ossible. Finally, we scale the 9 features (discussed in next section) 

f the data set except for labels to range from 0 to 100. It should

e noted that the preprocessed dataset is further scaled from 0 to 

 before training with the GAN algorithm. 

.2.3. Major feature extraction 

In order to improve the detection speed and precision of the 

etection model, in the SSH detection model using a decision tree, 

eatures with low frequency are replaced with principal compo- 

ent analysis (PCA)-applied PC value. To extract the major fea- 

ures, we applied all features in the training dataset to the deci- 
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Fig. 1. Overview of the enhanced SSH detection model. 

Table 1 

Rows, file size, and conversion time comparisons by training dataset type (Week4 of DARPA99). 

Comparison item Session-based data Flow-based data (NetFlow) Packet-based data (PCAP) 

Rows 175,330 348,583 6,461,795 

File size 39.7MB 80.4MB 1.35GB 

Conversion type Packet → Session Packet → Flow - 

Conversion time 288 sec 881 sec - 

Fig. 2. IPA time, Flow interval, and duration comparison in the TCP communication: IPA time reflects the characteristics of the application by indicating the difference 

between the packets sent and received. 

Table 2 

Session-based dataset including inter-packet arrival (IPA) time information: We applied the mean and variance of IPA time as features to provide the 

characteristics of IPA time to session-based data. 

Src. IP Dst. IP Dst. Port Send Byte Receive Byte Session Time Mean of IPA time Variance of IPA time 

172.16.112.194 196.37.75.158 25 1727 892 0.3092 0.0961 3.01E-03 

172.16.113.105 197.182.91.233 79 300 514 0.2357 0.0425 3.46E-03 

172.16.114.169 135.13.216.191 25 2158 939 0.1067 0.0221 6.24E-05 

5 
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Fig. 3. Major feature analysis: The range of each major feature where 80% of SSH are located is as follows. (IPA time mean: 0 ∼31, IPA time variance: 0–52, Browse time: 

55–82, Ratio trans/receive: 43–64). 

Table 3 

The feature name and description after preprocessing: After applying the log func- 

tion to 9 features except for label features, the scale of feature is adjusted. 

Dataset feature Description 

count_total_connect Number of connections to the same Destination IP 

count_connect_IP Number of source IP connected to the same 

destination IP 

count_avg_connect Average number of connections per IP to the same 

destination IP 

speed_transmit_BPS Average transfer speed 

byte_send Transmit data size 

ratio_trans_receive Send byte byte/Receive byte 

time_taken Time per session 

mean_of_IPA_time Mean of inter-packet arrival (IPA) time 

var_of_IPA_time Variance of inter-packet arrival (IPA) time 

label_ssh SSH communication 

label_non_ssh Non-SSH communication 
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ion tree with a maximum of 5 depth and selected the features 

requently used as decision nodes. Ratio_trans_receive, time_taken, 

ean_of_IPA_time, and var_of_IPA_time were selected as major fea- 

ures, and count_total_connect, count_connect_IP, 

count_avg_connect, speed_transmit_BPS, and byte_send were re- 

laced with PC value and then added to the training dataset. The 

nter-packet arrival time is mentioned as an essential feature in 

lassifying communications in the related work by Alshammari 

t al. and Sadasivam et al. We examined whether this feature plays 

 significant role in classifying SSH communications when convert- 

ng these features to mean and variance for use with session-based 

ata. Fig. 3 shows the characteristics of major features and princi- 

al component (PC) on class classification. All SSH communications 

n the training dataset are located in the PC range of 0.34–25.0, and 

ost SSH communications are located in a limited range of major 

eatures. 

We observed the effect of the newly added features 

ean_of_IPA_time and var_of_IPA_time on the detection perfor- 

ance. In the result of learning the training dataset to which 
6 
ean_of_IPA_time and var_of_IPA_time are added with the random 

orest (tree number = 100) algorithm, recall 11.8% and precision 

0.1% were improved compared to the existing detection model 

 Lee and Lee, 2021 ). 

.3. Synthetic dataset 

.3.1. Design of a generator and discriminator network 

A general GAN algorithm is made up of two networks: a gener- 

tor network and a discriminator network. In Fig. 4 , which depicts 

 WGAN-GP algorithm, the generator network G and discrimina- 

or D in the GAN and WGAN algorithms are the same architec- 

ure. This work compares the representative GAN algorithm with 

GAN-GP but does not include the optimization of the generator 

nd discriminator networks. Except for the size of the latent vec- 

or, the generator and discriminator networks use PyTorch’s default 

ettings. 

