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The sharp increase in smartphone malware has become one of the most serious security

problems. Since the Android platform has taken the dominant position in smartphone

popularity, the number of Android malware has grown correspondingly and represents

critical threat to the smartphone users. This rise in malware is primarily attributable to the

occurrence of variants of existing malware. A set of variants stem from one malware can be

considered as onemalware family, andmalware families covermore thanhalf of theAndroid

malware population. A conventional technique for defeatingmalware is the use of signature

matchingwhich is efficient froma timeperspectivebutnot verypractical becauseof its lackof

robustness against the malware variants. As a counter approach for handling the issue of

variants behavior analysis techniques have been proposed but require extensive time and

resources. In this paper, we propose an Android malware detection mechanism that uses

automated family signature extraction and family signature matching. Key concept of the

mechanism is to extract a set of family representative binary patterns from evaluated family

members as a signature and to classify each set of variants into a malware family via an

estimation of similarity to the signatures. The proposed family signature and detection

mechanism offers more flexible variant detection than does the legacy signature matching,

which is strictly dependent on the presence of a specific string. Furthermore, compared with

the previous behavior analysis techniques considering family detection, the proposed family

signature has higher detection accuracywithout the need for the significant overhead of data

and control flowanalysis.Using theproposed signature,we candetect newvariants of known

malware efficiently and accurately by static matching. We evaluated our mechanism with

5846 realworldAndroidmalware samplesbelonging to48 families collected inApril 2014 at an

anti-virus company; experimental results showedthat; ourmechanismachievedgreater than

97%accuracy indetection of variants.Wealso demonstrated that themechanismhas a linear

time complexity with the number of target applications.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Smart devices are currently facing a serious threat posed by the

surge in malware. The smartphone has become the most pop-

ular target for malware writers since it contains a great deal of
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user informationandhasmobile billing capability. TheAndroid

platform in particular, occupying the dominant position in

smartphone market share (Mawston, 2014), accounted for 97%

of allmobilemalware in 2013, as reported by F-Secure (Aquilino

et al., 2014). Recently, Android malware has increasingly
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adopted several obfuscation techniques such as meta-

morphism and repackaging in order to avoid detection or

recognition by the user. This trend is confirmed in a 2014 report

by Symantec (Wood et al., 2014) in 2014, which observes that

Android malware authors focus more of their efforts on

improving existing malware than on creating new malware.

Indeed, the top ten Android malware families made up 76% of

all Androidmalware reportedduring thefirst quarter of 2014 (F-

Secure Labs, 2014). Compared with desktop malware, smart-

phonemalware cancause amoredirect invasionof privacy and

greater potential for economic damage to users. However, the

flood of Android malware variants on smartphones hampers

development of efficient strategies for dealing with malware

attack. Accordingly, a mechanism that prevents malware by

efficiently filtering variants of known malware, is needed to

retain smartphone security and user privacy.

Previousapproaches for variantdetectionbasedonbehavior

analysis are not suitable for identifying the malware family to

which a detected malware variant belongs. These approaches

detect variants by assessing the similarity of behaviors such as

the frequency or sequence of application programming inter-

face (API) calls (Kwonand Lee, 2012; Aafer et al., 2013; Deshotels

et al., 2014), code semantics (Crussell et al., 2013; Suarez-Tangil

et al., 2014), and commonly shared byte or string patterns and

strings (Faruki et al., 2013a, 2013b; Sanz et al., 2013a, 2013b,

2014), to those of known malware. Extracting and comparing

behaviors from large numbers of target executables requires

heavy computing overhead. Detection based on behavior sim-

ilarity is a usefulmethod for covering unknownmalware, but it

requires disassembling, behavior feature modeling, and com-

plex clustering algorithms to the every inspection target ap-

plications. The behavior analysis approaches which use the

dynamic analysismethods (Enck et al., 2010; Gilbert et al., 2011;

Yan andYin, 2012) covermore sophisticatedvariantswhich are

hard todetect by the static analysismethods, but thenumberof

inspection targetsneed tobe reducedbya complementmethod

before the heavy analysis.

Thealternative approach oftenemployedbyvendors of anti-

virus (AV) software using a representative signature is effective

in defining and detecting malware families. In contrast to the

behavior-based approaches, it is also efficient in terms of time

and space complexity. However, the signatures not only have

narrow detection coverage of a malware family due to strict

decision conditions and naive evidence such as Android appli-

cation package (APK) namesand single class andmethodname,

but also are easily defeated by malware that adopts code

obfuscation such as repackaging and metamorphism. Hence,

we conclude that a reinvestigation of the overall code for

behavior analysis and the construction of an additional signa-

ture fora slightmodulationofmalwareareeach inefficientways

to improve malware detection when considered against the

small effort that is consumed inmaking a variant.

In this paper, we propose an Android malware detection

mechanism that screens new variants of a known malware

family out. Most Android malware is a manipulated version of

existingmalware, and inmalwarebelonging to the same family

large portions of code and resources remain unchanged.

Exploiting this feature, we detect variants efficiently and

accurately by analyzing the representative parts of a family.

The proposed mechanism uses a family signature that is
Please cite this article in press as: Lee J, et al., Screening smartpho
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common to the family and excludes other families via a

weighting factor. The proposed signature structure consists of

four parts extracted from a Dalvik executable (DEX) file, which is

the executable file within an APK. The signature consists of the

names classes,methods, character strings, andmethod bodies.

A signature has multiple entries in each part, and each entity

has an associated weight, according to how well the signature

entity represents the identity of the malware family. In other

words, the class and method names, hard-coded character

strings, and reused codes that appear commonly in family

members and rarely in other families have a higher weight.

In experimental evaluation, our mechanism showed high

detection performance and low time consumption for variant

detection.We evaluated ourmechanism using 14,120 Android

malware samples collected at an anti-virus company in 2014.

These included 5846 family malware belonging to 48 families

and 8274 samples of individual malware that were not part of

any family or were part of a small family. For our evaluation,

we preprocessed and refined malware families and their

memberships since different AV vendors that had investi-

gated the malware had given them different family labels. In

the experiments using family signatures, our mechanism

showed 97% detection accuracy, with greater than 97% of

recall performance in the Monte Carlo validation. For indi-

vidual malware detection performance, we compared the

family signatures with the individual malware samples; our

mechanism detected 1820 (22%) of the malware samples out

of the 8274 individuals in the malware set. This result shows

that our mechanism can detect the malware manipulated in

various ways such as the modifying package name, class

name and part of codes, and code reordering while conven-

tional signature-based approaches are not ordinarily able to

detect such variants. Finally, in the scalability evaluation, the

family signatures needed only 20 MB to cover the approxi-

mately 8000 Android malware samples. In terms of time

consumption, the hashed signature matching process took

only 10 s on average to screen a thousand applications against

a million signature entries in a desktop PC.

Our contribution is twofold:

� We propose a type of Android malware family signature

that can be used for accurately and efficiently detecting

variants of known malware families. A family signature is

a flexible signature for a malware family sharing the class

name, method name, character strings, and code bodies of

the original malware. It solves an existing malware detec-

tion issue by multiplexing decision conditions with multi-

ple signature entries along with their representative

weights. This contribution makes it possible to detect

malware including the variants, even variants that have

adopted an evasion technique such as metamorphism or

code modification.

