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This article presents what we call the parallel coordinate attack visualization (PCAV) for

detecting unknown large-scale Internet attacks including Internet worms, DDoS attacks

and network scanning activities. PCAV displays network traffic on the plane of parallel

coordinates using the flow information such as the source IP address, destination IP

address, destination port and the average packet length in a flow. The parameters are used

to draw each flow as a connected line on the plane, where a group of polygonal lines form

a particular shape in case of attack. From the observation that each attack type of signif-

icance forms a unique pattern, we develop nine signatures and their detection mechanism

based on an efficient hashing algorithm. Using the graphical signatures, PCAV can quickly

detect new attacks and enable network administrators to intuitively recognize and respond

to the attacks. Compared with existing visualization works, PCAV can handle hyper-

dimensions, i.e., can visualize more than 3 parameters if necessary, which significantly

reduces false positives. As a consequence, Internet worms are more precisely detectable by

machine and more easily recognizable by human. Another strength of PCAV is handling

flows instead of packets. Per-flow visualization greatly reduces the processing time and

further provides compatibility with legacy routers which export flow information, e.g., as

NetFlow does in Cisco routers. We demonstrate the effectiveness of PCAV using real-life

Internet traffic traces. The PCAV program is publicly available.

ª 2008 Elsevier Ltd. All rights reserved.
1. Introduction way (Keim, 2001). Humans can easily recognize and intuitively
Plenty of intrusion detection techniques have been proposed

so far, but they still have weaknesses. Conventional intrusion

detection systems, which are based on known attack signa-

tures, cannot detect unknown attacks. Intrusion detection

systems based on anomaly detection mechanisms on the

other hand can recognize some variants of known attacks, but

they often generate a huge number of false alarms which

overwhelm security engineers and render the security

systems worthless.

To overcome the drawback, one promising approach is

visualizing complex situations using a simple and intuitive
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infer patterns from complex visual images. The visual images

can be obtained from raw data using computer graphics

techniques and algorithms (Kim et al., 2004; Conti and

Abdullah, 2004).

In this article, we introduce a simple but novel way of

visualizing Internet attacks on parallel coordinates. Parallel

coordinates have many desirable properties such as repre-

senting more than three values in a two dimensional space

(Inselberg, 1985). In order to visualize most popular attacks

such as Internet worms, we have carefully selected four fields

available on most flows. And, nine graphical signatures are

developed to detect ongoing attacks, which include Internet
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worms, DDoS (Distributed Denial of Service) attacks and

network scanning attacks. Furthermore, we devise an O(1)

hashing algorithm to identify these signatures. The effec-

tiveness of the proposed approach is shown by running on

real network traffic and revealing hidden attacks in a visual

way. It is shown that this mechanism works for detecting

notorious Internet attacks such as rapidly spreading Internet

worms, which have not been investigated extensively in

visualization studies such as in Kim et al. (2004).

We use flows for input data, instead of packets, because of

performance, scalability and compatibility with legacy

routers. A flow is a single network connection and can consist

of millions of packets. Handling flow-level information greatly

reduces the processing time so it enables the visualization

algorithm to run on high-speed links. Furthermore, many

legacy routers provide flow information and they are widely

deployed, which includes NetFlow in Cisco routers. This

compatibility with legacy routers greatly enhances the

usability of the visualization mechanism.

The aim of this study is not to propose a new visualization

technique. The main contribution is how to use parallel

coordinates to display and detect Internet attacks. Displaying

network flows using carefully chosen values forms a unique

graphical image for each type of attack. And, such an attack

can be detectable by the use of its graphical signature, even

though the attack is not known a priori–unknown attack.

Comparing with the 3-D visualization work (Kim et al., 2004),

we can detect more attacks including Internet worms and

greatly reduce false alarms on flash crowds and P2P applica-

tions. Recently proposed visualization techniques tend to

simply display the network traffic and do not recognize

attacks, thus require the human administrator to be

constantly involved in monitoring. However, our system is

designed to be intelligent enough to automatically detect and

classify attacks before reporting, as well as intuitively visu-

alize them.
2. Attack visualization

2.1. Benefits of attack visualization

There are significant benefits in applying information visual-

ization to the problem of intrusion detection. First, attack

visualization can easily deal with highly heterogeneous and

noisy data. Network traffic can be complex, so for effective

analysis it must be correlated with several variables such as

source address, destination address, port number, packet

length, and TCP flag among others, but the attack visualiza-

tion simplifies the problem by presenting the traffic situation

in an intuitive way. Even in the absence of complex mathe-

matical or statistical algorithms, visual images can give

perceptual clues to the administrators faced with an attack.

Second, attack visualization can get us fresh insight into the

analyzed data and allow us to deduce new hypotheses that are

often lost in complex analysis. Even though an unknown

attack may have occurred, if an image pattern (signature)

from the unknown attack is obtained, the attack can be

quickly detected. Consequently, visualization techniques can

provide clues to most zero-day attacks which do not match
the signatures of existing intrusion detection systems, and

facilitate quick response analysis. Third, attack visualization

can be much faster than other anomaly detection approaches.