First, we consider the size of the latent vector as an input value. 

n deep learning, the latent space has a significant impact on the 

ize of the hidden layer. This is due to the small latent space in 

roportion to the size of the hidden layer, which causes the deep 

earning model’s learning to deteriorate ( Pinetz et al., 2019; Tiu, 

020 ). Given this effect, we chose the latent space (10 dimensions) 

hat was similar to the feature size of dataset. 

The generator network generates fake data by inputting a vector 

f a latent space with a normal distribution and performing four 

ayers of upsampling. The generator network’s upsampling layer is 

ade up of a combination of Linear transformation, Batch normal- 

zation, and an Activation function, while the discriminator net- 

ork is made up of a combination of linear transformation and 

n activation function. The latent variable � z is expanded to sophis- 

icated and diverse data in the generator network through Linear 

ransformation of each layer. Batch normalization allows for much 

aster learning rates and easier initialization, and adjustments to 

void distorted distributions ( Ioffe and Szegedy, 2015 ). However, 

t is suggested to avoid applying batch normalization to the gen- 
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Fig. 4. Network architecture of GAN/WGAN/WGAN-GP: The GAN, WGAN, and WGAN-GP, which compare and test the generation of valid data in this study, all algorithms 

use the same generator and discriminator networks. 
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Table 4 

Sample generation result by GAN, WGAN, and WGAN-GP (epoch 100, batch 64, la- 

tent space 10): When comparing the number of samples generated for each range 

of the softmax function, only the WGAN-GP algorithm generates samples with 

more than 0.75 softmax output. 

Algorithm Class 

Softmax(Class) 

> 0.90 > 0.85 > 0.8 > 0.75 > 0.70 

GAN SSH 0 0 0 0 565,148 

Non-SSH 0 0 0 0 724,770 

WGAN SSH 0 0 0 0 14 

Non-SSH 0 0 0 0 11,829 

WGAN-GP SSH 0 667 2,968 13,815 42,468 

Non-SSH 0 1 23 1,488 8,582,565 
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rator output layer and the discriminator input layer because it 

ften to all layers of the GAN may result in sample oscillation 

nd model instability ( Radford et al., 2015 ). The non-linear Acti- 

ation function deepens the hidden layer and provides the effect 

f reducing parameters and computations while maintaining ac- 

uracy ( Sharma et al., 2017 ). In the discriminator network, it has 

he same effect. Among non-linear Activation functions, the Leaky 

eLU function supports back-propagation in negative space, which 

dds to ReLU’s advantage of fast generator network convergence. 

The discriminator network, which was trained with real train- 

ng data, receives fake data G ( � z ) and outputs validity D (G ( � z )) .

he GAN algorithm calculates the objective function ( Eq. (1) ) us- 

ng D (G ( � z )) , whereas the WGAN and WGAN-GP use the probability

istribution of real samples and the probability of generated sam- 

les to determine the validity of fake data. In contrast to the gen- 

rator network, the discriminator’s linear transformation reduces 

imensionality while providing sophisticated validity through mul- 

iple layers. 

.3.2. GAN algorithm assessment using softmax 

We use the WGAN-GP algorithm as a method to generate sam- 

les. In this work, our experiment confirms that the WGAN-GP al- 

orithm could generate stable and valid samples compared to the 

AN and WGAN algorithm. Samples are generated from the train- 

ng dataset (DARPA99 Week 4) with 11 features of Table 3 us- 

ng GAN, WGAN, and WGAN-GP algorithms. The GAN, WGAN, and 

GAN-GP algorithms used Pytorch-GAN ( Linder-Norén, 2018 ), an 

pen-source implemented with PyTorch. We repeated the data 

eneration six times using GAN, WGAN, and WGAN-GP algorithms 

o prepare sufficient samples. To avoid underfitting data, data from 

 to 10 epochs were excluded from the synthetic dataset. The gen- 

rated samples should be similar to the data that can occur in the 

eal network environment. We classified the output of the softmax 

unction based on a specific threshold to select samples applica- 

le to the training dataset. Table 4 shows the sample counts for 

ach output range of the softmax function. In the range of high 

oftmax output, the WGAN-GP algorithm generates more samples 

ompared to GAN and WGAN. The reason GAN and WGAN gen- 

rate insufficient samples compared to WGAN-GP is the limited 
7 
ample variety caused by the mode collapse phenomenon of GAN 

 Gulrajani et al., 2017 ) and the critic’s limited discrimination per- 

ormance ( Arjovsky et al., 2017 ) due to the vanishing gradient 

aused by the small weight clipping of the WGAN. 