� We have reduced the number of signatures needed. The

family signature represents a malware family by a single

signature set covering a large number of family members,

including newly appeared variants. The family signature

consists of binary patterns and character strings shared by

members of the same malware family. By estimating

similarity to the various known families, our mechanism

detects and classifies malware families to a practical
ne applications usingmalware family signatures, Computers
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degree of accuracy. It enables an efficient response to the

exponentially increasing number of malware threats.

The rest of this paper is organized as follows: We start with a

definition of the problem of Android malware in Section 2,

distinguishing our work from previous approaches, which are

given in Section 3. In Section 4, we describe details of the

mechanisms and assumptions of our proposal. Next, we pre-

sent experimental results for our mechanism in Section 5.

After analyzing overhead and optimization issues in Section 6,

we discuss the advantages and disadvantages compared with

conventional approaches in Section 7. We conclude with a

summary of our work in Section 8.
2. Problem definition

As shown in a recent statistical report from Symantec (Wood

et al., 2014), on the Android platform a large portion of mal-

ware consists of variants of other malware. A group of vari-

ants that share common features in their code and behavior is

called a malware family. The fact that constructing variants is

not as difficult as creating a totally new variety ofmalware has

led to the rapid rise ofmalware entities that belong to families,

but at the same time, this provides the means to screen for a

large portion of new malware, by using the common features

of known malware families.

We address the problem of detection Android malware via

malware family detection; to do this successfully, we must

overcome their evasion techniques. Hence, we need to know

the techniques used by variants to avoid detection, in order to

recognize the part of variants that remain unchanged under

their evasion tactics. According to one study of obfuscation

techniques (Rastogi et al., 2013), several naive malware sig-

natures have used the package name and the identifier names

of a malware as a signature, leading malware authors to

change this features in order to avoid detection. Repackaging

and reassembling have been identified as one of the simplest

and most prevalent methods for generating a variant; these

methods defeat signatures that merely inspect the package

name or checksum of an APK file. In code-level variants, call

indirection, code reordering, and junk code insertion tech-

niques evade simple signature approaches that use string

matching with an offset or API call matching.

The previous approaches for this problem have a trade-off

between efficiency and robustness. Static and dynamic anal-

ysis techniques that have been proposed to break these

evasion tactics; these techniques are known to be effective,

but they require heavy inspection overhead, including human

resources, compared to signature-matching approaches. For

cases involving several malware programs that have highly

advanced evasion tactics, it may be necessary to use sophis-

ticated techniques such as taint analysis, code semantic

analysis, and dynamic analysis in a sandbox with a monkey

application or a human tester. However, for malware variants

that use simpler evasion tactics, screening for as many as

possible with a signature-matching approach is a more effi-

cient strategy before the depth inspection techniques. Thus,

we propose a generalization of the legacy signature-matching

approach that is more robust than the conventional signature
Please cite this article in press as: Lee J, et al., Screening smartpho
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approach and at the same time more lightweight than the

static and dynamic behavior analysis approaches.

The proposed approach with multiple entry signatures

covers the family variants. We term this composite signature

a family signature. The key concept is based on the awareness

that most malware variants use simple evasion techniques

such as package renaming, class and method renaming, call

indirection, code reordering, and junk code insertion because

adopting multiple and more complex evasion techniques for

making a variant requires greater resources investment by the

malware author. In Section 4, we introduce our family signa-

ture generation andmalware detection mechanism and show

how it extracts the common features in a group of malware

samples, how it overcomes the evasion techniques previously

discussed, and how it minimizes the signature-matching

overhead caused by the generalized matching approach. In

Section 5, we go on to show the amount of family malware

covered by the family signature, that is, what proportion of

new malware can be screened by our approach before un-

dertaking a deeper analysis.
3. Related work

Previous work for Android malware can be classified into

static approaches (Kwon and Lee, 2012; Lee et al., 2010; Zhu

et al., 2012; Enck et al., 2009; Crussell et al., 2013; Faruki

et al., 2013a, 2013b; Suarez-Tangil et al., 2014; Zheng et al.,

2013) including conventional signature matching, and dy-

namic approaches (Enck et al., 2010; Gilbert et al., 2011; Yan

and Yin, 2012). The dynamic analysis approaches using taint

analysis and API monitoring have the ability to track behavior

accurately at runtime. The problem with these approaches is

one of efficiency because of time and resources required for

the establishment of a virtual environment, for test execution,

and for test input because several malicious activities are

triggered by a user input or a specific conditionwhich are hard

to be automated. The coverage and goal of our work is not

exclusive to the dynamic analysis because themalwarewhich

adopts high level evasion techniques need to be investigated

with the dynamic analysis techniques. Our approach is

designed as a front-line filter before dynamic analysis and

more sophisticated but heavy static analysis techniques.

The static approaches are mainly focused on the behavior

of applications and trainable features of source code and

executable files, such as permission sets, code bodies, API

calls and their sequences, and code semantics. The static

approaches which use permissions or code bodies without

any data and control flow investigation are light-weight and

scalable. However, their scalability and accuracy are highly

dependent on the structure of detection features and the

methods how to extract and detect the features from the

target applications.

Permission-based approaches are light-weight because

they do not need any code inspection and effective to detect

malicious capabilities irrespective of variant generation

techniques. Zhu et al.'s (2012) permission based approach

extracts and uses the combination of common permissions

and description texts of an Android malware to estimate the

intention of the permissions. This approach overcomes the
ne applications using malware family signatures, Computers
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false detection problem of the other permission based ap-

proaches caused by the benign applications which use similar

permissions intentionally or accidently. However, because the

positivewords on the description texts are notmandatory and

forgeable without any loss of malicious functionality, it still

has a challenge on the false detection and robustness.

Another sophisticate permission based approach is Enck

et al.'s (2009) study. They use the permission rules for mali-

cious activities and achieve accurate and light-weight detec-

tion. However, the permission-based detection rules need to

be constructed with plenty understanding and insight on

malicious activities of the malware. It means that adding a

new rule for a new malicious activity needs another depth

investigation. The permission-based approaches and our

mechanism share a similar purpose, detecting many codes

with much fewer signatures without code investigation. But

the practicality can be distinct as the conditions of human

resources and knowledge-bases.

Crussell et al. (2013) suggested a semantic similarity based

Android malware detection mechanism using Program

Dependence Graphs (PDG). Their method, AnDarwin, extracts

a set of feature vectors from PDGs of an application, and finds

the similar application clusters based on the feature vectors.

This study achieves a generalized and metamorphic robust

detection. However, it naively uses the feature vectors for all

methods in an application, and it makes their method ineffi-

cient. When a new set of applications are occurred, it needs to

perform a heavy vector comparison again with numbers of

previous feature vectors. AnDarwin may be effective when we

don't have any prior knowledge-base, but our method signif-

icantly reduces the overheads through making signatures

from the family information of the known malware.

