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This article presents what we call the parallel coordinate attack visualization (PCAV) for
detecting unknown large-scale Internet attacks including Internet worms, DDoS attacks
and network scanning activities. PCAV displays network traffic on the plane of parallel
coordinates using the flow information such as the source IP address, destination IP
address, destination port and the average packet length in a flow. The parameters are used
to draw each flow as a connected line on the plane, where a group of polygonal lines form
a particular shape in case of attack. From the observation that each attack type of signif-
icance forms a unique pattern, we develop nine signatures and their detection mechanism
based on an efficient hashing algorithm. Using the graphical signatures, PCAV can quickly
detect new attacks and enable network administrators to intuitively recognize and respond
to the attacks. Compared with existing visualization works, PCAV can handle hyper-
dimensions, i.e., can visualize more than 3 parameters if necessary, which significantly
reduces false positives. As a consequence, Internet worms are more precisely detectable by
machine and more easily recognizable by human. Another strength of PCAV is handling
flows instead of packets. Per-flow visualization greatly reduces the processing time and
further provides compatibility with legacy routers which export flow information, e.g., as
NetFlow does in Cisco routers. We demonstrate the effectiveness of PCAV using real-life
Internet traffic traces. The PCAV program is publicly available.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

way (Keim, 2001). Humans can easily recognize and intuitively
infer patterns from complex visual images. The visual images

Plenty of intrusion detection techniques have been proposed
so far, but they still have weaknesses. Conventional intrusion
detection systems, which are based on known attack signa-
tures, cannot detect unknown attacks. Intrusion detection
systems based on anomaly detection mechanisms on the
other hand can recognize some variants of known attacks, but
they often generate a huge number of false alarms which
overwhelm security engineers and render the security
systems worthless.

To overcome the drawback, one promising approach is
visualizing complex situations using a simple and intuitive
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can be obtained from raw data using computer graphics
techniques and algorithms (Kim et al, 2004; Conti and
Abdullah, 2004).

In this article, we introduce a simple but novel way of
visualizing Internet attacks on parallel coordinates. Parallel
coordinates have many desirable properties such as repre-
senting more than three values in a two dimensional space
(Inselberg, 1985). In order to visualize most popular attacks
such as Internet worms, we have carefully selected four fields
available on most flows. And, nine graphical signatures are
developed to detect ongoing attacks, which include Internet
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worms, DDoS (Distributed Denial of Service) attacks and
network scanning attacks. Furthermore, we devise an O(1)
hashing algorithm to identify these signatures. The effec-
tiveness of the proposed approach is shown by running on
real network traffic and revealing hidden attacks in a visual
way. It is shown that this mechanism works for detecting
notorious Internet attacks such as rapidly spreading Internet
worms, which have not been investigated extensively in
visualization studies such as in Kim et al. (2004).

We use flows for input data, instead of packets, because of
performance, scalability and compatibility with legacy
routers. A flow is a single network connection and can consist
of millions of packets. Handling flow-level information greatly
reduces the processing time so it enables the visualization
algorithm to run on high-speed links. Furthermore, many
legacy routers provide flow information and they are widely
deployed, which includes NetFlow in Cisco routers. This
compatibility with legacy routers greatly enhances the
usability of the visualization mechanism.

The aim of this study is not to propose a new visualization
technique. The main contribution is how to use parallel
coordinates to display and detect Internet attacks. Displaying
network flows using carefully chosen values forms a unique
graphical image for each type of attack. And, such an attack
can be detectable by the use of its graphical signature, even
though the attack is not known a priori-unknown attack.
Comparing with the 3-D visualization work (Kim et al., 2004),
we can detect more attacks including Internet worms and
greatly reduce false alarms on flash crowds and P2P applica-
tions. Recently proposed visualization techniques tend to
simply display the network traffic and do not recognize
attacks, thus require the human administrator to be
constantly involved in monitoring. However, our system is
designed to be intelligent enough to automatically detect and
classify attacks before reporting, as well as intuitively visu-
alize them.

2. Attack visualization
2.1. Benefits of attack visualization

There are significant benefits in applying information visual-
ization to the problem of intrusion detection. First, attack
visualization can easily deal with highly heterogeneous and
noisy data. Network traffic can be complex, so for effective
analysis it must be correlated with several variables such as
source address, destination address, port number, packet
length, and TCP flag among others, but the attack visualiza-
tion simplifies the problem by presenting the traffic situation
in an intuitive way. Even in the absence of complex mathe-
matical or statistical algorithms, visual images can give
perceptual clues to the administrators faced with an attack.
Second, attack visualization can get us fresh insight into the
analyzed data and allow us to deduce new hypotheses that are
often lost in complex analysis. Even though an unknown
attack may have occurred, if an image pattern (signature)
from the unknown attack is obtained, the attack can be
quickly detected. Consequently, visualization techniques can
provide clues to most zero-day attacks which do not match

the signatures of existing intrusion detection systems, and
facilitate quick response analysis. Third, attack visualization
can be much faster than other anomaly detection approaches.
Many anomaly detection methods require training and
comparing with history, but attack visualization can quickly
identify an attack by noticing pre-defined or new image
patterns.

2.2. Attack characteristics

In order to devise a visual mechanism for most popular
Internet attacks such as DDoS attacks, worm attacks, or
network scans, their characteristics must be considered in
terms of visualization. Fortunately, these notorious attacks
have one common characteristic, which we call “one-to-many
relationship” between attackers and victims, whereas legiti-
mate flows have one-to-one relationship.