.3.3. Sample generation using WGAN-GP 

We measured the accuracy of the detection model according to 

he range of the critic output value of the generated dataset in or- 

er to select a suitable virtual sample as the training dataset of the 

SH detection model. Fig. 5 shows the changes in the critic loss 

 Eq. (6) ) and the generator loss ( Eq. (7) ) according to the number

f epochs of the first dataset among six generated dataset. 

We use the value of softmax output as a criterion to distin- 

uish samples similar to actual communication. Samples over the 

oftmax output value 0.7 are selected ( Table 4 ). Fig. 5 shows how

ritic loss and generator loss change as the epoch of the decoding 

ncreases. The critic loss converges to 0 and shows stable learning. 

s the epoch increases, the generated sample more and more sim- 

lar to the real data, and the generator loss gradually decreases. 

However, if samples are more sophisticated and more trained to 

enerate a limited data diversity, the synthetic dataset has a lim- 

ted variation. We analyzed the generator loss to select samples to 

e applied to the synthetic dataset to improve the performance of 

he SSH detection model. In the Fig. 6 , as the epoch increases, the 
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Fig. 5. Changes in critic loss(c_loss) and generator loss(g_loss) by the number of epochs: As the epoch increases, the training of the WGAN-GP becomes more stable. Training 

in high epochs causes the critic loss to converge to zero and the generator loss to decrease gradually. 

Fig. 6. Changes in critic loss and generator loss by number of epochs. 
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ample corresponding to the low generator loss section (data sim- 

lar to the real data) is generated at a high rate. In addition, after 

he 20–30 epoch range of Fig. 6 , the generation rate of data with

ow generator loss increases. In order to sufficiently select samples 

imilar to the original data, it is possible to select sufficient sam- 

les by training until high epoch or by multiple sample generation. 

.3.4. Sample selection for synthetic dataset 

Our previous work and the SSH detection model proposed in 

ection 4.2 both show better recall and precision. However, the 

recision is relatively low compared to the improvement of recall. 

t is necessary to improve the detection model to decrease false 

ositives and false negatives by increasing the detection accuracy 

or non-SSH communication ( Eqs. (8) and (9) ). We examined the 

ffect on detection rate and detection accuracy by changing the 
8 
enerator loss (similarity) and quantity of the sample added to the 

raining dataset ( Table 5 ). DARPA99 Week 4 dataset is used for the 

raining dataset to make a synthetic dataset, and Week 1 and Week 

 datasets are used for the test dataset. First, we have measured 

he effect of SSH samples on the performance of the SSH detec- 

ion model and confirmed that the added SSH samples increase 

alse positives and significantly reduce precision. In the next ex- 

eriment using non-SSH samples, they have effected to increase 

he precision by improving the false positive of the SSH detection 

odel. 

ecall = 

T rue P ositi v e 
T rue P ositi v e + F alse Negati v e 

(8) 

 recision = 

T rue P ositi v e 
T rue P ositi v e + F alse P ositi v e 

(9) 
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Table 5 

SSH detection performance using synthetic dataset: a synthetic dataset that mixes 150 K samples with high generator loss and 50K samples with 

low generator provides the highest F 1 -score. (Week 1, 3 test dataset) 

Generator Loss Count Recall (RF) Precision (RF) F 1 -score (RF) 

No samples added 0 0.9996 0.8637 0.9267 

High range (G_loss > -0.5) 100,000 0.9992 0.9877 0.9934 

150,000 0.9972 0.9985 0.9978 

200,000 0.9892 0.9996 0.9944 

250,000 0.9848 1.0000 0.9923 

300,000 0.9692 1.0000 0.9844 

400,000 0.9416 1.0000 0.9699 

Low range (G_loss < -1.5) 100,000 1.0000 0.9119 0.9539 

150,000 1.0000 0.9157 0.9560 

200,000 1.0000 0.9358 0.9668 

250,000 1.0000 0.9446 0.9715 

300,000 1.0000 0.9491 0.9739 

400,000 1.0000 0.9530 0.9759 

Mixed range High 150,000 0.9984 0.9988 0.9986 

low 50,000 

High 50,000 1.0000 0.9646 0.9820 

low 150,000 

High 100,000 1.0000 0.9838 0.9919 

low 100,000 
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 1 − score = 

2 × Recall × P recision 

Recall + P recision 

(10) 