AndroidSimilar (Faruki et al., 2013a) and DroidOlytics (Faruki

et al., 2013b) proposed by Faruki et al. utilize a sequence of

bytes as a feature. Both of our proposal and Faruki et al.'s work

consider focus on the common patterns on code obfuscated

variants, but the binary patterns adopted inAndroidSimilar and

DroidOlytics do not have any semantics which make a pattern

hard to change for avoiding detection. Because their signature

has no dependency with a part of code or instructions, the

signatures can be easily avoided without any loss of malicious

functionalities and heavy efforts of a malware author by

making a little change on the codes and recompiling even

though the signatures are the byte patterns which have not

been changed on the training set. In contrast, our family sig-

natures consist of the semantic entries which are required to

construct a functionality such as the name of classes,

methods, packages, libraries and constant printable strings.

Changing these semantic entries from the codes requires

more effort and more complex obfuscation techniques. Even

more, our family signatures are organized by multiple entries

per a family signature. The multi-entry signature detects the

variants even though they avoid several signature entries by

code obfuscation. However, the idea of robust feature selec-

tion mechanism applied in DroidOlytics is distinguished and

can be applied to our future studies to enhance family clas-

sification accuracy.

Sanz et al. proposed a string analysis based anomaly

detection methods (Sanz et al., 2013b, 2014) using machine

learning techniques. In their studies, they also use the
Please cite this article in press as: Lee J, et al., Screening smartpho
& Security (2015), http://dx.doi.org/10.1016/j.cose.2015.02.003
printable strings from DEX and permission file, and they give

weights to the strings using Term Frequency e Inverse

Document Frequency (TFeIDF) scheme for emphasizing

representative strings. Their approaches share several con-

cepts to us, but the considering themalware family as a unit of

detection used in our proposal leads better detection perfor-

mance than considering every malware as one class, which is

applied in Sanz et al.'s. In the Sanz et al.'s another study,MADS

(Sanz et al., 2013a), which considers multi-class classification

and clustering techniques achieves a higher detection accu-

racy but still has room for improvement on the false positive

problem.

Another code inspection approach is analyzing control

flow of an application. The control flow analysis approaches

have been proposed at the legacy PC environment such as

code graphs proposed by Lee et al. (2010) and BinGraph by

Kwon and Lee (2012). However, the code semantic approaches

are more effective in the Android platform than the PC envi-

ronment because the Dalvik bytecode used for the Android

applications has much simpler diversity in their code and

semantics. Dendroid proposed by Suarez-Tangil et al. (2014)

used a basic block of DEX bytecodes as a code chunk and

made a control flow graphs (CFG) to characterize Android

malware families. Gascon et al. (2013) made a call graph using

the function calls. Dendroid and Gascon's work use more

specified features than our approach, but extracting and using

the CFG and the call graph as a signature have to be com-

plemented for several evasion techniques affecting the con-

trol flow like code indirection.

The API call-based approaches such as Zheng et al.'s (2013)

approach, DroidAPIMiner (Aafer et al., 2013), and DroidLegacy

(Deshotels et al., 2014) are widely studied and have practical

detection accuracy and family classification ability. The API

call sequence is one of the inherent feature which is relatively

harder to obfuscate than code bodies, however, extracting and

modeling API call and their sequences requires overhead for

disassembling and API call generalization.

Compared with our previous approach (Lee et al., 2013)

which extracts the suspicious method bodies and string fea-

tures as a behavioral signature through a dynamic analysis,

the major difference is that the proposed mechanism sepa-

rates and enhances the static analysis part which detects the

Android malware with a family signature. The proposed

family signature approach fully automated family signature

construction and detection mechanism. And it achieves more

optimized and efficient Android malware detection. The pro-

posed mechanism adopts a signature filtering technique and

an enhanced detection mechanism overcoming the overhead

caused by numbers of signature entries. This improvement

increases the detection efficiency keeping the accuracy.

As a conclusion, previously proposed approaches have

focused the core of the Android malware, and many of them

are accurate and effective but not so efficient. The problemwe

attempt to solve through our study is that we do not need to

inspect every new Android malware through those heavy

methods if we already have enough knowledge base. Our

mechanism addresses a specific position in front of code and

API call level inspection which needs disassembling and

heavy modeling and clustering algorithms. By generalizing

the conventional signature matching to give flexibility against
ne applications usingmalware family signatures, Computers
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simple evasion techniques, ourmechanismdetects significant

portion of malware.
4. Detection of malicious applications using
family signatures

In this section, we introduce an Android malware detection

mechanism that uses a malware family representative

signature. A family signature which is a group of binary pat-

terns covering a group of Android malware entities clustered

as a family.

4.1. Mechanism overview

Our detectionmechanism is a generalization of the signature-

based approach. On a smartphone, the number of inspection

targets (i.e., applications) is steeply increasing, and the ma-

jority of new malware entities are malware variants. The

legacy signature-based approach scansmany applications in a

timely manner. However, since the success of the signature-

based approach is highly dependent on the specific signa-

ture, it is not robust against malware variants. Therefore, we

add flexibility to the signature by composing multiple signa-

ture entries, thereby overcoming the weakness of the

signature-based approach.

Fig. 1 shows the overall architecture of our proposed

mechanism. The mechanism consists of a signature con-

struction phase and a detection phase. Once a family signa-

ture is constructed, the detection mechanism uses the

signature to investigate the Android applications, without any

additional signature training.

The key feature of our signature structure compared to the

other Android malware detection approaches is that it uses

signature entries to estimate similarity to a family rather than

simply scanning a file for the existence of an entry. In terms of

the signature entry, exactly matched binary patterns, espe-

cially bytecode instructions, support high detection precision,

and the combination of multiple signature entries comple-

ment the variant detection ability. In addition, we estimate

the significance and representativeness of each entry and

assign it a weight according to its relative importance in the

determination of a detection.

To detect malware variants belonging to a family, we use

signature entries consisting of four types of binary patterns;
Fig. 1 e Overall architecture of proposed An

Please cite this article in press as: Lee J, et al., Screening smartpho
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class name, method name, character string, and method

body. Except for the method body, each entry consists of

printable character strings. The method body consists of

Dalvik bytecode instructions which are compiled instructions.

In the Android environment, an application's executable code

is a Dalvik executable (DEX) file, and we extract all four types of

signature entries from the DEX file.

Malware detection is performed by a simple and light-

weight process using the static family signatures. The mal-

ware family classifier decides whether a target DEX file

belongs to a known family, using a detection metric that es-

timates the similarity between a target DEX file and each

family signature. We devote the rest of this section to

explaining the process in detail and describing the signature

construction, similarity calculation, and family classification

mechanism.
4.2. Android malware family signature

A family signature represents a malware family; in other

words, it is capable of determining whether the target appli-

cation is a new member of a known malware family.

4.2.1. Family signature structure
A family signature consists of the four categories of main

entries; class name, method name, method body, and char-

acter strings. As discussed in Section 2, the purpose of the

family signature is to detect malware variants that are

detectable with a static signature while overcoming simple

evasion techniques such as repackaging, reassembling, string

renaming, code reordering, and junk code insertion. To

address repackaging and reassembling, we check the inside of

the DEX code and use the four categories of features as a

signature. The features that we use for a family signature and

the reasoning for each are detailed as follows.