A DoS attackis an attack on a computer system or network
that causes a loss of service to users, typically the loss of
network connectivity and/or services by consuming the
bandwidth of the targeted network or overloading the
computational resources of the targeted system. In a DDoS
attack, the attacking hosts are often personal computers with
broadband connections to the Internet that have been
compromised by viruses or Trojan horse programs. The
perpetrator can remotely control the machines and direct
the attack. With enough slave hosts, the services of even the
largest and most well connected website can be denied.
Therefore, in a DDoS attack, there are many attackers and one
victim, which forms a one-to-many relationship between
a victim (destination) and the attackers (source).

A worm is defined as a self-propagating malicious code.
Once a machine is infected, target hosts are picked by pseudo
random number generators, or hostscans to detect vulnerable
machines (usually with a single vulnerability of the machine)
in a certain network. Once targets are set, an infected machine
transports the worm code to them. Therefore, a worm repre-
sents a one-to-many relationship between the infected
machine (source) and the next targets (destination).

Network scanning (hostscans which are executed by
several machines of network, not only a machine), used by
hackers to probe hosts, also exhibits the symptoms similar to
that of worm propagation, and has a one-to-many relation-
ship between a hacker (source) and scanned network hosts
(destination). Port scanning is a method used for probing
available services of a certain host. There is one attacker, one
or many target hosts, and many scanned ports. Therefore,
a portscan is also characterized as a one-to-many
relationship.

2.3. Four fields as attack parameters

Above, we have discussed an important characteristic of
Internet attacks, namely, the one-to-many relationship. Now,
let us consider which packet header variables manifest the
characteristic. First, the source IP address and destination IP
address in a flow information are selected as parameters
because they specify the attacker and the victim host.

These values are stored in the fields of every packet header
so that they can be used to distinguish the attacking packets
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from legitimate packets and represent one-to-many relations
between attacker(s) and victim(s).

Second, if the attack is an Internet worm, it usually targets
one or more ports in TCP or UDP protocols so that the desti-
nation port number is selected as a parameter. This value
identifies the targeted service of an attack and verifies port
scanning attacks.

Third, the average size of packets in a flow can be used as
a parameter that gives some clues whether the flow is suspi-
cious or not. Network scannings and DDoS attacks exploit
a flooding procedure and the procedure typically uses empty
packets without payload. Even in case the packets have
payloads, usually the length of packets are fixed — 40 or 48
bytes. And Internet worms have a payload to exploit the
vulnerabilities they can use. Most worms propagate with
a constant payload, the average packet size of a worm can be
specified by a fixed length (Akritidis et al., 2005). Without using
the packet length, we cannot distinguish Internet worms from
scanning attacks. Comparing with the previous work (Kim
et al., 2004), we can detect two more attack types (total six)
including Internet worms and increase the correctness of
decision by adding the length parameter.

Finally, the TCP flags in TCP headers and the protocol field
in IP headers can be a candidate of another parameter.
Networks scanning and DDoS attacks may transmit the same
packet repeatedly so that these attack traffic has the same
value of TCP flags. Thus, we can distinguish attack traffic from
normal traffic using its TCP flags. For instance, some normal
traffic has a one-to-many relationship, such as P2P commu-
nications, but they can be classified as legitimate traffic by
comparing their TCP flag with that of a normal TCP hand-
shaked flow. As well, the protocol field in IP headers can be an
effective parameter. The protocol information enables us to
distinguish among TCP scans, UDP scans, and ICMP scans.
Furthermore, we can distinguish between TCP worms and
UDP worms, and between SYN flooding attacks and UDP
flooding attacks. The TCP flags and the protocol information
can be considered as additional parameters, but we do not
visualize them in this study. Because they do not provide any
evidence of enough benefits while using them along with
other four parameters.

2.4. Per-flow visualization

A “flow” can be defined as a set of packets with the same
source IP, destination IP, source port and destination port that
can be thought of as a connection between two remote
processes. Available information on each flow includes the
above mentioned attack parameters which are source
address, destination address, destination port, average packet
length, and TCP flags.

We use a flow, instead of a packet, as a basic unit of visu-
alization because it drastically reduces processing time
without much loss of necessary information. Furthermore,
per-flow visualization provides the compatibility with legacy
routers so that we can deploy the system without the change
of current network infrastructure. One good example is to run
a visualization system with Cisco routers that export NetFlow
information (Cisco systems, 2006). Namely, the visualization
system can use Cisco routers as sensors. Some parameters

such as average packet length, cumulative OR of TCP flags,
number of packets in a flow, number of bytes in a flow and
flows per second are readily provided in such a flow-based
system.

The IETF proposed a IPFIX (IP Flow Information eXport)
standard (Quittek et al., 2004), which is being developed based
on the experiences with Cisco NetFlow. Hence, routers and
switches having the functionality of IPFIX can be used for
sensing a network in our approach.

2.5. Parallel coordinates

One important aspect of information visualization is scal-
ability. Parallel coordinates provide great scalability to
multiple dimensions. They are not complex, yet allow hyper-
dimensional patterns to be analyzed. For instance, they lead
to a quicker understanding and a more informational graph
over that of a scattered plot matrix (The University of Utah).
This technique has no theoretical limit in the number of
parameters that can be visualized. Therefore, we can scale up
the application by incrementally introducing new visualiza-
tion parameters as necessary. Moreover, it does not introduce
bias for any specific dimension, while showing prominent
trends, correlations and divergences from the raw data. These
advantages enable us to gain critical insight into the flows in
the traffic under test and establish reliable intuitive hypoth-
eses. Even if an unknown attack occurs, a specific image
pattern can be gained and the attack can be detected in
a timely manner.