Table 5 shows the effect on the SSH detection model under 

he different conditions of non-SSH samples. The precision shows 

ifferent aspects according to the value of generator loss (G-loss). 

on-SSH samples in the high G-loss range ( > −0 . 5 ) help to signifi-

antly improve the precision when adequate amounts are added to 

he training dataset. However, the recall tends to decrease slightly 

ompared to using the original training dataset. On the other hand, 

on-SSH samples in the low G-loss range improve both recall and 

recision as the quantity of samples increases. Although the pre- 

ision is improved less than non-SSH samples with high generator 

oss, it is expected that both recall and precision of the SSH de- 

ection model can be slightly improved. However, it takes a lot of 

ime to generate enough samples and to train the SSH detection 

odel with huge samples. 

Considering that the ratio of non-SSH communication is very 

igh compared to SSH communication in the training dataset, the 

recision of the SSH detection model is very important along with 

ecall. Non-SSH data with high generator loss provides high pre- 

ision with small samples, and non-SSH data with low generator 

oss has the characteristic of maintaining high recall. Since we ob- 

erved that high and low generator loss have different effects on 

he recall and precision, we created a synthetic dataset by mixing 

amples in the different G-loss ranges. 

The process of mixing non-SSH samples in the different G-loss 

anges is as follows. First, we measure the performance of the SSH 

etection model with samples in the single side G-loss range. Next, 

e select the case of high generator loss that shows the highest F 1 -

core. Finally, we find the maximum recall and precision by grad- 

ally adding samples with low generator loss. Table 5 shows the 

erformance of the SSH detection model trained by changing the 

ount of samples with different ranges. We selected the case of 

50,0 0 0 samples indicating the highest F 1 -score in the high range 

f generator loss. Measuring the performance by increasing the 

ount of samples with low generator loss, the highest 0.9986 F 1 - 

core was measured when 50,0 0 0 samples with low generator loss 

as added. Using samples with mixed range generator loss, the F 1 - 

core is increased by up to 3.18% compared to using 20 0,0 0 0 non-
9 
SH samples with single side (low range) generator loss. More- 

ver, this mixed case shows the highest F 1 -score among 10 0,0 0 0–

0 0,0 0 0 non-SSH samples. 

.4. Detection performance comparison 

While using non-SSH samples to reduce false positives of the 

SH detection model, the decrease of true positives is minimal. The 

eason lies in the algorithm of the SSH detection model. In this 

ork, the SSH detection model defines various sessions with the 

ame destination IP and port as the same service. If one of the var- 

ous sessions is detected as SSH communication, all sessions with 

he same destination IP and port are classified as SSH communica- 

ion. This SSH detection model algorithm prevents the decrease of 

rue positives from the generated samples. 

Table 6 compares the performance of SSH detection models. F 1 - 

core and precision are improved compared to other SSH detec- 

ion models. Considering that DARPA99, MAWI, and AMP are un- 

alanced datasets with a small percentage of SSH communication, 

he improved precision by reducing false positives is remarkable in 

erms of the accurate precision of SSH communication. Compared 

ith our previous study ( Lee and Lee, 2021 ), the precision is im- 

roved by 63.6%, and the number of false positives is reduced from 

9 to 0 ∼1. Considering that there are 25 SSH servers in the test 

ataset, the decrease in precision saves time and effort in classify- 

ng the final target data. 

.5. Sample validation 

The similarity between non-SSH samples and real non-SSH data 

s verified through the distribution of non-SSH based on major fea- 

ures. Sample validation uses 50,0 0 0 real non-SSH data randomly 

elected from the original training dataset and 50,0 0 0 non-SSH 

amples randomly selected from the synthetic dataset. The case 

howing the highest F 1 -score (high G-loss: 150,0 0 0, low G-loss: 

0,0 0 0) was selected for the synthetic dataset. In the Fig. 7 , the

hape of non-SSH samples is similar to real non-SSH, but the dis- 

ribution of non-SSH samples is wider than real non-SSH. The na- 

ure of the sample distribution supports the SSH detection model 

o improve precision by reducing false positives for SSH. 
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Table 6 

Comparison of SSH detection performance by dataset feature type: The detection model applying the average and variance of inter-packet arrival time to the training dataset 

shows improved precision and F 1 -score. 