� Class names and method names. Our signature first

checks the class names and method names irrespective of

their order and position. One class name andmethodname

may not indicate malware, but a set of identically matched

names is more indicative of a positive detection.

� Character strings. Character strings are a form of signature

typically used in past approaches. A legacy signature con-

taining only one character string and its offset in a DEX file

is easily evadable by the techniques of code reordering and
droid malware detection mechanism.

ne applications using malware family signatures, Computers
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Table 1 e Description of signature fields.

Field name Description

# of entries The number of entries in a catergory

Signature entry A pattern body in a 32 bytes hashed

form for pattern matching

Entry weight W The weight of above signature entry

between 0 and 100 for estimating a

cumulated credit
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string encoding. However, our signature extraction mech-

anism, which finds statistically common and multiple

character strings is robust to many kinds of reordering and

encoding if the variants share identical strings.

� Bytecode bodies. By including bytecode bodies of each

method, a signature is robust against the code reordering,

string renaming, and call indirection as well as to repack-

aging. The reassembling tactic causes the bytecode bodies

to change, but several simple methods keep their bytecode

body because of the low diversity of Dalvik Bytecode. To

address junk code insertion, we divide a bytecode body by

the continuous nop operation. It is still evadable via a

garage code insertion but can cover those variants that

were generated without going to great effort.

A family signature consists of multiple entries, andwe termed

each entry as a signature entry. Each signature entry is stored in

hashed format and has an associatedweight ranging from 0 to

100 which means the percentage. Of the four categories, the

character strings and bytecode bodies may have codes too

lengthy to store and match. However, the hashed signature

entrieshavea static size, and the total sizeof a family signature

is only dependent on the number of signature entries. Fig. 2

illustrates the structure of a family signature, but the imple-

mentation of signaturemanagement and storage in a database

is not limited to a particular example. Table 1 gives a brief

description of each structure field, andTable 2 is an example of

a family signature, which is a part family signature of the

Plankton family. An entry “Ljava/util/regex/Matcher” in the

class name category with the weight 80 means that the class

was used at the 80%of the training setwhich are classified into

the Plankton family. An entry with a higher weight is the more

effective and representative for detection, but it does not

means that the entries with a lower weight are unnecessary.

For example, detecting two entries with weight 50 lead more

reliabledetection thandetectingonlyoneentrywithweight 80.

The Plankton family is known that it performs collecting the

browser history and device status, modifying the browser's
bookmarks, and connecting a remote server to download and

install a file. As shown in Table 2, our family signature in-

cludes the classes, permissions, and key terms to perform the
Fig. 2 e Structure of a family signature with hashed entries.

Please cite this article in press as: Lee J, et al., Screening smartpho
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set of known malicious activities of Plankton even though the

entries are automatically selected.
4.3. Family signature construction

Signature construction begins by classifying the malware

families that are used as the signature training set. The

signature construction process extracts the binary patterns

and character strings from knownmalware and calculates the

weight of each pattern and string according to its contribution

in representing the family to which it belongs. Lastly, the

signature refinement process removes those redundant

signature entries that would adversely affect the accuracy or

efficiency.

4.3.1. Malware family definition
The accuracy of our detection mechanism is significantly

affected by the definition of a givenmalware family. Because a

family signature is a set of common patterns within a mal-

ware family, it is hard to determine a family signature and

identify a member malware if the family members rarely

share patterns. In practice, a misclassified family member in

the training set causes corruption in the family signature.

Thus, we utilize the family classification information labeling

from multiple AV vendors as the ground truth for our signa-

ture construction and evaluation. From the malware family

names reported by 52 distinct AV vendors, we assessed the

family membership of each Androidmalware sample through

a family definition process, as illustrated in Fig. 3.

We classify malware samples into their respective families

based on their malware labels. Because a malware label has

various types of information such as platform, infection

method,major functionality, variant label, and hash value like

Android.Trojan.YZHCSMS and AndroidOS/GenBl.BA6A6AF0, we

extract key terms, which are used for recognizing a malware

family, from the full label. Because each AV vendor uses

different key terms even though they are semantically

equivalent from a human perspective, we adopt heuristic

rules in order to make them consistent. For example, the

family name basebridge is given to various forms such as

bbridge, basebridg, and basbridge. To avoidmisclassification, we

apply the heuristic rules only in obvious cases.

After key term extraction and refinement, we classify

malware families according to the most frequently assigned

key term of each malware. For example, if a malware entity is

labeled Plankton by 15 AV vendors and as Airpush by 5 AV

vendors, we classify it as the Plankton family. All the malware

having the same best-key terms are considered to belong to

the same family. The empirical result of family classification

is listed in Table 3.
ne applications usingmalware family signatures, Computers
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Table 2 e An example of Plankton family signature.

Category Signature entry W

Class and method name Ljava/util/regex/Matcher; 80

Ljava/util/regex/Pattern; 83

Lcom/apperhand/common/dto/ApplicationDetails; 99

Lcom/apperhand/common/dto/BaseDTO; 99

Lcom/apperhand/common/dto/Bookmark; 99

Lcom/apperhand/common/dto/Build; 99

Lcom/apperhand/common/dto/Homepage; 98

Plain string 9774d56d682e549c 82

android.permission.ACCESS_COARSE_LOCATION 81

android.permission.ACCESS_FINE_LOCATION 81

android.permission.ACCESS_NETWORK_STATE 88

android.permission.ACCESS_WIFI_STATE 89

android.permission.INTERNET 94

android.permission.READ_PHONE_STATE 91

com.android.browser.permission.WRITE_HISTORY_BOOKMARKS 96

com.startapp.android.APP_ID 90

com.startapp.android.DEV_ID 90

CRoQAlVGS1keGVoEHgRLEBoOGRdLEUEþagQtJzsiJj8tABJOHhYdGw 96

Didnotconsumetheentiredocument. 93

Didn'tattemptochangethehomepage 98

LazilyParsedNumber.java 91

TgsRHg4aEE8dGwc¼ 93

TgwLHQQEBVwCHQ¼¼ 97

Th0MHR0dB1sdHQ¼¼ 97

ThsKFxcZAU0dCxAAFhdLEgYGGB0 97

http://www.searchmobileonline.com/$CATEGORY$?sourceid¼7&q¼$QUERY$ 94

sd789rdme4984mx34590345345834cm353890573m45897feryitoet7r89e74545 98

Method body 95000405DF0104FFB561B610B070B090B03098010008D9020820BA20B610 96

95000406DF0106FFB551B610B070B090B03098010008D9020820BA20B610 96

97000405B760B070B090B03098010008D9020820BA20B610B0400F00 96

DF0006FFB640B750B070B090B03098010008D9020820BA20B610B0400F00 96
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4.3.2. Signature construction process
A family signature is constructed by means of the four steps

shown in Fig. 4. Construction starts with the labeled Android

malware samples as a training set and follows these four

steps.