Many anomaly detection methods require training and

comparing with history, but attack visualization can quickly

identify an attack by noticing pre-defined or new image

patterns.

2.2. Attack characteristics

In order to devise a visual mechanism for most popular

Internet attacks such as DDoS attacks, worm attacks, or

network scans, their characteristics must be considered in

terms of visualization. Fortunately, these notorious attacks

have one common characteristic, which we call ‘‘one-to-many

relationship’’ between attackers and victims, whereas legiti-

mate flows have one-to-one relationship.

A DoS attack is an attack on a computer system or network

that causes a loss of service to users, typically the loss of

network connectivity and/or services by consuming the

bandwidth of the targeted network or overloading the

computational resources of the targeted system. In a DDoS

attack, the attacking hosts are often personal computers with

broadband connections to the Internet that have been

compromised by viruses or Trojan horse programs. The

perpetrator can remotely control the machines and direct

the attack. With enough slave hosts, the services of even the

largest and most well connected website can be denied.

Therefore, in a DDoS attack, there are many attackers and one

victim, which forms a one-to-many relationship between

a victim (destination) and the attackers (source).

A worm is defined as a self-propagating malicious code.

Once a machine is infected, target hosts are picked by pseudo

random number generators, or hostscans to detect vulnerable

machines (usually with a single vulnerability of the machine)

in a certain network. Once targets are set, an infected machine

transports the worm code to them. Therefore, a worm repre-

sents a one-to-many relationship between the infected

machine (source) and the next targets (destination).

Network scanning (hostscans which are executed by

several machines of network, not only a machine), used by

hackers to probe hosts, also exhibits the symptoms similar to

that of worm propagation, and has a one-to-many relation-

ship between a hacker (source) and scanned network hosts

(destination). Port scanning is a method used for probing

available services of a certain host. There is one attacker, one

or many target hosts, and many scanned ports. Therefore,

a portscan is also characterized as a one-to-many

relationship.

2.3. Four fields as attack parameters

Above, we have discussed an important characteristic of

Internet attacks, namely, the one-to-many relationship. Now,

let us consider which packet header variables manifest the

characteristic. First, the source IP address and destination IP

address in a flow information are selected as parameters

because they specify the attacker and the victim host.

These values are stored in the fields of every packet header

so that they can be used to distinguish the attacking packets
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from legitimate packets and represent one-to-many relations

between attacker(s) and victim(s).

Second, if the attack is an Internet worm, it usually targets

one or more ports in TCP or UDP protocols so that the desti-

nation port number is selected as a parameter. This value

identifies the targeted service of an attack and verifies port

scanning attacks.

Third, the average size of packets in a flow can be used as

a parameter that gives some clues whether the flow is suspi-

cious or not. Network scannings and DDoS attacks exploit

a flooding procedure and the procedure typically uses empty

packets without payload. Even in case the packets have

payloads, usually the length of packets are fixed d 40 or 48

bytes. And Internet worms have a payload to exploit the

vulnerabilities they can use. Most worms propagate with

a constant payload, the average packet size of a worm can be

specified by a fixed length (Akritidis et al., 2005). Without using

the packet length, we cannot distinguish Internet worms from

scanning attacks. Comparing with the previous work (Kim

et al., 2004), we can detect two more attack types (total six)

including Internet worms and increase the correctness of

decision by adding the length parameter.

Finally, the TCP flags in TCP headers and the protocol field

in IP headers can be a candidate of another parameter.

Networks scanning and DDoS attacks may transmit the same

packet repeatedly so that these attack traffic has the same

value of TCP flags. Thus, we can distinguish attack traffic from

normal traffic using its TCP flags. For instance, some normal

traffic has a one-to-many relationship, such as P2P commu-

nications, but they can be classified as legitimate traffic by

comparing their TCP flag with that of a normal TCP hand-

shaked flow. As well, the protocol field in IP headers can be an

effective parameter. The protocol information enables us to

distinguish among TCP scans, UDP scans, and ICMP scans.

Furthermore, we can distinguish between TCP worms and

UDP worms, and between SYN flooding attacks and UDP

flooding attacks. The TCP flags and the protocol information

can be considered as additional parameters, but we do not

visualize them in this study. Because they do not provide any

evidence of enough benefits while using them along with

other four parameters.

2.4. Per-flow visualization

A ‘‘flow’’ can be defined as a set of packets with the same

source IP, destination IP, source port and destination port that

can be thought of as a connection between two remote

processes. Available information on each flow includes the

above mentioned attack parameters which are source

address, destination address, destination port, average packet

length, and TCP flags.

We use a flow, instead of a packet, as a basic unit of visu-

alization because it drastically reduces processing time

without much loss of necessary information. Furthermore,

per-flow visualization provides the compatibility with legacy

routers so that we can deploy the system without the change

of current network infrastructure. One good example is to run

a visualization system with Cisco routers that export NetFlow

information (Cisco systems, 2006). Namely, the visualization

system can use Cisco routers as sensors. Some parameters
such as average packet length, cumulative OR of TCP flags,

number of packets in a flow, number of bytes in a flow and

flows per second are readily provided in such a flow-based

system.