Detection Model (Algorithm) Recall Precision F 1 -score Test dataset 

Vinayakumar et al. (2017) (CNN-LSTM) 0.988 0.990 0.989 Flow-based features 

(MAWI/AMP) 

Alshammari and Zincir-Heywood (2011) (SBB-GP) a 0.983 ( + 0.00%) 0.128 ( + 0.00%) 0.226 ( + 0.00%) Flow-based features 

(DARPA99 Week 1,3) 

Lee and Lee (2021) (Random Forest) 0.881 (-10.2%) 0.363 ( + 23.5%) 0.514 ( + 28.8%) Session-based features 

(DARPA99 Week 1,3) 

Enhanced model with IPA time (Random Forest) 1.00 ( + 1.7%) 0.864 ( + 73.6%) 0.927 ( + 70.1%) Session-based features 

(DARPA99 Week 1,3) 

Enhanced model with IPA time & WGAN-GP 

(Random Forest) 

0.998 ( + 1.5%) 0.999 ( + 87.1%) 0.999 ( + 77.3%) Session-based features 

(DARPA99 Week 1,3) 

a Symbiotic Bid-based (SBB) GP source code. 

Fig. 7. Comparison of the distribution of real non-SSH and non-SSH samples: It shows the distribution of data randomly selected by 50,0 0 0 each from real non-SSH and 

non-SSH samples. 
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While using non-SSH samples to reduce false positives of the 

SH detection model, the decrease of true positives is minimal. The 

eason lies in the algorithm of the SSH detection model. In this 

ork, the SSH detection model defines various sessions with the 

ame destination IP and port as the same service. If one of the var-

ous sessions is detected as SSH communication, all sessions with 

he same destination IP and port are classified as SSH communica- 

ion. This SSH detection model algorithm prevents the decrease of 

rue positives from the generated samples. 

. Evaluation 

We evaluated the detection performance using the DARPA 99 

eek 5 dataset as another test dataset. After adopting the mean 

nd variance of inter-packet arrival time, the detection model 

resents 81.82% recall and 74.73% precision with the week 5 test 

ataset, and the recall is relatively low compared to the week 1, 

 test datasets. The detection performance for week 5 is limited 

ecause the detection model cannot detect abnormal SSH commu- 

ication like a denied access. Although we added SSH samples to 

mprove recall, the recall did not improve further and the precision 

ecreased. 
10 
To evaluate the effect of samples using the WGAN-GP algo- 

ithm, we applied non-SSH samples (high generator loss 150,0 0 0, 

ow generator loss 50,0 0 0) that showed high detection perfor- 

ance in the test datasets at week 1, 3 without adding SSH sam- 

les. The results shows that the false positives are reduced and 

he precision of Eq. (9) is increased to 100%. However, because the 

alse negative increases, the recall of Eq. (8) decreases and the F 1 - 

core is very low. When applying SSH samples and non-SSH sam- 

les at the same time, we find that the false negatives do not in- 

rease and the recall of Eq. (8) does not decrease. 

The SSH communication ratio (3.36%) of the week 5 dataset is 

arge in comparison to the SSH communication ratio of weeks 1 

nd 3. (0.36%). Therefore, sophisticated SSH samples (low genera- 

or loss) should be added to the synthetic dataset used for the SSH 

etection model of week 5. In Table 7 , the highest detection perfor- 

ance based on F 1 -score appears on the synthetic training dataset 

aving 500 SSH samples (low generator loss), 150,0 0 0 non-SSH 

amples (high generator loss), and 50,0 0 0 non-SSH samples (low 

enerator loss). SSH samples improve the recall but negatively af- 

ects the precision. Moreover, the SSH samples with high generator 

oss make the false positive increase more than the SSH samples 

ith low generator loss. Table 8 shows the effect of the synthetic 

ata on the recall and precision of the SSH detection model. 



J. Lee and H. Lee Computers & Security 116 (2022) 102672 

Table 7 

The effect of sample type and quantity on the performance of SSH detection model (Week5 test dataset). 