� DEX extraction: For APKs, we use only a Dalvik executable

(DEX) file to construct a signature. Likewise, the detection

process also needs only the DEX file. In this first step, the

signature construction process extracts the DEX file from

the Android malware samples. DEX extraction is a simple

task because an Android package is compressed into a

simple file compression format.

� Candidate entry extraction: The second step is to extract

patterns from the DEX files. From each DEX file, we extract

the four kinds of patterns mentioned above. We refer the

positions of the patterns which are indexed in the DEX

header.

� Entry weight calculation: In order to select useful patterns

from the many candidate entries extracted, we give an

entry weight for each pattern. The weight of an entry is

calculated by the pattern sharing ratio PSR.

� Signature refinement: Lastly, we select the effective

signature entries by removing entries according to their

weights, leaving a minimized but accurate set of family

signatures. After entries are filtered by their weights, we

remove redundant entries that are commonly included

from different families including the benign applications.
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According to the DEX file structure, the class name, method

name and character strings are extracted from the resource

section; these are pointed to offsets in the DEX header. A

method body is a binary string of Dalvik virtual machine

(DVM) bytecode, and the bytecode body of eachmethod is also

pointed to the offsets.

A weight of a given signature entry represents how

commonly this pattern is shared within the family. The

weight W is calculated by the PSR which is the percentage of

malware samples sharing the same pattern within the

training set, as given in Equation (1).

When M(p,a) indicates the number of malware entities

having pattern p in their family a,

Wðp; aÞ ¼ Mðp;aÞPi2fMði; aÞ
(1)

A signature entry can be occurred in multiple families, and

it has different weight for each family.

4.3.3. Signature refinement and redundant signature
Refinement of the number of signature entries directly affects

the space and time consumption for signature storage and

matching. Even though a family signature set may be efficient

because it covers many family members (more than 50

members according to a statisticsWood et al., 2014), it still has

room for improvement. Because some family members that

share large portions of code may make too many signature

entries in our signature construction mechanism, we need to
ne applications using malware family signatures, Computers
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Fig. 3 e Android malware family classification from pre-

investigated malware labels by multiple anti-virus (AV)

vendors.

Table 3 e Top ten malware families classified, by name.

Rank Family name # Members

1 plankton 1412

2 kuguo 591

3 stealer 436

3 waps 374

5 mseg 355

6 airpush 369

7 droidkungfu 298

8 gingermaster 292

8 utchi 279

10 dowgin 270

Total 4676

Fig. 4 e Family signature construction process from APK

samples.
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choose the more effective and efficient signature entries,

using selection criteria.

The weight attached to a signature entry is a straightfor-

ward criterion to estimate its relative effectiveness; a signa-

ture entry having a higherweight normally has a greater effect

in the process of identifying a malware family member.

However, it is not always true that entries with higher weights

lead better detection, because one of the key contributions of a

family signature is the complementary efficacy by the other

less important signature entries against the evasion tech-

niques that hide critical features. Thus, we empirically eval-

uate the effect of removing low-weight signature entries on

detection accuracy. The goal of the evaluation is to find the

most efficient removal point, that which achieves a significant

reduction in the number of signature entries while allowing

the minimum damage to detection accuracy. For this evalu-

ation, we check the detection accuracy and signature size

reduction after stepwise removing those signature entries

that have a weight less than a removal threshold Tpsr.

Another refinement method is removing the common en-

tries appeared in multiple family signatures as well as by

benign applications. To address common patterns occurring

among distinct families, we adopt a redundant signature

instead of updating every signature entry weight whenever a

newmalware family is reported. The redundant signature is a

set of commonly detected binary patterns in any categories of

Android applications irrespective of the maliciousness. We
ne applications usingmalware family signatures, Computers
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construct the redundant signature by finding the patterns

appearing from the multiple families exceeding a certain

threshold. In our experiments in Section 5, the threshold is 2

families out of 4 training families. The redundant signature

also includes the common patterns of the benign applications

by making a benign family signature considering all of the

benign applications as a family. The redundant signature is

effective at removing patterns that adversely affect detection

accuracy and have little information in family classification.

Patterns that are usually selected as the redundant signature

are the class, method, and package names of common

Android or Java libraries and automatically generated

methods that are widely used in Android applications. In our

detection and classification mechanism, signature entries in

the redundant signature are ignored.
4.4. Malicious application detection process

4.4.1. Family signature matching and classification process
Our malware detection mechanism is a simple and light-

weight process that uses family signatures to find the most

similar malware family. The actual comparison process uses

hashed values, not the longer binary patterns. Because our

mechanism detects only exact pattern match, the signature

entries and the patterns extracted from an investigation

target application can be quickly compared through their hash

values. In addition, the detection process determines whether

a pattern in a signature exists in the pattern hashes of a target

file in a constant time using a hash map that has a constant

search time.

Signatures are loaded into memory in a dictionary data

structure, and the detection process uses a dictionary search

method to findmatching signature entries. The dictionary is a

hash table that holds the value for each key. Each signature
Please cite this article in press as: Lee J, et al., Screening smartpho
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entry which is a key in the dictionary contains the family

name and its weight as a value. A dictionary is a time-efficient

data structure for a static set of data consisting of the same

data type because it has a search time of O(1). For a more time

efficient investigation, the signature entries are separated by

their categories for each different types of entry. A pattern

type is searched within a dictionary of signature entries hav-

ing the same type as the target pattern. We analyze the time

complexity of the hashed signature matching process in

Section 6.1.

Given a target file, the detection process first scan all bi-

nary patterns belonging to the four signature types that are

placed in a DEX file as same as the signature construction

phase. All of its patterns are hashed with the same hash

function to compare to the signatures. Next, the detection

process obtains a detection metric, the similarity S(P, A) be-

tween a pattern set P of a given DEX file and family signature

A, by summarizing and normalizing the weights of the

signature entries that are hit by the hashed patterns. S(P, A)

presents the similarity between a target file and a signature

as Equation (2).

S
�
P; fa

� ¼
Pn

j¼1W
�
pj

���pj2
�
P∩fa

�
;a
�

Pm
i¼1W

�
pi; a

� (2)

S(P,A) is calculated for every family. Formalware detection,

the detection process checks whether any S exceeds a detec-

tion threshold Ts, which is a numeric value between 0 and 100.

Lastly, the detection result of a target application is deter-

mined by the classification result, that is, the malware family

most similar to the target application. If there is no family

having a similarity higher than detection threshold, Ts, the

application is determined to be benign. The concrete algo-

rithm of the detection process in a pseudo code is as Algo-

rithm 1.
ne applications using malware family signatures, Computers
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Fig. 5 e Effect of training set size on detection accuracy.
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5. Performance evaluation

To evaluate the practicality of our malware detection mech-

anism, we performed experiments to measure detection per-

formance and time efficiency. The experiments were

performed on a desktop PCwith a 3.3 GHz Intel dual-core CPU,

32 GB of RAM, and Microsoft Windows 7 (64 bit) as the oper-

ating system. Our self-developed experimentation program

written in C# was used to measure time consumption and

detection accuracy in the detection of malware variants.