The IETF proposed a IPFIX (IP Flow Information eXport)

standard (Quittek et al., 2004), which is being developed based

on the experiences with Cisco NetFlow. Hence, routers and

switches having the functionality of IPFIX can be used for

sensing a network in our approach.

2.5. Parallel coordinates

One important aspect of information visualization is scal-

ability. Parallel coordinates provide great scalability to

multiple dimensions. They are not complex, yet allow hyper-

dimensional patterns to be analyzed. For instance, they lead

to a quicker understanding and a more informational graph

over that of a scattered plot matrix (The University of Utah).

This technique has no theoretical limit in the number of

parameters that can be visualized. Therefore, we can scale up

the application by incrementally introducing new visualiza-

tion parameters as necessary. Moreover, it does not introduce

bias for any specific dimension, while showing prominent

trends, correlations and divergences from the raw data. These

advantages enable us to gain critical insight into the flows in

the traffic under test and establish reliable intuitive hypoth-

eses. Even if an unknown attack occurs, a specific image

pattern can be gained and the attack can be detected in

a timely manner.
3. Parallel coordinates attack visualization

3.1. Attack signatures

Now we show how parallel coordinates can be used to

describe an attack in an intuitive graphical pattern, in our

system called the Parallel Coordinate Attack Visualization

(PCAV). The coordinates represent four different parameters

in a flow. The first represents the source address, the second,

the destination address, the third, the destination port and the

fourth, the average packet length. These four values enable

the flow to be plotted as a connected line on parallel

coordinates.

Suppose an attacker wants to know which hosts are

vulnerable in the target network. He will mount the host

scanning attacks to check the targeted destination port of

each host. Usually scan packets have no payload to increase

the effectiveness of the scan process, resulting in 40 bytes

packet. Some scanning programs also use the TCP selective

acknowledgment (SACK) option, in which case the size of

scanning packets becomes 48 bytes. The formation on the

parallel coordinates corresponding to the host scans looks like

a fish (diamond-line pattern) as shown in Fig. 1(c), which is

obtained from a real-life Internet attack traffic trace.

Like this, we can define nine graphical signatures, which

are shown in Table 1. In a portscan, there is one attacker and

one victim, and the attacker wants to know which ports are

opened. To accomplish this, the attacker may use a port

scanning program which checks the destination port of the
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victim one by one, sequentially or randomly. This represents

1:1:many:1 patterns and a graph pattern looks similar to a kite

(line-diamond) as shown in Table 1. All real-life attack graphs

in Fig. 1 closely match the model signatures shown in Table 1.

The DoS attack generated by a Blaster worm (Fig. 1(a)) uses

a fixed destination port so the pattern resembles a triangle

with a connected line. Fig. 1(b) is the attack graph from

a Slammer worm, presenting a noticeable pattern. The

Slammer worm attempts to infect other machines chosen

randomly so that the destination addresses should have

a random distribution. However, the pattern of the repre-

sented graph looks like a subnet scanning in the range of

multicast IP addresses. This is due to a bug at the part of

random number generation in the Slammer code (Moore et al.,

2003), which generates only multicast address ranges in

a certain condition. Even in this unusual situation, PCAV

detects the worm on the limited range of destination

addresses.

Average packet lengths can be used to distinguish seem-

ingly similar attack patterns. For instance, a worm and

a hostscan have the same graph patterns (diamond-line). But

a hostscan may have no payload, whereas a worm should

have a payload to infect other machines. Thus, the average

packet lengths of all flows in a worm epidemic are constant

and relatively larger than the average packet length of a flow

in a hostscan, e.g., 48 bytes in Fig. 1(c).
Backscatter packets are a non-colocated victim’s response

to several spoofed or non-spoofed DDoS attacks. The back-

scatter packets’ source address is that of the victim, but the

packet’s destination address is randomly spoofed or non-

spoofed addresses of DDoS attackers. Nonetheless, back-

scatter can be used to detect its matched attack, so we added it

to the list of graphical signatures. When a DoS attack uses

multiple source ports, its reflection has multiple destination

ports. Thus, the pattern of backscatter looks like hexagon as

shown in Table 1. A source-spoofed DoS (port fixed) is an

attack with a fixed destination port. Usually the DoS has no

payload so the graph appears as a triangle with a connected

line. And, a source-spoofed DoS (port varied) is an attack with

randomly chosen destination ports and usually has no

payload of packets. Therefore, the graph looks like a rightward

looking fish. A distributed hostscan is performed by a single

perpetrator, but it is launched from multiple hosts to speed up

the scanning process. So there are multiple source and

destination hosts, where a particular (vulnerable) destination

port is targeted. Network-directed DoS is a kind of DDoS attack

that targets a network, so the union of its destination

addresses will correspond to a network, instead of a single IP

address. It can be regarded as a collection of multiple DDoS

attacks.

We show that PCAV detects six different attacks including

portscans, hostscans, Internet worms, source-spoofed DoS
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Table 1 – Graphical signatures of nine attacks.