Detection 

Model 

Count of samples Model performance 

G-loss (SSH) G-loss (Non-SSH) 

Recall Precision 

F 1 - 

score 
High Low High Low 

Without IPA time mean and variance 0 0 0 0 0.6991 0.3929 0.5031 

With IPA time mean and variance 0 0 0 0 0.8182 0.7473 0.7811 

With SSH samples 0 100 0 0 0.8182 0.5398 0.6505 

0 300 0 0 0.8182 0.4039 0.5408 

0 500 0 0 0.8182 0.2954 0.4341 

100 0 0 0 0.8182 0.4509 0.5814 

300 0 0 0 0.8182 0.3054 0.4448 

500 0 0 0 0.8182 0.1787 0.2933 

With SSH & non-SSH samples 0 0 150,000 50,000 0.4590 0.1000 0.1642 

0 100 150,000 50,000 0.5782 0.1000 0.1705 

0 300 150,000 50,000 0.7963 0.9796 0.8785 

0 500 150,000 50,000 0.8182 0.9930 0.8972 

0 750 150,000 50,000 0.8182 0.9545 0.8811 

100 0 150,000 50,000 0.7173 0.9281 0.8092 

300 0 150,000 50,000 0.8109 0.8708 0.8398 

500 0 150,000 50,000 0.8182 0.8533 0.8354 

750 0 150,000 50,000 0.8182 0.7260 0.7540 

Table 8 

Effect of diverse samples on the SSH detection performance: Properly synthesized samples can improve SSH detection performance. However, if the SSH detection does not 

improve furthermore, the training dataset needs to be further updated by real samples. 

Sample type Analysis of effect 

Generated samples Generated sample improves the detection performance by generating missing data from the original dataset and 

refining the outliers. 

Generated samples with low generator loss Samples with low generator loss slightly increase true positives and false positives because of the high 

similarity with the original dataset. 

Generated samples with high generator loss Samples with a high generator loss have a relatively large increase in true positives and false positives due to 

low similarity. 

Synthetic samples In Table 5 and 7, samples with high generator loss and low generator loss should be synthesized and added to 

improve the recall and precision. 

Real sample update Generated samples are in the limited range similar to the training dataset (real samples). Real samples are 

continuously updated to generate informative samples. 
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. Conclusion 

Our work improves the performance of the SSH detection 

odel using features of inter-packet arrival time and samples gen- 

rated from WGAN-GP algorithm. The generated sample is mean- 

ngful in that it reinforces missing data to the training dataset 

ithout label classification ( Goodfellow, 2016 ). In this work, we 

onvert the inter-packet arrival time of packet-based data into 

ean and variance for the session-based data. The converted fea- 

ures are added to the session-based dataset. The performance of 

he SSH detection model improved by 11.9% in recall and 50.1% in 

recision compared to our previous work ( Lee and Lee, 2021 ). In 

he finally enhanced model using generated samples, the precision 

s further improved by 13.5%. Additionally, our work analyzes the 

haracteristics of generated samples to explain the optimal quan- 

ity and generator loss range. In the evaluation, we demonstrate 

hat the distinction of the test dataset is related to the selection 

f the sample condition. When applying the SSH detection model 

sing WGAN-GP to the actual network environment, the synthetic 

raining dataset should be adjusted the generated sample condition 

or the optimal detection by considering the target dataset. 

Through repeated experiments, we determined the number of 

amples suitable for the synthetic dataset. However, we have still 

o conduct a model study to predict the number of generated 

amples required for a synthetic dataset in our work. Further- 

ore, there are constraints that must be considered before apply- 

ng our study’s WGAN-GP algorithm to the detection model in the 

eal world. The SSH communication ratio of the target dataset to 

e predicted, as seen in evaluation, influences the properties and 

uantity of samples to be added to the synthetic dataset. Because 
W

11 
he SSH communication ratio in the actual network environment is 

onstantly changing due to various factors such as hacking and the 

mplementation of new services, it is necessary to consider that it 

s not possible to determine the properties and quantity of samples 

o be added solely based on the proportion of the training dataset. 

o overcome these constraints, we will continue to investigate how 

o adjust the class range and quantity of generated samples to be 

ppropriate for the target data without requiring an experiment. 

e will investigate further a model that classifies SSH traffic de- 

ails (command script transfer, file upload, file download, reverse 

onnection) in order to reduce false positive detection and detect 

nomaly traffic more accurately. We open the python codes (SSH 

etection model using random forest, and WGAN-GP based sample 

eneration) and dataset used in this work on the author’s Github 

 https://github.com/junimirang/ ) to help related studies. 
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