3. Parallel coordinates attack visualization
3.1. Attack signatures

Now we show how parallel coordinates can be used to
describe an attack in an intuitive graphical pattern, in our
system called the Parallel Coordinate Attack Visualization
(PCAV). The coordinates represent four different parameters
in a flow. The first represents the source address, the second,
the destination address, the third, the destination port and the
fourth, the average packet length. These four values enable
the flow to be plotted as a connected line on parallel
coordinates.

Suppose an attacker wants to know which hosts are
vulnerable in the target network. He will mount the host
scanning attacks to check the targeted destination port of
each host. Usually scan packets have no payload to increase
the effectiveness of the scan process, resulting in 40 bytes
packet. Some scanning programs also use the TCP selective
acknowledgment (SACK) option, in which case the size of
scanning packets becomes 48 bytes. The formation on the
parallel coordinates corresponding to the host scans looks like
a fish (diamond-line pattern) as shown in Fig. 1(c), which is
obtained from a real-life Internet attack traffic trace.

Like this, we can define nine graphical signatures, which
are shown in Table 1. In a portscan, there is one attacker and
one victim, and the attacker wants to know which ports are
opened. To accomplish this, the attacker may use a port
scanning program which checks the destination port of the
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Fig. 1 - Rescaled attack graphs.

victim one by one, sequentially or randomly. This represents
1:1:many:1 patterns and a graph pattern looks similar to a kite
(line-diamond) as shown in Table 1. All real-life attack graphs
in Fig. 1 closely match the model signatures shown in Table 1.
The DoS attack generated by a Blaster worm (Fig. 1(a)) uses
a fixed destination port so the pattern resembles a triangle
with a connected line. Fig. 1(b) is the attack graph from
a Slammer worm, presenting a noticeable pattern. The
Slammer worm attempts to infect other machines chosen
randomly so that the destination addresses should have
a random distribution. However, the pattern of the repre-
sented graph looks like a subnet scanning in the range of
multicast IP addresses. This is due to a bug at the part of
random number generation in the Slammer code (Moore et al.,
2003), which generates only multicast address ranges in
a certain condition. Even in this unusual situation, PCAV
detects the worm on the limited range of destination
addresses.

Average packet lengths can be used to distinguish seem-
ingly similar attack patterns. For instance, a worm and
a hostscan have the same graph patterns (diamond-line). But
a hostscan may have no payload, whereas a worm should
have a payload to infect other machines. Thus, the average
packet lengths of all flows in a worm epidemic are constant
and relatively larger than the average packet length of a flow
in a hostscan, e.g., 48 bytes in Fig. 1(c).

Backscatter packets are a non-colocated victim'’s response
to several spoofed or non-spoofed DDoS attacks. The back-
scatter packets’ source address is that of the victim, but the
packet’s destination address is randomly spoofed or non-
spoofed addresses of DDoS attackers. Nonetheless, back-
scatter can be used to detect its matched attack, so we added it
to the list of graphical signatures. When a DoS attack uses
multiple source ports, its reflection has multiple destination
ports. Thus, the pattern of backscatter looks like hexagon as
shown in Table 1. A source-spoofed DoS (port fixed) is an
attack with a fixed destination port. Usually the DoS has no
payload so the graph appears as a triangle with a connected
line. And, a source-spoofed DoS (port varied) is an attack with
randomly chosen destination ports and usually has no
payload of packets. Therefore, the graph looks like a rightward
looking fish. A distributed hostscan is performed by a single
perpetrator, but it is launched from multiple hosts to speed up
the scanning process. So there are multiple source and
destination hosts, where a particular (vulnerable) destination
portis targeted. Network-directed DoS is a kind of DDoS attack
that targets a network, so the union of its destination
addresses will correspond to a network, instead of a single IP
address. It can be regarded as a collection of multiple DDoS
attacks.

We show that PCAV detects six different attacks including
portscans, hostscans, Internet worms, source-spoofed DoS
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Table 1 - Graphical signatures of nine attacks.

Implied Attack Signature  Divergences
Portscan C 11m:1
Hostscan <>\ Im:1:1
Worm <>_ 1m:1:1
Source-spoofed DoS (port fixed) [>_\ m:1:1:1
Backscatter Q Imm:1l
Source-spoofed DoS (port varied) D<> m:l:m:1
Distributed hostscan N m:m:1:1
Network-directed DoS [:Q m:m:m:1
Single-source DoS ~\0 1:1:1:1

attacks (port fixed), backscatters, and source-spoofed DoS
attacks (port varied). Since distributed hostscans and
network-directed DoS attacks can be regarded as multiple
hostscans and multiple source-spoofed DoS (port varied)
attacks, respectively, PCAV actually detects all graphical
patterns except single-source DoS attacks.

3.2. System design

In order to display and detect ongoing attacks using the attack
signatures, we have designed a system of PCAV. The PCAV
consists of four main modules: a sensor, analyzer, visualizer
and database, as shown in Fig. 2. The sensor receives flow data
from routers or application programs and stores the flow data.
It abstracts important information from the gathered flow
data and creates a PCAVflow. The PCAVflow is a compact data
format with essential elements of accumulated flow data. It is
designed for effectiveness of internal data stream which can
unexpectedly overwhelm the computer resources. The
analyzer receives the PCAVflow from the sensor, and checks
a pattern, matching an attack signature, of Fig. 3. If a set of
flows matches an attack signature, the attack data is sent to
the visualizer. Three pre-allocated buffers are used for
exchanging data between the sensor, the analyzer and the
visualizer in order to minimize memory allocation and copy
operations.