Implied Attack Signature Divergences

Portscan 1:1:m:1

Hostscan 1:m:1:1

Worm 1:m:1:1

Source-spoofed DoS (port fixed) m:1:1:1

Backscatter 1:m:m:1

Source-spoofed DoS (port varied) m:1:m:1

Distributed hostscan m:m:1:1

Network-directed DoS m:m:m:1

Single-source DoS 1:1:1:1
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attacks (port fixed), backscatters, and source-spoofed DoS

attacks (port varied). Since distributed hostscans and

network-directed DoS attacks can be regarded as multiple

hostscans and multiple source-spoofed DoS (port varied)

attacks, respectively, PCAV actually detects all graphical

patterns except single-source DoS attacks.
3.2. System design

In order to display and detect ongoing attacks using the attack

signatures, we have designed a system of PCAV. The PCAV

consists of four main modules: a sensor, analyzer, visualizer

and database, as shown in Fig. 2. The sensor receives flow data

from routers or application programs and stores the flow data.

It abstracts important information from the gathered flow

data and creates a PCAVflow. The PCAVflow is a compact data

format with essential elements of accumulated flow data. It is

designed for effectiveness of internal data stream which can

unexpectedly overwhelm the computer resources. The

analyzer receives the PCAVflow from the sensor, and checks

a pattern, matching an attack signature, of Fig. 3. If a set of

flows matches an attack signature, the attack data is sent to

the visualizer. Three pre-allocated buffers are used for

exchanging data between the sensor, the analyzer and the

visualizer in order to minimize memory allocation and copy

operations.

The visualizer displays the PCAVflow data using parallel

coordinates. The flow data for both legitimate and attack flows

originally comes from the sensor, from which the analyzer
pans out attack flows. We can store the attack data in an

attack logs database which can be used for further investiga-

tion of the incident or for replaying. The system can receive

flow data from hosts that run a monitoring program such as

nProbe (nTop.org), or routers which enable to generate flow

data such as NetFlow in Cisco routers.

3.3. Attack detection algorithm

In this subsection, we explain an attack detection algorithm

which runs in the analyzer. The detection algorithm uses

three hash tables for storing flows with respect to their source

address, destination address and destination port, respec-

tively. The hash tables are used to determine the pattern in

the attack signatures.

There are several data structures that PCAV can use and

a comparison of hash tables with other structures such as

linked lists, balanced binary trees, and MULTOPS trees, is

shown in Table 2. In particular, the MULTOPS tree is known to

store IP addresses efficiently (Gil and Poletto, 2001). But it is

hard to be used for storing IP addresses overwhelmed by

a source spoofing DoS attack. From the comparison, we chose

hash table because it provide fast lookups with sufficient

accuracy.

Fig. 4 shows the proposed attack detection algorithm. The

algorithm consists of two parts. The first part generates an

attack ID for an input flow using three hash tables, which is

described in Steps 1–12. The second part handles suspicious

flows using the attack ID, which is described in Steps 13–30.

The hash_insert() function in Fig. 4 inserts the parameters

of the function into a hash table by the use of hash opera-

tions. The function returns TRUE if a parameter is a new

member of the table. Otherwise it returns FALSE. An attack

ID is a 3-tuple of binary values, where each binary element

represents whether or not the PCAV hash has seen the given

source address, destination address, and the destination

port, respectively. A legitimate attack ID is either <0, 0, 0> or

<1, 1, 1>. Otherwise, the flow is considered suspicious.

If one flow comes from the sensor, the detection algorithm

in the analyzer inserts the source address, destination address

and destination port of the flow to the corresponding hash

table. Then, the three hash tables are used to generate the

values of the flow ID. If a value already exists in its hash table,
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then the tuple value becomes 1; otherwise, 0. For example, at

time T1, if an input flow has a source IP address 1.2.3.4,

destination address 5.6.7.8 and destination port 80, and at

time T2, an input flow has a source IP address 1.2.3.4, desti-

nation address 5.5.5.5 and destination port 21, then the second

flow at T2 has an attack ID of <1, 0, 0>. If at time T3, an input

flow has source IP address 3.4.5.6, destination address 5.6.7.8

and destination port 80, then its attack ID becomes <0, 1, 1>.

In addition to the hashes used in the attack ID generation,

there are 6 additional hashes corresponding to each detect-

able attack. Once the input flow is classified into a suspicious

flow in the first phase and the length condition is satisfied

then the suspicious flow is inserted into an attack hash cor-

responding to the attack ID. The length condition is that the

scanning flows have smaller than or equal to 60 bytes, because

the packets have only header. In case of TCP, the length

becomes 40 bytes or 48 bytes. In case of UDP and ICMP, the

length becomes 28 bytes and 60 bytes, respectively. So the

maximum value of the length that contains only the header

becomes 60 bytes, so we take the length of 60 bytes as a deci-

sion point.
4. Evaluation

In this section, we evaluate the performance of the PCAV

algorithm on various aspects. First, we measure the
Table 2 – Comparisons of data structures.