5.1. Data sets

For the performance evaluation, we gathered 15,165 samples

reported and classified as Android malware at an AV com-

pany, fromwhichwewere able to extract 14,120 DEX samples.

Specifically, the data set contained the malware class in-

formation for each malware sample; these included detection

results and malware naming labels as assigned by 52 AV

vendors utilized by the AV company. The classification of

family members differs by AV vendor, but when we assigned

family membership according to the most frequently used

name, the resulting data set contained 5846 malware entities

in families having at least ten family members each. The

average family size was 112.7 members. The remaining 8274

malware samples (all in families having sizes less than ten)

were classified as individual malware. Lastly, for the false

detection testing, we collected 3648 benign Android applica-

tions at random from the Internet and checked them using

two commercial AV tools. The DEX files of the malware en-

tities averaged 340 KB in size, and that of the benign applica-

tions, 260 KB.

5.2. Malware family definition

Because the malware naming labels, including the family

names, are different at each AV vendor, family classification is

not consistent. In our experiments, we tested our mechanism

using the family name as classified by themost AV vendors for

a given Android malware sample. Table 3 shows the top 10

largest malware families generated according to this labeling

method.

5.3. Signature training

Family signatures of known malware for the detection test

were constructed from pre-analyzed and published malware.

We extracted class and method names, method instruction

bodies and character strings from the DEX files. For detection

performance evaluation, we randomly chose a training set

from amalware family and tested the trained signature on the

entire set. Because a family signature contains just a part of its

patterns from the training set samples, we needed to evaluate

whether a trained signature would accurately detect the

trained samples accurately as well as samples in the un-

trained test set. Thus, the training set was included in the test

set.

The training set is used for constructing the family signa-

ture, and the test set is used for checking the detection result.
Please cite this article in press as: Lee J, et al., Screening smartpho
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After evaluating the performance using training set configu-

ration ranging from 70% to 90%, we used 70% for the

remainder of the performance evaluation because the con-

figurations showed slight differences as shown in Fig. 5. The

larger the training set showed the higher precision but the

lower recall.

In our experiments, the signatures that were extracted

from the randomly chosen training set had sizes that varied

according to signature refinement and family characteristics,

but generally a family signature took several tens to a few

hundred KB for a given malware family.

5.4. Experimental result

5.4.1. Malware detection performance
The proposed system detects and identifies newmalware as a

variant of a known malware family. At the center of our

malware detectionmechanism is the similarity calculation. In

contrast to the legacy signature-matching method, our

detection method investigates how similar a new application

is to the known malicious ones. The degree of similarity be-

tween a malware family and an application is determined by

the ratio of shared signatures, as explained in detail in Section

4.4. If it is determined in this step to be a new unknown, it

means either that the target application is the benign or that a

new malware family has been found, one that does not

correspond to any known malware families.

For out evaluation of malware detection and identification

performance, we performed a Monte Carlo variation analysis

with the real-world malware samples. We took a random 70%

of samples from a family for signature construction and used

the entire sample sets as detection targets. We performed this

training and testing ten times and took the average

performance.

The variant detection system demonstrated reliable

detection performance. Fig. 6 shows precision (upper) and

recall (lower) of the validation results. Where the detection

threshold Ts ¼ 15 and the PSR threshold for signature entry

removal Tpsr ¼ 60% which was the case having the best F-

measure metric, 96%, it achieves 96% precision and 97% recall

with a 0.74% FPR. On the other hand, at Ts ¼ 85, which is the

minimum Ts achieving 0% FPR, 100% precision and 75% recall

were attained. The overall performance metrics shown on
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Fig. 6 e Precision (a) and recall (b) obtained in the

configuration using 70% as the training set and having a

pattern sharing ratio threshold Tpsr ¼ 60%.

Fig. 7 e False positive rate obtained in the configuration

using 70% as the training set and having a pattern sharing

ratio threshold Tpsr ¼ 60%.
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Table 4 have equivalent or better degrees compared to other

previous approaches even though our proposal considers the

variants which employ a few simple evasion tactics. This

result supports our assumption that a large portion of variants

are generated with a simple evasion tactics and can be

screened out with a generalized signature.

In terms of family classification, the family signatures

classify the sample Android malware into the corresponding

family out of 48 malware families near 70% of accuracy. We

estimate the family classification accuracy with the rate of

correctly classified samples over the entire samples, on

average of the ten times of Monte Carlo validation. As Fig. 8,

the classification accuracy fluctuates as the increase of Tpsr.

The reason why the accuracy increases again is that the set of
Table 4 e Detection performance comparison.

Method Accuracy Recall Precision F-measure

Androguard 93.04% 49.58% 99.16% 66.11%

DroidMat 97.87% 87.39% 96.74% 91.83%

DroidLegacy 94.03% 92.73% 97.32% 94.97%

Proposed 97.86% 97.00% 96.05% 96.75%
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correctly classified family is different for each Tpsr. For

example, where Tpsr ¼ 50, the accuracies of the family Adrads

and Zsone are 98% and 8% each. However, they are 41% and

79% where Tpsr ¼ 100. From this result, we can guess an opti-

mized Tpsr for a family may be different to the other families.

One of the considerable reasons thatmakes the optimized Tpsr

different is the distinct number of training samples.

5.4.2. Effect of redundant signature entry removal
For evaluating the effectiveness of redundant removal, we

used a redundant signature set that had been constructed in

our previous study (Lee et al., 2013). This redundant signature

includes the binary patterns shared by 1680 benign applica-

tions and 79 malware samples belonging to the DroidDream,

Geimini, KMIN, and PjApps families. The set of malware sam-

ples and benign applications used for extracting the redun-

dant signature is distinct to the evaluation data set in Section

5.1.

We checked 3648 benign Android applications using the

same family signature sets used in the malware detection

experiments. Fig. 7 shows the effect of adopting the redundant
Fig. 8 e Family classification accuracy as Tpsr.
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Fig. 9 e Detection precision and recall as a function of

pattern sharing ratio threshold Tpsr.

Fig. 11 e Average family signature size as Tpsr.
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signature in reducing false positive. In all ranges of false

positive occurrence, the rates were significantly decreased.

However, the drawback of redundant removal is loss on recall

illustrated on the lower side of Fig. 6.

5.4.3. Effect of signature entry reduction via pattern sharing
ratio threshold Tpsr

In our signature definitions, a pattern shared by more family

members has more influence in the determination of family

classification aswell as in the determination ofmaliciousness.

Based on this fact, we can use the entry weights to select the

more influential signature entries from the candidate entries.

We denote the minimum threshold PSR value of a signature

entry to be included in a family signature as Tpsr. Because

reducing the number of signature entries directly decreases

the size of signature as shown in Fig. 11, and signature-

matching overhead, finding the optimal value of Tpsr in the

trade-off between detection performance and signature entry

reduction is an important issue. From Fig. 9, we can see that at

the detection threshold Ts ¼ 50, as optimized for recall ranged

between 70 and 80. However, when considering overall
Fig. 10 e Detection recall as a function of pattern sharing

ratio threshold Tpsrs.
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accuracy, Tpsr was optimized at a value of 60. The removal of

signature entries affected the recall at every value of Ts, as

shown in Fig. 10. The increase in the number of refined sig-

natures filtered out by increasingly higher value of Tpsr resul-

ted in higher and slowly decreasing recall as Ts increased.