The visualizer displays the PCAVflow data using parallel
coordinates. The flow data for both legitimate and attack flows
originally comes from the sensor, from which the analyzer

Network Traffic §

—Packes | Sampling process

ackets Y
.

Sampled traffic
»

Packets Flow generator

PCAVflows

Collector

lows

Visualizer

-

All flows

Fig. 2 - System design of PCAV.

pans out attack flows. We can store the attack data in an
attack logs database which can be used for further investiga-
tion of the incident or for replaying. The system can receive
flow data from hosts that run a monitoring program such as
nProbe (nTop.org), or routers which enable to generate flow
data such as NetFlow in Cisco routers.

3.3.  Attack detection algorithm

In this subsection, we explain an attack detection algorithm
which runs in the analyzer. The detection algorithm uses
three hash tables for storing flows with respect to their source
address, destination address and destination port, respec-
tively. The hash tables are used to determine the pattern in
the attack signatures.

There are several data structures that PCAV can use and
a comparison of hash tables with other structures such as
linked lists, balanced binary trees, and MULTOPS trees, is
shown in Table 2. In particular, the MULTOPS tree is known to
store IP addresses efficiently (Gil and Poletto, 2001). But it is
hard to be used for storing IP addresses overwhelmed by
a source spoofing DoS attack. From the comparison, we chose
hash table because it provide fast lookups with sufficient
accuracy.

Fig. 4 shows the proposed attack detection algorithm. The
algorithm consists of two parts. The first part generates an
attack ID for an input flow using three hash tables, which is
described in Steps 1-12. The second part handles suspicious
flows using the attack ID, which is described in Steps 13-30.
The hash_insert() function in Fig. 4 inserts the parameters
of the function into a hash table by the use of hash opera-
tions. The function returns TRUE if a parameter is a new
member of the table. Otherwise it returns FALSE. An attack
ID is a 3-tuple of binary values, where each binary element
represents whether or not the PCAV hash has seen the given
source address, destination address, and the destination
port, respectively. A legitimate attack ID is either <0, 0, 0> or
<1, 1, 1>. Otherwise, the flow is considered suspicious.

If one flow comes from the sensor, the detection algorithm
in the analyzer inserts the source address, destination address
and destination port of the flow to the corresponding hash
table. Then, the three hash tables are used to generate the
values of the flow ID. If a value already exists in its hash table,
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Fig. 3 - PCAVflow data generated from sensors.

then the tuple value becomes 1; otherwise, 0. For example, at
time T1, if an input flow has a source IP address 1.2.3.4,
destination address 5.6.7.8 and destination port 80, and at
time T2, an input flow has a source IP address 1.2.3.4, desti-
nation address 5.5.5.5 and destination port 21, then the second
flow at T2 has an attack ID of <1, 0, 0>. If at time T3, an input
flow has source IP address 3.4.5.6, destination address 5.6.7.8
and destination port 80, then its attack ID becomes <0, 1, 1>.

In addition to the hashes used in the attack ID generation,
there are 6 additional hashes corresponding to each detect-
able attack. Once the input flow is classified into a suspicious
flow in the first phase and the length condition is satisfied
then the suspicious flow is inserted into an attack hash cor-
responding to the attack ID. The length condition is that the
scanning flows have smaller than or equal to 60 bytes, because
the packets have only header. In case of TCP, the length
becomes 40 bytes or 48 bytes. In case of UDP and ICMP, the
length becomes 28 bytes and 60 bytes, respectively. So the
maximum value of the length that contains only the header
becomes 60 bytes, so we take the length of 60 bytes as a deci-
sion point.

4, Evaluation

In this section, we evaluate the performance of the PCAV
algorithm on various aspects. First, we measure the

Table 2 - Comparisons of data structures.

Algorithm Pros Cons Complexity

Linked List Small memory High lookup o(n?)

usage complexity
MULTOPS’s tree  O(1) lookup Weak to source- 0o(1)
data structure complexity spoofed DDoS
attack
Binary search Small memory High lookup O(nlogn)
tree (Balanced) usage complexity
Hash table 0O(1) lookup High memory 0(1)
complexity usage, Hash
collision

processing rate of PCAV. Second, we checked the detection
rate under multiple attacks. Both are instrumented with
a flow generator that we implemented. Finally, we measure
the false alarm rate. We run the algorithm over a real-life
Internet backbone trace we have, and then over a live traffic
on a fast campus network to test the feasibility of attack
visualization.

We use the Pentium 4 processor PCs on Windows XP and
default values of parameters are given as follows. Hash entry
lifetimes are 2 s for IP-address hashes, and 1 s for a port hash.