Algorithm Pros Cons Complexity

Linked List Small memory

usage

High lookup

complexity

O(n2)

MULTOPS’s tree

data structure

O(1) lookup

complexity

Weak to source-

spoofed DDoS

attack

O(1)

Binary search

tree (Balanced)

Small memory

usage

High lookup

complexity

O(nlogn)

Hash table O(1) lookup

complexity

High memory

usage, Hash

collision

O(1)
processing rate of PCAV. Second, we checked the detection

rate under multiple attacks. Both are instrumented with

a flow generator that we implemented. Finally, we measure

the false alarm rate. We run the algorithm over a real-life

Internet backbone trace we have, and then over a live traffic

on a fast campus network to test the feasibility of attack

visualization.

We use the Pentium 4 processor PCs on Windows XP and

default values of parameters are given as follows. Hash entry

lifetimes are 2 s for IP-address hashes, and 1 s for a port hash.
Fig. 4 – Attack detection algorithm in the analyzer.
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There is a gap between two lifetimes, because the range of IP

addresses is much larger than the range of ports. The

threshold for determining DDoS or worm attacks is 50 (flows

per second). For scanning attacks, smaller threshold, i.e., 5

flows per second, is used since the typical number of flows in

scanning attacks is smaller than those of DDoS or worm

attacks. Detecting algorithm runs every second to detect and

report any suspicious activity, but the report period is

adjustable.

PCAV is implemented as an application program,1 where

a screenshot is presented in Fig. 5. The upper graph in Fig. 5,

namely (b) All flow image, shows entire flows on parallel

coordinates. The pattern of polygonal lines looks crossed

regularly due to the pairs of outward and inward flows. PCAV

can show the ongoing attacks in both absolute coordinates

and rescaled coordinates. In order to present the detected

attack more effectively, PCAV provides the rescaling func-

tionality to magnify an attack graph, which appears in the

lower graph, (e) Attack flow image on the PCAV application.

PCAV can detect and visualize different types of attack,

even they occur simultaneously. In Fig. 5, there are (d)

Detected attacks buttons which shows the appearance of
1 The application program of PCAV can be obtainable at http://
ccs.korea.ac.kr/PCAV.
multiple attacks in different types. When an attack is detec-

ted, its corresponding button is activated. All attacks detected

are displayed in (e) Attack flow image; whereas only one

attack type selected in (d) Detected attacks buttons is

displayed on (e) Attack flow image when clicking a button.

Even though an unknown pattern of image appeared in (b)

All flow image, we can get the detail information of the attack

such as IP address, protocol, the number of packets, the octets

of bytes and port number in (f) Flow information. The detail

information provides the first step towards the inspection of

the unknown attacks, and we can add new types of attack for

detecting more attacks.
4.1. Case study

We evaluated the PCAV with the traces from 3 different

sources: a local network, an ISP backbone and public trace

repositories.

First for the local trace, system was plugged to a campus

network for over 48 h on March 13, 2006. The campus gateway

routers exported NetFlow data to the PCAV. The campus

traffic was about 1 Gbps with 1000 flows per second. In this

experiment, the PCAV system was observed to process the

NetFlow data from the giga-bit campus network without any

loss. During the expanse of the one-day trace, 1139 attacks

http://ccs.korea.ac.kr/PCAV
http://ccs.korea.ac.kr/PCAV
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were detected. Among them, 1060 attacks were portscan (93%

attacks) and 73 attacks were hostscan (6% attacks). 5 worm

attacks were reported (0.44%). Although most attacks were

detected correctly, the reported worms turned out to be

messenger spams and P2P traffic. Therefore, the false positive

rate is smaller than 0.44%. We discuss the false alarms issue in

Section 4 D.

Secondly, we ran PCAV on a backbone traffic captured

during 13 h in December 14, 2001 on two trans-pacific T3 links

(90 Mbps) connecting the U.S. and a Korean Internet

Exchange. PCAV successfully reported the attacks embedded

in the trace. For instance, bandwidth consuming attacks, such

as DDoS attacks, were clearly visible as shown in Fig. 5. PCAV

detect 4587 attacks and among them, 1206 attacks were

portscan (26% attacks) and 3223 attacks were hostscan (70%

attacks). 6 DDoS attacks (0.13%) and 74 worms were reported

(1.6%). We also discuss the false alarms issue in Section 4 D.

Thirdly, we ran the PCAV with backscatter traffic traces,

which were provided by the Cooperative Association for

Internet Data Analysis (CAIDA; http://www.caida.org). The

dataset consisted of 7 week-long collections of responses to

spoofed traffic sent by DoS victims and received by the UCSD

Network Telescope between May 2004 and November 2005.

PCAV detected all backscatters in the CAIDA traffics, which

will be discussed in Section 4 E.
4.2. Stress test

We performed a stress test to estimate the stability of the

system. In order to measure the maximum number of flows

that can be processed, we defined the rate of processed flows

over all input flows. Attack flows were launched with the flow

generator that we implemented, which is able to inject several

types of attack flows as well as normal flows. Also, we

extended the socket buffer from 8 KB to 1 MB to avoid packet

dropping and turned off the PCAV database system, in order to

eliminate the effect of disk access latency from the

measurement.

Fig. 6 shows the processing rate of the system. PCAV

processes 90% of 100,000 flows given per second, i.e., 90,000

flows per second, which could roughly match the traffic

intensity on a 10 Gbps pipe based on our experience. Since the

attack detection thresholds are a few orders of magnitudes

smaller, the processed flows are more than enough to signal

the attacks if any. As to the flow missing rate, PCAV gracefully

degrades, rather than sharply drops after a certain point of

flow input rate.