A higher Tpsr value increases recall but also decreases

precision and family classification accuracy. A signature entry

with a higher PSR has a greater possibility of being sharedwith

other families, including benign applications. When signature

entries are removed, the influence of PSR is increased because

the detection process decides the maliciousness of a target

application with a normalized summary of the PSR. Following

this effect, the higher Tpsr values also give the more influence

to the signature entries which incur false positive.

Family classification accuracy continuously decrease as

Tpsr is increased. As fewer signature entries remain, the

chance that a signature entry belonging to one family is

shared with other families will increase. If a pattern shared

among multiple families that is not in the redundant signa-

ture has more influence than do the entries for each corre-

sponding family, the target malware will be misclassified into

the wrong family.

Lastly, as shown in Fig. 9, the detection result for Tpsr above

80 can be interpreted as being due to over-filtering. In these

conditions, loss of diversity by the reduction in entries dam-

ages the recall rate. The lower recall rate means that the

family signature has less generality and robustness against

the variants, and that it is approaching the legacy single-entry

signature, which has no diversity. Thus, the optimal point

appropriate to the goal for the number of family signatures is

the point resulting in the maximum reduction in signatures

without damaging recall.
6. Overhead analysis

6.1. Temporal overhead for family signature matching

The temporal overhead required for signature matching is

dependent on the number of signatures and the number of
ne applications usingmalware family signatures, Computers
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Fig. 12 e Time consumption for detection as a function of

the number of target applications and the number of

signatures, with and without file loading time.
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patterns in each target file. It is normal to assume that the

number of signature entries will steadily rise as the amount of

malware increases, and this is the case for conventional

signature approaches which do not need to concern the

number of patterns in a target file. The conventional signature

approaches use a pattern offset for each signature, and a

signature requires only one comparison with a pattern at a

specific offset. However, because in ourmechanism the family

signature is checked against every possible pattern in a target

file and is able to accommodate code reordering evasion tac-

tics, the number of patterns, while plural, has a constant ex-

pected value. Therefore, the key to minimizing temporal

overhead is to decrease the computation time that is depen-

dent on the number of signature entries. As we described in

Section 4.4, we reduce the temporal overhead caused by the

relatively larger number of signature entries by using a

dictionary.

During the detection process, signature entries loaded into

memory are stored in a dictionary structure. A search of the

dictionary for a pattern consists of hashing and traverse. In a

single search round, the time complexity of h(k), where h is a

hash function of a key value k, is O(1), and a traverse takes

Qð1þ aÞ of time complexity. The a in the traverse overhead is a

load factor for the hash table, and is given by (n/m) where n is

the number of elements in the hash table, and m is the size of

the hash table. Thus, a is equal to the expected length of a

linked list of a hash bucket. If a hash function h(k) is capable of

simple uniform hashing that distributes its keys in a uniform

way, the expected search time is O(2 þ a/2 � a/2n) ¼ O(1 þ a)

when a key is in the hash table. On the other hand, when a key

is not in the hash table, it needs to search to the end of the list

whose expected length is a, and the search time for an un-

successful search is Qð1þ aÞ. Therefore, the expected search

time considering both successful and unsuccessful searches is

estimated as Oð1Þ þQð1þ aÞ ¼ Oð1Þ.
Typically, the number of all signature entries is greater

than the number of patterns in a given file being investigated.

Thus, finding hashed patterns of a target file from the hashed

signature table is faster than the opposite case. When the

expected number of hashed patterns is b in a target files, the

investigation requires a$b time for hashing and the same time

for searching. Because the value b is a constant value, inde-

pendent of a, as derived in Equation (3), our detection mech-

anism using a hashed signature search method has linear

time complexity that is dependent only on the number of

target files a.

When the number of signature entries is g, a search takes a

constant time l. Then, for a target files having b expected

patterns per file, the time complexity T is as

Tða;bÞ ¼ a$b$hðkÞ þ a$b$l ¼ ab$ðhðkÞ þ lÞ ¼ OðaÞ (3)

We also empirically evaluated the time consumption for

family signature matching through pattern hashing and dic-

tionary search. We implemented our Android malware

detection and family classification mechanism in the C# lan-

guage and performed time consumption analysis on a desktop

PC using our real-world malware samples. The detailed

environment configuration is given in Section 5. For this time

consumption analysis, we performed the detection ten times,

increasing the number of target applications and the number
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of signature entries, and calculated the average time con-

sumption. Fig. 12 shows the linear increase in computation

time with the increase in the number of target applications.

Because the total number of family signature entries that

remained in our best configuration was less than 10,000, we

artificially inserted randomly generated signature entries into

each family signature uniformly for the larger scale experi-

ments. The randomly generated entries had no chance of

being hit by the patterns in the target files, and their presence

only served to increase the worst-case search time.

An increase in the number of signature entries increases

the size of the hash table and the length of the chains in each

hash bucket. The detailed internal algorithms and imple-

mentation in the .Net Framework, that are used to implement

the mechanism, are not fully public, but the consequential

computation time, which included some additional tasks such

as summarization of weights and similarity sorting, was

found to increase in a logarithmicmanner with the number of

entries.

Anothermajor external contributor to time consumption is

context switching or paging overhead due to a large hash

table, but this effect is difficult to assess and is outside the

scope of our study. Loading only a portion of the signatures at

once to reduce the size of the hash table in memory may
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reduce the memory management overhead, but it would also

cause multiple hash table searches and a linear increase in

search time for the same number of signature entries.

According to the results of our empirical analysis, time

consumption for family signature matching increases linearly

as the number of target applications increases, and an in-

crease in the number of signature entries increases temporal

overhead in a logarithmic manner when overhead for the

decision tasks is included. As a practical example, when we

increase the number of entries by a factor of ten, from 100,000

to 1,000,000, the computation time for detection only doubles,

from 1584 ms to 3278 ms. Taking into account that the family

signature covers a number of new malware entities with a

single signature, the experimental results demonstrate the

efficiency and practicality of our mechanism.

6.2. Spatial overhead for runtime and storing family
signatures

In terms of spatial overhead, the management and use of the

family signatures require a file system space for the signatures

and a memory space for loading the signatures in a dictionary

structure, and these are straightforward. The spatial overhead

for storing signatures is fully dependent on the implementa-

tion of the file system or a signature database. Because all of

the patterns in a family signature are stored in a hashed form

having a static size of 32 bytes, the spatial complexity for

storing the signatures increases linearly as the number of

signature entries g increases. However, the hashed form of

signature entries is a considerable issue. Because all of the

patterns in a family signature are stored in 32-byte hashed

form, this arrangement offers a spatial advantage when the

average size of the signature entries is greater than 32 bytes.