Attack-Detection (F,) /*F, n th input flow data*/

SA,DA ,DP , AvgLen, /*Src IP, Dst IP, Dst port, and Average Pkt length of F, */

T,.T,,T, /* Hash tables for SA, DA, , DP,*/

Attack_ID=0x0111 /*Initialize Attack_ID*/

IF hash_insert({SA, },T,)=TRUE /*If SA, is a new valug of hash table T */
Attack_ID= Attack_ID XOR 0x0100

ENDIF

IF hash_insert({DA, },T, )= TRUE
Attack_ID= Attack_ID XOR 0x0010

ENDIF

10 IF hash_insert({DP, },T )= TRUE

Attack_ID= Attack ID XOR 0x0001

12 ENDIF

13 DDoS, ,DDoS,, ,Hostscan, Worm, Portscan, Backscatter /*Attack hash tables*/

14 IF Attack ID=0x0011and AvgLen, < MAX_HLEN /*Max header length*/

15 hash_insert({DA, ,DP , AvgLen, },DDoS, )

MR- T Y I VS I S

16  ENDIF

17 IF Attack_ID=0x0010 and AvgLen, < MAX_HLEN
18 hash_insert({DA, ,AvgLen },DDoS,, )

19  ENDIF

20  IF Attack ID=0x0101and AvgLen, < MAX_HLEN
21 hash_insert({SA, ,DP , AvgLen, },Hostscan)

22 ELSE

23 hash_insert({SA ,DP , AvgLen, },Worm)

24  ENDIF

25  IF Attack_ID=0x0110 and AvgLen, < MAX_HLEN
26 hash_insert({SA, ,DA , AvgLen, },Portscan)

27 ENDIF

28  IF Attack_ID=0x0100 and AvgLen, < MAX_ HLEN
29 hash_insert({SA, ,AvgLen },Backscatter)

30 ENDIF

END of Attack-Detection

Fig. 4 - Attack detection algorithm in the analyzer.
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Fig. 5 - Screenshot of the PCAV application running on backbone traffic.

There is a gap between two lifetimes, because the range of IP
addresses is much larger than the range of ports. The
threshold for determining DDoS or worm attacks is 50 (flows
per second). For scanning attacks, smaller threshold, i.e., 5
flows per second, is used since the typical number of flows in
scanning attacks is smaller than those of DDoS or worm
attacks. Detecting algorithm runs every second to detect and
report any suspicious activity, but the report period is
adjustable.

PCAV is implemented as an application program,’ where
a screenshot is presented in Fig. 5. The upper graph in Fig. 5,
namely (b) All flow image, shows entire flows on parallel
coordinates. The pattern of polygonal lines looks crossed
regularly due to the pairs of outward and inward flows. PCAV
can show the ongoing attacks in both absolute coordinates
and rescaled coordinates. In order to present the detected
attack more effectively, PCAV provides the rescaling func-
tionality to magnify an attack graph, which appears in the
lower graph, (e) Attack flow image on the PCAV application.

PCAV can detect and visualize different types of attack,
even they occur simultaneously. In Fig. 5, there are (d)
Detected attacks buttons which shows the appearance of

! The application program of PCAV can be obtainable at http://
ccs.korea.ac.kr/PCAV.

multiple attacks in different types. When an attack is detec-
ted, its corresponding button is activated. All attacks detected
are displayed in (e) Attack flow image; whereas only one
attack type selected in (d) Detected attacks buttons is
displayed on (e) Attack flow image when clicking a button.

Even though an unknown pattern of image appeared in (b)
All flow image, we can get the detail information of the attack
such as IP address, protocol, the number of packets, the octets
of bytes and port number in (f) Flow information. The detail
information provides the first step towards the inspection of
the unknown attacks, and we can add new types of attack for
detecting more attacks.

4.1. Case study

We evaluated the PCAV with the traces from 3 different
sources: a local network, an ISP backbone and public trace
repositories.

First for the local trace, system was plugged to a campus
network for over 48 h on March 13, 2006. The campus gateway
routers exported NetFlow data to the PCAV. The campus
traffic was about 1 Gbps with 1000 flows per second. In this
experiment, the PCAV system was observed to process the
NetFlow data from the giga-bit campus network without any
loss. During the expanse of the one-day trace, 1139 attacks
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were detected. Among them, 1060 attacks were portscan (93%
attacks) and 73 attacks were hostscan (6% attacks). 5 worm
attacks were reported (0.44%). Although most attacks were
detected correctly, the reported worms turned out to be
messenger spams and P2P traffic. Therefore, the false positive
rate is smaller than 0.44%. We discuss the false alarms issue in
Section 4 D.

Secondly, we ran PCAV on a backbone traffic captured
during 13 h in December 14, 2001 on two trans-pacific T3 links
(90 Mbps) connecting the U.S. and a Korean Internet
Exchange. PCAV successfully reported the attacks embedded
in the trace. For instance, bandwidth consuming attacks, such
as DDoS attacks, were clearly visible as shown in Fig. 5. PCAV
detect 4587 attacks and among them, 1206 attacks were
portscan (26% attacks) and 3223 attacks were hostscan (70%
attacks). 6 DDoS attacks (0.13%) and 74 worms were reported
(1.6%). We also discuss the false alarms issue in Section 4 D.

Thirdly, we ran the PCAV with backscatter traffic traces,
which were provided by the Cooperative Association for
Internet Data Analysis (CAIDA; http://www.caida.org). The
dataset consisted of 7 week-long collections of responses to
spoofed traffic sent by DoS victims and received by the UCSD
Network Telescope between May 2004 and November 2005.
PCAV detected all backscatters in the CAIDA traffics, which
will be discussed in Section 4 E.