We can estimate the maximum detectable number of

attacks numerically. Suppose there are m attacks at time x. Let

s be a time interval, and ai(x) be the total number of flows

generated by attack i from time x� s to x. We let A(x) denote

the total number of attack flows such that

AðxÞ ¼
Xm

i¼1

aiðxÞ:

If N(x) is the number of legitimate flows, the total number of

flows T(x), becomes T(x)¼A(x)þN(x). We let r denote the

maximum number of flows that can be processed by the PCAV

analyzer during s, and l be the threshold of an attack to be
detected. Then the following conditions are satisfied. First,

when T(x)< r and ai(x)� l for all i, every attack is detectable.

We call it m-detectable. In case limx/NN(x)¼ 0, m is bounded

from above as

m ¼ TðxÞ
l
:

Second, if T(x)> r and ai(x)$(1� T(x)� r/T(x))� l (1� i�m), it is

also m-detectable. In case limx/NN(x)¼ 0, we have

m ¼ r

l
:

For instance, given 10,000 flows of which 90% are processed by

PCAV with the threshold of l¼ 50, 1800 concurrent attacks are

detectable. From this simple analysis, we can ensure that

PCAV can detect attacks effectively, even when input flows

are dropped significantly under congestion by DDoS or worm

attacks. It also works consistently when input flows are

sampled by routers or applications.

4.3. Multiple attacks test

Even though multiple attacks occur simultaneously, PCAV

should work properly. One weak point of PCAV can be the

hash collision under multiple attacks. The hash collision can

make the PCAV analyzer generate a wrong flow ID and some

attacks can be undetected. So, we evaluate the effectiveness

of PCAV under multiple attacks.

Fig. 7 shows the detection rate of multiple attacks versus

the number of concurrent attacks. The experiment is con-

ducted with the aforementioned flow generator. The figure

shows that the attacks with larger divergence on IP-address

coordinates, i.e., hostscan, worm and port fixed DDoS, are

more detectable than the port-related attacks where the port

numbers vary. It is because the range of IP addresses is wider

than that of ports (65 K) so that hash collisions rarely occur in

the IP-related attacks. Port-related attacks, i.e., portscan, port

varied DDoS and backscatter, are less detectable than IP-

related attacks, since the collision probability of destination

ports is much higher than that of IP addresses.

If a portscan interferes with a DDoS attack with varied

ports, the DDoS attack can be incorrectly recognized as a DDoS

http://www.caida.org
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attack with fixed ports. However, in a DDoS attack, it does not

matter whether the attack uses fixed ports or varied ports.

Thus, the interference of portscans with DDoS attacks can be

considered negligible, which is represented by the dotted line

in Fig. 8. Only the DDoS attack with varied port interferes with

portscans significantly, which is represented by the solid line

in Fig. 8.

Fig. 7 also shows that IP-related attacks do not interfere

with port-related attacks, and vice versa. Only the same type of

attacks interfere with each other. Moreover, notice that the

detection ratio of mixed type attack is higher than the simple

average of the detection ratios of single type attacks. In the

figure, we mix the IP-related and port-related attacks half and

half. At m¼ 400, we see that the detection ratio with the mixed

attack is 0.7, which is larger than the average of the detection

ratios of the single type attacks, i.e., 0.6. Approximately, if the

fraction of port-related attacks is ap, the detection ratio of m

mixed attacks is given by

DxðmÞzDI

�
m$
�
1� ap

��
þ Dp

�
map

�
where DI and Dp are detection ratios with IP- and port-related

attacks. The precise detection ratio gain in the mixed attacks

depends on the collision probability function of the hashing

scheme. Approximating the distribution of the number of

hash collisions as Gaussian, Fig. 7 shows that the analytical

estimation fits well with the experimental results.

We can measure the collision probability numerically.

Suppose there are m concurrent IP-related attacks with scan

rate r (scans or spoofs) per second and the lifetime of an attack
DDoS
(d.port fixed,

varied)

Portscan
Worm

hostscan

Fig. 8 – Interference relationship between attacks.
is L. Then the number of host address entries would be mLr.

When an attack randomly picks an address for the next

address, the probability of picking up an already registered

value will be estimated as (mLr)/(232). So the collision proba-

bility is given by

PcðmÞ ¼
mLr
jSj ;

where S is the whole range of values, and the upper limit of the

probability can be bounded by 1 such that

PcðmÞ ¼
�

PcðmÞ if PcðmÞ � 1
1 otherwise

For example, if there are 1000 attacks that generate 10,000

packets per second each and L¼ 10, the collision probability is

approximately 1/400. It seems tolerably low, for such a large

number of highly intensive attacks.