However, the hashed form is not mandatory and has no effect

on computation time or detection accuracy because a dictio-

nary implementation already has the hash function included

in the construction time. Therefore, for a case where the

average length of the entries is less than 32 bytes, we can

reduce the space needed for the signatures by storing the

signature entries in their original binary forms, without

hashing. It should be noted that at runtime, the dictionary size

will also increase linearly as g increases because of the in-

crease in the size of the internal hash table.
7. Discussion

7.1. Comparison with signature-based detection
methods using string matching

We analyze the ways in which our detection mechanism dif-

fers from the legacy signature-matching approach that uses

pattern offset and single signature entry per amalware entity.

Compared with the legacy signature-matching approach

based on string matching, matching a target DEX file with a

family signature has greater temporal overhead due to the

higher number and unspecified position of signature entries.

However, we minimize the temporal overhead to a constant

time by storing and searching the hashed signature entries on

a dictionary data structure. The objective is to keep the time
Please cite this article in press as: Lee J, et al., Screening smartpho
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consumption due to the number of signature entries to a

constant. Consequently, temporal overhead is only linearly

dependent on the number of target files.

The legacy string-matching-based signature consists of the

offset of a specific binary pattern and a pattern body, and a

signature needs to be compared just once per target file with

the binary pattern at the offset. In our mechanism, however,

because we consider the signature strings and bytecode

bodies at an unspecified position on eachmalware variant, the

offset technique is hard to be adopted. The information that

we can get from a DEX file is only the area of each signature

category. Therefore, a signature-matching method without

the offset, as our mechanism, should consider the overhead

for matching all of the signature entries with every possible

candidate binary pattern in a target file. We reduce this

matching overhead by using a hash table search instead of

string matching.

The main overhead in the use of multiple signature entries

is the computing time needed to check whether a pattern is

matched with l signature entries or not. When the l signature

entries are compared to the b binary patterns per file, the

entire matching process needs ðl$b$dÞ time for string com-

parison, where ðb$dÞ is the expected number of rounds of

matching to find a matched pattern. In the legacy string-

matching approach using a signature offset, ðb$dÞ is 1. Thus,

the time complexity of the legacy signature matching is

dependent only on l because it only needs to compare a binary

pattern at the specific position per file. On the other hand, our

matching mechanism requires ðl$b$dÞ time for string com-

parison. In a realistic investigation situation, d is close to 1.0

because the target files have many more unmatched patterns

than matched patterns. Therefore, the key to reducing the

comparison overhead lies in making the effect of l and b as

small as possible.

We use a dictionary to reduce the temporal overhead due

to l and b. A dictionary is one of the data structures that lead

to constant search overhead with little influence from the

number of data it has. A dictionary uses a hash table, and the

search is performed by a hash table lookup. The family

signature matching method using a dictionary has negligibly

low overhead from an increase in l because it uses additional

memory space for a hash table. Given that the number of new

malware entities and their signatures is continuously

increasing, the constant time consumption of the hash table

search approach offers a great advantage in terms of

computing time. See Section 6.1 for a detailed analysis of the

overhead of our detection method.

7.2. Comparison with API call analysis and behavior-
based detection methods

Analyzing API call sequences is a well-known malware

detection approach, but it requires excessive overhead to

analyze every possible execution path in a static way. On the

other hand, dynamic analysis at runtime requires a sandbox

environment and instrumentation overhead. To overcome

these problems, modeling and finding commonly appearing

patterns of API calls frommalware can be an efficient solution

in the detection of suspicious applications that have critical

capabilities. However, this method suffers from a false
ne applications usingmalware family signatures, Computers
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detection problem, especially in the smartphone environment

because legitimate smartphone applications have manymore

capabilities and behaviors that are similar to malicious ap-

plications than is the case in legacy PC environments. This

feature affects the accuracy of API-based approaches in both

static and dynamic analysis methods. To conclude, API calls

are a representative feature that can detect malicious capa-

bility in applications, but they need to be complemented by

additional features and metrics. In our mechanism, we

significantly mitigate the false detection problem by multi-

plexing decision conditions with multiple types of signature

entries. This approach makes the detection mechanism more

robust to false detection and evasion attempts by decreasing

dependency on a single type of feature.

7.3. Differences from variant detection methods in PC
environments

The first key feature of Android malware compared to mal-

ware in the legacy PC environment is the simpler and more

semantic code set of an executable file. Most Android appli-

cations consist of Dalvik bytecode, which has a much smaller

instruction set and richer semantics than Assembly code or

even Java bytecode. This highly encapsulated and abstracted

code directly contributes to the success of our signature

structure. Code patterns in an instruction have not been an

effective signature in the PC environment, even though they

provide strong evidence in identifying reused code. Finding

exact matches of long code strings that are easy to change

supports precise detection but has low robustness to variants.

However, Dalvik bytecode has a much simpler and smaller

instruction set than do x86- or JVM (Java virtual machine)-

coded executables. This means that a shorter string of Dal-

vik code can express the same semantics as its counterpart

code in the PC environment even though it has less variety.

For example, a method for obtaining the sum of integer values

in an array that can be coded with just five lines of Java code

are encoded to 14 instructions in 25 bytes of JVM bytecode but

require only 6 instructions in 18 bytes of DVM (Dalvik virtual

machine) bytecode. This feature enhances the suitability of

using bytecode patterns as a detection signature.

Another significant feature of the Androidmalware is flood

of family malware. As supported by the analysis reports from

AV-vendors, the dominant portion of Android malware is

constructed by repackaging technique, and most of the new

malware belongs to a malware family. Even in 2014, the

average family size is increased while the number of families

is decreased. It means that we have higher possibility to face a

variant of a known malware than unknown one. This fashion

is supported by the repackaging and code reuse techniques.

Because of this similarity feature, a family signature approach

is much more effective than the similar approach in the PC

environment such as a generic signature.
8. Conclusion

In this paper, we have proposed a scalable and accurate

approach for Android malware detection. The proposed sys-

tem overcomes the lack of robustness against Android
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malware variants that afflicts the conventional signature-

based approach. The proposed generalized signature for

Android malware families that are groups of variants sharing

code and resources is responsive to their evasion techniques.

The malware detection and family classification mechanism

detects family malware through the family signature con-

structed from sets of known malware family samples. The

diversity of the family signature powered by multiple signa-

ture entries and the similarity estimation approach increases

coverage over that of typical single-entry signatures, to

include greater numbers of family members.

We have shown experimentally that the family signature

approach improves detection accuracy compared with the

previous static approaches. In performance testing with

thousands of real-world Android malware entities and benign

applications, it showed an accuracy and recall rate of more

than 97%, and the samples were detected with a few mega-

bytes of signatures. In addition, the proposed detection

mechanism consumes reasonably small time, requiring only

tens of seconds to investigate a million targets. Moreover,

time consumption increases only linearly with increasing

numbers of targets. In conclusion, the proposed system has

enough investigation performance for responding the rapidly

growing numbers of Android applications, both of the mali-

cious and the benign. Considering the efficiency and detection

accuracy of our mechanism, it is well suited for screening

Android applications before they are uploaded on public app

markets as well as for the sever-side investigation of samples

by network-based AV systems, or further depth investigation

methods.
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