4.2. Stress test

We performed a stress test to estimate the stability of the
system. In order to measure the maximum number of flows
that can be processed, we defined the rate of processed flows
over all input flows. Attack flows were launched with the flow
generator that we implemented, which is able to inject several
types of attack flows as well as normal flows. Also, we
extended the socket buffer from 8 KB to 1 MB to avoid packet
dropping and turned off the PCAV database system, in order to
eliminate the effect of disk access latency from the
measurement.

Fig. 6 shows the processing rate of the system. PCAV
processes 90% of 100,000 flows given per second, i.e., 90,000
flows per second, which could roughly match the traffic
intensity on a 10 Gbps pipe based on our experience. Since the
attack detection thresholds are a few orders of magnitudes
smaller, the processed flows are more than enough to signal
the attacks if any. As to the flow missing rate, PCAV gracefully
degrades, rather than sharply drops after a certain point of
flow input rate.

We can estimate the maximum detectable number of
attacks numerically. Suppose there are m attacks at time x. Let
7 be a time interval, and a;(x) be the total number of flows
generated by attack i from time x — 7 to x. We let A(x) denote
the total number of attack flows such that

=
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I
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If N(x) is the number of legitimate flows, the total number of
flows T(x), becomes T(x)=A(x) + N(x). We let p denote the
maximum number of flows that can be processed by the PCAV
analyzer during ¢, and 2 be the threshold of an attack to be
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Fig. 6 - Processing rate of PCAV.

detected. Then the following conditions are satisfied. First,
when T(x) < p and a;(x) > A for all i, every attack is detectable.
We call it m-detectable. In case lim,_, .N(x) =0, m is bounded
from above as

_TX)

A

Second, if T(x) > p and a;(x)- (1 — T(x) — p/T(x)) > A (1 <i<m),itis
also m-detectable. In case lim,_, . N(x) =0, we have

p
m=-.
A

For instance, given 10,000 flows of which 90% are processed by
PCAV with the threshold of 1 = 50, 1800 concurrent attacks are
detectable. From this simple analysis, we can ensure that
PCAV can detect attacks effectively, even when input flows
are dropped significantly under congestion by DDoS or worm
attacks. It also works consistently when input flows are
sampled by routers or applications.

4.3.  Multiple attacks test

Even though multiple attacks occur simultaneously, PCAV
should work properly. One weak point of PCAV can be the
hash collision under multiple attacks. The hash collision can
make the PCAV analyzer generate a wrong flow ID and some
attacks can be undetected. So, we evaluate the effectiveness
of PCAV under multiple attacks.

Fig. 7 shows the detection rate of multiple attacks versus
the number of concurrent attacks. The experiment is con-
ducted with the aforementioned flow generator. The figure
shows that the attacks with larger divergence on IP-address
coordinates, i.e., hostscan, worm and port fixed DDoS, are
more detectable than the port-related attacks where the port
numbers vary. It is because the range of IP addresses is wider
than that of ports (65 K) so that hash collisions rarely occur in
the IP-related attacks. Port-related attacks, i.e., portscan, port
varied DDoS and backscatter, are less detectable than IP-
related attacks, since the collision probability of destination
ports is much higher than that of IP addresses.

If a portscan interferes with a DDoS attack with varied
ports, the DDoS attack can be incorrectly recognized as a DDoS
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Fig. 7 — Detection ratio of multiple attacks.

attack with fixed ports. However, in a DDoS attack, it does not
matter whether the attack uses fixed ports or varied ports.
Thus, the interference of portscans with DDoS attacks can be
considered negligible, which is represented by the dotted line
in Fig. 8. Only the DDoS attack with varied port interferes with
portscans significantly, which is represented by the solid line
in Fig. 8.

Fig. 7 also shows that IP-related attacks do not interfere
with port-related attacks, and vice versa. Only the same type of
attacks interfere with each other. Moreover, notice that the
detection ratio of mixed type attack is higher than the simple
average of the detection ratios of single type attacks. In the
figure, we mix the IP-related and port-related attacks half and
half. At m =400, we see that the detection ratio with the mixed
attack is 0.7, which is larger than the average of the detection
ratios of the single type attacks, i.e., 0.6. Approximately, if the
fraction of port-related attacks is «p, the detection ratio of m
mixed attacks is given by

D(m)=Dy(m- (1 — ap)) + Dy (metp)

where D; and D,, are detection ratios with IP- and port-related
attacks. The precise detection ratio gain in the mixed attacks
depends on the collision probability function of the hashing
scheme. Approximating the distribution of the number of
hash collisions as Gaussian, Fig. 7 shows that the analytical
estimation fits well with the experimental results.

We can measure the collision probability numerically.
Suppose there are m concurrent IP-related attacks with scan
rate r (scans or spoofs) per second and the lifetime of an attack

DDoS
(d.port fixed,
varied)

Fig. 8 - Interference relationship between attacks.

is L. Then the number of host address entries would be mLr.
When an attack randomly picks an address for the next
address, the probability of picking up an already registered
value will be estimated as (mLr)/(2%%). So the collision proba-
bility is given by

mLr
P(m) = W7

where Sis the whole range of values, and the upper limit of the
probability can be bounded by 1 such that

P.(m) ifP.(m)<1
1 otherwise

P.(m) = {

For example, if there are 1000 attacks that generate 10,000
packets per second each and L = 10, the collision probability is
approximately 1/400. It seems tolerably low, for such a large
number of highly intensive attacks.