4.4. False alarms

The false alarm rate is an important metric to measure the

performance of an intrusion detection system. We measure

the false positive with sources from a local network, and an

ISP backbone, which were smaller than 0.44% and 2.31%,

respectively. It is shown that PCAV greatly reduces the false

detections by using additional parameters. For example, let us

consider a popular website. Numerous clients can access

a popular server at TCP port 80. Without the use of length

parameter, it is possible to report the traffic incoming to the

server as a DDoS attack with fixed port, or the outgoing traffic

as a hostscan. Not only the flash crowds in web traffic, but also

game, chatting, mail, P2P, streaming can be misjudged as

worms unless the length parameter is used. Thus PCAV

utilizes the packet length parameter. We compare two cases:

three parameters and four parameters. The difference

between two cases comes from the use of the average packet

length in a flow as the fourth parameter. The impact of the use

of the length parameter is shown in Fig. 9, and it clearly shows

that we can greatly reduce false alarms with one additional

parameter. This shows the immediate improvements of PCAV

with respect to accuracy, comparing with the previous work

(Kim et al., 2004) which uses only three parameters.

Although the packet length significantly reduces the

chances of false alarm, some of detected attacks were false
Fig. 9 – False alarm reduction by the use of the length

parameter.
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positives. For instance in our experiment with the live campus

network traffic, several attacks were detected as a worm.

However, we found that they are not worms but messenger

spams or P2P traffics. P2P applications such as ‘‘FileGuri’’ use

UDP packets for the file searching query. In that case, the P2P

client will send the UDP packets with the same payload to

multiple nodes. Then the flows of the UDP query look like

a worm or a hostscan, as shown in Fig. 10(a). Also, when a P2P

node disconnects from the P2P overlay, the other participants

can query the node, not knowing the disconnection immedi-

ately. These queries will induce ICMP port unreachable

messages. The ICMP messages can be considered as the

pattern of hostcan, which is shown in Fig. 10(b).

To our surprise, many messenger spams were also detec-

ted as a worm as shown in Fig. 10(c). Messenger spams send

an unsolicited message using the Microsoft Windows

messenger service. Typically the messenger service runs on

the UDP port 1026, but it can run on other ports. Spammers

can send a message to a range of ports (typically 1026–1033), to

accomplish the delivery with higher probability. Note that IP

spoofing with UDP protocols is easy to perform but difficult to

trace back to the spam transmitter. We can distinguish them

by the use of well-known destination ports as a ‘‘white list’’.

Furthermore, false alarms can be reduced by the use of addi-

tional parameters such as the cumulative OR of TCP flags.

Additionally, more parameters can be added to parallel coor-

dinates if they can enhance the correctness of attack
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Fig. 10 – False detection of worms: (a) UDP queries in P2P appli

applications, (c) Messenger spams.
detection. However, even though PCAV can detect attacks

with an increased accuracy using more than four parameters,

the space and time complexity increase can offset the benefit.

So PCAV leaves open the possibility of using additional

parameters, but in the current design, we use four.

4.5. Reflection of attack

Attack packets can induce the replies from victim(s) and the

reply packets can be seen as another type of attack. We call

this mutation the reflection. For example, if one attacker

performs the hostscan, then victims reply, which would be

seen as the packets of DDoS attack that is shown in Fig. 11(a).

We list some such notable reflections in Table 3. Here,

a subscript O (or R) means the number of original (or reflec-

tion) flows of an attack. For instance, PortscanO is the number

of attack flows used in a portscan attack, and PortscanR is the

number of reflection flows caused by the portscan attack. We

maintain the view that a reflection is not an attack in itself,

but an evidence of attack. The portscan-reflecting portscan in

Fig. 11(b) and DDoS-reflecting backscatter are okay because

they are already contained in the attack signatures. Moreover,

under symmetric routing, the DoS traffic converging on the

backscatter source (i.e., DoS victim) should be detected. If only

backscatter is noticed, then the DoS attack must be utilizing

another path. Then backscatter can be leveraged to hint at the

existence of the attack in other parts of the network. Fig. 11(c)
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shows the backscatter graph generated from the backscatter

trace of CAIDA.

There could be two ways to discriminate the reflection.

First, we could check if there is the inverse image. If there is

a DDoS attack targeted at the apparent host scanning source
Table 3 – Some notable reflections.

Original Condition Reflection Note

Portscan Src port

is fixed

No PortscanO> PortscanR

Src port is

not fixed

Portscan

Hostscan Src port

is fixed

DDoS_F HostscanO>DDoSR

Src port is

not fixed

DDoS_V

DDoS_F Src port

is fixed

Hostscan DDoSO>HostscanR (If DDoS

use source spoofing then,

DDoSO [ BackscatterR)

DDoS_V Src port is

not fixed

Backscatter DDoSO> BackscatterR, (If DDoS

use source spoofing then,

DDoSO [ BackscatterR)

Worm TCP worms DDoS_V WormO>DDoS_VR

UDP worms DDoS_F WormO>DDoS_VR

(ICMP packets)
and the number of DDoS flow is much smaller than original

hostscan, it is likely that the DDoS is a reflection. Second, the

hostscan as a reflection can be dominantly showing the

characteristics of the responding traffic, such as TCP SYN/ACK

or ICMP Echo Reply. The worm would be reflected to a DDoS

attack, but the number of flows is much smaller. Therefore,

we can determine that the reported DDoS attack is the

reflection of a Internet worm.
5. Related work

Many visualization approaches have been proposed to

display complex data in networks in order to enable humans

to recognize abnormal network status intuitively (Lakkaraju

et al., 2004; Nyarko et al., 2002; Kim and Reddy, 2005; Samak

et al., 2008; Onut and Ghorbani, 2007; Fischer et al., 2008;

Kim et al., 2004; Solka et al., 2000; Axelsson, 2003; Yin et al.,

2004). Among them, SHADOW (Solka et al., 2000), BLINC

(Karagiannis et al., 2005), Spotfire (Axelsson, 2003), and

VisFlowConnect (Yin et al., 2004) use parallel coordinates to

show abnormal behaviors.