4.4. False alarms

The false alarm rate is an important metric to measure the
performance of an intrusion detection system. We measure
the false positive with sources from a local network, and an
ISP backbone, which were smaller than 0.44% and 2.31%,
respectively. It is shown that PCAV greatly reduces the false
detections by using additional parameters. For example, let us
consider a popular website. Numerous clients can access
a popular server at TCP port 80. Without the use of length
parameter, it is possible to report the traffic incoming to the
server as a DDoS attack with fixed port, or the outgoing traffic
as a hostscan. Not only the flash crowds in web traffic, but also
game, chatting, mail, P2P, streaming can be misjudged as
worms unless the length parameter is used. Thus PCAV
utilizes the packet length parameter. We compare two cases:
three parameters and four parameters. The difference
between two cases comes from the use of the average packet
length in a flow as the fourth parameter. The impact of the use
of the length parameter is shown in Fig. 9, and it clearly shows
that we can greatly reduce false alarms with one additional
parameter. This shows the immediate improvements of PCAV
with respect to accuracy, comparing with the previous work
(Kim et al., 2004) which uses only three parameters.
Although the packet length significantly reduces the
chances of false alarm, some of detected attacks were false
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Fig. 9 - False alarm reduction by the use of the length
parameter.
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positives. For instance in our experiment with the live campus
network traffic, several attacks were detected as a worm.
However, we found that they are not worms but messenger
spams or P2P traffics. P2P applications such as “FileGuri” use
UDP packets for the file searching query. In that case, the P2P
client will send the UDP packets with the same payload to
multiple nodes. Then the flows of the UDP query look like
a worm or a hostscan, as shown in Fig. 10(a). Also, when a P2P
node disconnects from the P2P overlay, the other participants
can query the node, not knowing the disconnection immedi-
ately. These queries will induce ICMP port unreachable
messages. The ICMP messages can be considered as the
pattern of hostcan, which is shown in Fig. 10(b).

To our surprise, many messenger spams were also detec-
ted as a worm as shown in Fig. 10(c). Messenger spams send
an unsolicited message using the Microsoft Windows
messenger service. Typically the messenger service runs on
the UDP port 1026, but it can run on other ports. Spammers
can send a message to a range of ports (typically 1026-1033), to
accomplish the delivery with higher probability. Note that IP
spoofing with UDP protocols is easy to perform but difficult to
trace back to the spam transmitter. We can distinguish them
by the use of well-known destination ports as a “white list”.
Furthermore, false alarms can be reduced by the use of addi-
tional parameters such as the cumulative OR of TCP flags.
Additionally, more parameters can be added to parallel coor-
dinates if they can enhance the correctness of attack

a

detection. However, even though PCAV can detect attacks
with an increased accuracy using more than four parameters,
the space and time complexity increase can offset the benefit.
So PCAV leaves open the possibility of using additional
parameters, but in the current design, we use four.

4.5.  Reflection of attack

Attack packets can induce the replies from victim(s) and the
reply packets can be seen as another type of attack. We call
this mutation the reflection. For example, if one attacker
performs the hostscan, then victims reply, which would be
seen as the packets of DDoS attack that is shown in Fig. 11(a).
We list some such notable reflections in Table 3. Here,
a subscript O (or R) means the number of original (or reflec-
tion) flows of an attack. For instance, Portscang is the number
of attack flows used in a portscan attack, and Portscang is the
number of reflection flows caused by the portscan attack. We
maintain the view that a reflection is not an attack in itself,
but an evidence of attack. The portscan-reflecting portscan in
Fig. 11(b) and DDoS-reflecting backscatter are okay because
they are already contained in the attack signatures. Moreover,
under symmetric routing, the DoS traffic converging on the
backscatter source (i.e., DoS victim) should be detected. If only
backscatter is noticed, then the DoS attack must be utilizing
another path. Then backscatter can be leveraged to hint at the
existence of the attack in other parts of the network. Fig. 11(c)

b

58.142.209.105 222.235.228.134 9493 433 58.142.209.105 222.232.179. 89 0 56
58.142.209.105 58. 74. 58. 64 9493 433 58.142.209.105 58. 79. 10. 4 0 56
P2P - UDP queries P2P - ICMP
Cc
222.203.145. 73163.152.217.255 1027 374
222.203.145.73163.152.217.161 1026 374

Messenger Spam

Fig. 10 - False detection of worms: (a) UDP queries in P2P applications, (b) ICMP port unreachable messages in P2P

applications, (c) Messenger spams.
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Fig. 11 - Reflections of hostscan, portscan and DDoS attacks.

shows the backscatter graph generated from the backscatter
trace of CAIDA.

There could be two ways to discriminate the reflection.
First, we could check if there is the inverse image. If there is
a DDoS attack targeted at the apparent host scanning source

Table 3 - Some notable reflections.

Original Condition Reflection Note
Portscan Src port No Portscang > Portscang
is fixed
Src portis Portscan
not fixed
Hostscan Src port DDoS_F Hostscang > DDoSg
is fixed
Src portis DDoS_V
not fixed
DDoS_F Src port Hostscan  DDoSg > Hostscang (If DDoS
is fixed use source spoofing then,

DDoSp >> Backscatterg)
DDoS_V Src portis Backscatter DDoSo > Backscattery, (If DDoS
not fixed use source spoofing then,
DDoS, > Backscatterg)
Wormg > DDoS_Vy
Wormg > DDoS_Vy
(ICMP packets)

Worm TCP worms DDoS_V
UDP worms DDoS_F

and the number of DDoS flow is much smaller than original
hostscan, it is likely that the DDoS is a reflection. Second, the
hostscan as a reflection can be dominantly showing the
characteristics of the responding traffic, such as TCP SYN/ACK
or ICMP Echo Reply. The worm would be reflected to a DDoS
attack, but the number of flows is much smaller. Therefore,
we can determine that the reported DDoS attack is the
reflection of a Internet worm.

5. Related work

Many visualization approaches have been proposed to
display complex data in networks in order to enable humans
to recognize abnormal network status intuitively (Lakkaraju
et al.,, 2004; Nyarko et al., 2002; Kim and Reddy, 2005; Samak
et al., 2008; Onut and Ghorbani, 2007; Fischer et al., 2008;
Kim et al., 2004; Solka et al., 2000; Axelsson, 2003; Yin et al.,
2004). Among them, SHADOW (Solka et al.,, 2000), BLINC
(Karagiannis et al., 2005), Spotfire (Axelsson, 2003), and
VisFlowConnect (Yin et al., 2004) use parallel coordinates to
show abnormal behaviors.

NVisionIP (Lakkaraju et al., 2004) is a visual tool intended to
improve the cognitive processing abilities of human opera-
tors. Combining the visualization and reasoning capabilities
of humans, NVisionIP allows to recognize ongoing attacks on
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a network. However, it only provides visual images but not
algorithms for detecting attacks in a systematic way.

Network intrusion can be visualized by NIVA (Nyarko et al.,
2002), which is an intrusion detection visual analyzer with
haptic integration. The visual tool is able to augment the
ability of network administrators to understand malicious
activities on a network.

NetViewer (Kim and Reddy, 2005) provides the view of
network traffic as a sequence of visual images so that various
image processing techniques can be applied for detecting and
visualizing attacks. NetViewer detect attacks by the use of
image processing technologies.

Space-filling curves (SFCs) (Samak et al., 2008) characterize
traffic flows and identify anomalous behavior. SFCs generates
traffic images that provide both storage and bandwidth
savings. The technique is evaluated with actual traces
including DDoS attack and Code Red spread traffic and the
result images are shown to withstand aggressive compression
while preserving traffic properties.

SVision is proposed as a visualization technique for intru-
sion detection systems (Onut and Ghorbani, 2007). A network
can be represented as a community of hosts roaming in a 3D
space which is defined by the set of services. Since a network
might have hundreds of hosts, the view in SVision highlights
only the ones that might represent a potential threat to the
network. The approach used in SVision is useful for giving an
intuition for determining an attack, but it cannot deal with
large-scale attacks effectively on a high-speed network.

NFlowVis (Fischer et al., 2008) analyzes NetFlow data using
a relational database system. The monitored network is
mapped to a TreeMap visualization, the attackers are
arranged at the borders and linked using splines parameter-
ized with prefix information. The tool can be used to judge the
relevance of alerts, to reveal massive distributed attacks, and
to analyze service usage within a network.

Attack visualization on 3-D graphs have been proposed to
detect and display Internet attacks such as DDoS attacks and
scanning activities (Kim et al., 2004). By the use of only three
fields of IP headers, malicious attacks can be visualized
instantly in a 3-dimensional space. One drawback of the
scheme is the limited capability of detecting attacks due to the
fixed three parameters. Internet worms cannot be detected
properly and legitimate traffic patterns are falsely recognized
as an attack, such as flash crowds, P2P communications, web-
crawling activities and online games.

Parallel coordinates have been used in other studies such
as SHADOW (Solka et al., 2000). In SHADOW, packet headers
meeting pre-defined rules are dumped to a web-based file for
examination by a human operator.

There is an approach (Krasser and Conti, 2005) using
parallel coordinates for realtime and forensic data analysis.
Combining the strength of parallel coordinate plots with the
time-sequence animation of scatter plots, displaying 2D or 3D
graphs provides insight into both legitimate and malicious
network activities. A small set of attacks can be visually rep-
resented such as Slammer worms, botnet traffics and
portscans.

Spotfire (Axelsson, 2003) is developed for exploring the
possibilities of employing a trellis plot of parallel coordinate
visualizations to the log of a small personal web server. The

aim is to enable the operator to tell apart the access patterns
of automated attacks and normal access patterns.

VisFlowConnect (Yin et al., 2004) is a visualization appli-
cation to enhance the ability of an administrator to detect and
investigate anomalous traffic between a local network and
external domains. Central to the design is a parallel axes view
which displays NetFlow records as links between two
machines or domains while employing a variety of visual cues
to assist the user.

As we mentioned above, there are several approaches that
capture network attacks visually. However, they do not detect
attacks systematically, but just show the images of attacks
using their visualization method.

6. Conclusion

PCAV is a real-time visualization system for detecting anom-
alies from Internet attacks. PCAV visualizes Internet attacks
using four header fields (source IP address, destination IP
address, destination port, packet length) from a flow and
displays on parallel coordinates. PCAV exploits the inherent
property that each significant attack has a unique graphical
pattern on parallel coordinates. PCAV enables the network
administrator to rapidly detect and respond to malicious
attacks.

When an unknown attack occur, a particular pattern can
be displayed visually. Thus, PCAV allows us to add new
signatures and their detection routines. In this way, PCAV
greatly enhances the intelligence of visual systems for
detecting more attacks.

A plan to adopt pattern recognition methods in computer
graphics areas, recognizing signatures generated by PCAYV, is
currently being designed. Also, visualization research regarding
spam mail distributions, P2P traffics, botnets and new types of
DDoS and worm attack, is currently being undertaken.
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