NVisionIP (Lakkaraju et al., 2004) is a visual tool intended to

improve the cognitive processing abilities of human opera-

tors. Combining the visualization and reasoning capabilities

of humans, NVisionIP allows to recognize ongoing attacks on
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a network. However, it only provides visual images but not

algorithms for detecting attacks in a systematic way.

Network intrusion can be visualized by NIVA (Nyarko et al.,

2002), which is an intrusion detection visual analyzer with

haptic integration. The visual tool is able to augment the

ability of network administrators to understand malicious

activities on a network.

NetViewer (Kim and Reddy, 2005) provides the view of

network traffic as a sequence of visual images so that various

image processing techniques can be applied for detecting and

visualizing attacks. NetViewer detect attacks by the use of

image processing technologies.

Space-filling curves (SFCs) (Samak et al., 2008) characterize

traffic flows and identify anomalous behavior. SFCs generates

traffic images that provide both storage and bandwidth

savings. The technique is evaluated with actual traces

including DDoS attack and Code Red spread traffic and the

result images are shown to withstand aggressive compression

while preserving traffic properties.

SVision is proposed as a visualization technique for intru-

sion detection systems (Onut and Ghorbani, 2007). A network

can be represented as a community of hosts roaming in a 3D

space which is defined by the set of services. Since a network

might have hundreds of hosts, the view in SVision highlights

only the ones that might represent a potential threat to the

network. The approach used in SVision is useful for giving an

intuition for determining an attack, but it cannot deal with

large-scale attacks effectively on a high-speed network.

NFlowVis (Fischer et al., 2008) analyzes NetFlow data using

a relational database system. The monitored network is

mapped to a TreeMap visualization, the attackers are

arranged at the borders and linked using splines parameter-

ized with prefix information. The tool can be used to judge the

relevance of alerts, to reveal massive distributed attacks, and

to analyze service usage within a network.

Attack visualization on 3-D graphs have been proposed to

detect and display Internet attacks such as DDoS attacks and

scanning activities (Kim et al., 2004). By the use of only three

fields of IP headers, malicious attacks can be visualized

instantly in a 3-dimensional space. One drawback of the

scheme is the limited capability of detecting attacks due to the

fixed three parameters. Internet worms cannot be detected

properly and legitimate traffic patterns are falsely recognized

as an attack, such as flash crowds, P2P communications, web-

crawling activities and online games.

Parallel coordinates have been used in other studies such

as SHADOW (Solka et al., 2000). In SHADOW, packet headers

meeting pre-defined rules are dumped to a web-based file for

examination by a human operator.

There is an approach (Krasser and Conti, 2005) using

parallel coordinates for realtime and forensic data analysis.

Combining the strength of parallel coordinate plots with the

time-sequence animation of scatter plots, displaying 2D or 3D

graphs provides insight into both legitimate and malicious

network activities. A small set of attacks can be visually rep-

resented such as Slammer worms, botnet traffics and

portscans.

Spotfire (Axelsson, 2003) is developed for exploring the

possibilities of employing a trellis plot of parallel coordinate

visualizations to the log of a small personal web server. The
aim is to enable the operator to tell apart the access patterns

of automated attacks and normal access patterns.

VisFlowConnect (Yin et al., 2004) is a visualization appli-

cation to enhance the ability of an administrator to detect and

investigate anomalous traffic between a local network and

external domains. Central to the design is a parallel axes view

which displays NetFlow records as links between two

machines or domains while employing a variety of visual cues

to assist the user.

As we mentioned above, there are several approaches that

capture network attacks visually. However, they do not detect

attacks systematically, but just show the images of attacks

using their visualization method.
6. Conclusion

PCAV is a real-time visualization system for detecting anom-

alies from Internet attacks. PCAV visualizes Internet attacks

using four header fields (source IP address, destination IP

address, destination port, packet length) from a flow and

displays on parallel coordinates. PCAV exploits the inherent

property that each significant attack has a unique graphical

pattern on parallel coordinates. PCAV enables the network

administrator to rapidly detect and respond to malicious

attacks.

When an unknown attack occur, a particular pattern can

be displayed visually. Thus, PCAV allows us to add new

signatures and their detection routines. In this way, PCAV

greatly enhances the intelligence of visual systems for

detecting more attacks.

A plan to adopt pattern recognition methods in computer

graphics areas, recognizing signatures generated by PCAV, is

currently being designed. Also, visualization research regarding

spam mail distributions, P2P traffics, botnets and new types of

DDoS and worm attack, is currently being undertaken.
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