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a b s t r a c t

Domain Name System (DNS) traffic has become a rich source of information from a se-

curity perspective. However, the volume of DNS traffic has been skyrocketing, such that

security analyzers experience difficulties in collecting, retrieving, and analyzing the DNS

traffic in response to modern Internet threats. More precisely, much of the research relat-

ing to DNS has been negatively affected by the dramatic increase in the number of queries

and domains. This phenomenon has necessitated a scalable approach, which is not depen-

dent on the volume of DNS traffic. In this paper, we introduce a fast and scalable approach,

called PsyBoG, for detecting malicious behavior within large volumes of DNS traffic. Psy-

BoG leverages a signal processing technique, power spectral density (PSD) analysis, to dis-

cover the major frequencies resulting from the periodic DNS queries of botnets. The PSD

analysis allows us to detect sophisticated botnets regardless of their evasive techniques,

sporadic behavior, and even normal users’ traffic. Furthermore, our method allows us to

deal with large-scale DNS data by only utilizing the timing information of query generation

regardless of the number of queries and domains. Finally, PsyBoG discovers groups of hosts

which show similar patterns of malicious behavior. PsyBoG was evaluated by conducting

experiments with two different data sets, namely DNS traces generated by real malware

in controlled environments and a large number of real-world DNS traces collected from

a recursive DNS server, an authoritative DNS server, and Top-Level Domain (TLD) servers.

We utilized the malware traces as the ground truth, and, as a result, PsyBoG performed

with a detection accuracy of 95%. By using a large number of DNS traces, we were able to

demonstrate the scalability and effectiveness of PsyBoG in terms of practical usage. Finally,

PsyBoG detected 23 unknown and 26 known botnet groups with 0.1% false positives.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Botnets have become one of the most significant Inter-

net threats over the last decade [1]. Since the Internet has

become a conflict zone in which the cyber criminals and

the defenders of the Internet engage in an endless war, the

attack capability is rapidly escalating to attain worldwide
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influence. In this conflict, botnets are emerging as the top

instrument with which cyber attacks are committed [2,3].

A bot is a malware remotely controlled by an attacker

known as a botmaster. A botnet is a network of bot-

infected computers. The nature of botnet architecture pro-

vides the botnet with tremendous attack power by si-

multaneously mobilizing the capability of the members

of a bot army to attack a target. Moreover, the botnet is

the Swiss Army knife of attackers because of its usabil-

ity. A botnet attack can perpetrate to distributed denial-

of-service (DDoS), identification theft, ad-ware installation,
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mass spamming, and so on. Botnets are widely used not

only for acquiring economic profits, but also to elicit mili-

tary or political advantages from individuals, organizations,

and even governments, by leveraging their unlimited at-

tack capability and usability [4,5].

Internet threat report [6] foresees a continuous increase

in botnet activities in 2015. The report also stress the fact

that new and unseen types of botnets are continuously be-

ing developed. Botnet countermeasures are evaded in that

bot authors continuously research and adopt state-of-the-

art techniques to develop the bot codes. Therefore, botnets

are evolving to be more complicated, sophisticated, and in-

telligent. In addition, along with the rise of the Internet

of Things (IoT), attackers are expanding their territory to

include billions of smart devices, such as smart phones,

smart TVs, and smart meters [7,8]. As a consequence of

the high infection rates achieved by botnets, together with

their capability of conducting wide-range network attacks,

and evadability for traditional detection methods, botnets

are considered a major threat to Internet security.

In response to botnet threats, many methods and ap-

proaches have been suggested to detect botnets and these

can be classified into two categories: host-based detection

and network-based detection. Host-based detection meth-

ods mainly aim to analyze the internal components of a

computer system [9,10], by allowing users to easily de-

tect abnormal activities in the system. However, host-based

methods have limitations, such as the difficulties associ-

ated with their deployment to cover a wide range of hosts,

because of the overhead resulting from the attempts to de-

tect the bots.

Network-based detection monitors the network traffic

at servers and routers, thereby avoiding the abovemen-

tioned coverage problem. Early researchers focused on the

contents of a botnet [11,12]. However, as botnets apply the

techniques of encryption and obfuscation, detecting bot-

nets with content-based methods became difficult. Traf-

fic pattern-based detection, which analyzes the patterns of

network traffic generated by the infected host, was sug-

gested as an alternative [13,14]. However, these detection

methods have a low detection rate, as a result of the huge

amount of traffic generated by normal users. The sizable

volume of traffic generated in the network also present a

significant problem. In addition, botnet behavior could be

very sporadic, either because hosts are periodically turned

off or because of the nature of botnets, and this compli-

cates their detection even more.

Some botnet detection research has focused on Do-

main Name System (DNS) traffic. For example, BotGAD

[15] detects botnets by searching groups of computers

submitting similar domain queries during a certain pe-

riod of time. Unfortunately, botnet authors counter the

detection by using domain fluxing schemes, such as fast

flux, dynamic DNS, and DGA, which are advanced DNS

techniques that generate a huge number of domain names

[16]. In fact, Domain Generation Algorithms (DGAs) [17,18]

are widely used in various bot codes for bypassing existing

domain-based detection systems (i.e., domain blacklists)

[19]. DGAs function by periodically generating a large

number of domain names that can be used as rendezvous

points between the bot hosts and Command and Control
(C&C) servers. Attempts to mitigate the problems caused

by DGAs have resulted in numerous research efforts. For

example, R. Begleiter et al. [20] proposed a DGA detection

scheme using language modeling to discover randomly

generated unreadable domains. However, these researchers

encountered a scalability issue caused by the large number

of domain names that had to be processed, as their ap-

proach is purely based on the analysis of domain names.

Consequently, their approach is no longer sufficient to

respond to the sophisticated botnet threats.

The limitations of current countermeasures necessitate

the development of a new approach to defeat botnets

that generate a large number of domains using domain

fluxing. As botnets characteristically spread across wide

areas and hide their behavior among the huge quantities

of data from ordinary users, leveraging the prevalence of

large amounts of traffic has presented itself as a promising

approach for dealing with sophisticated botnet threats. The

main challenge presented by this approach would be to

design a scalable system capable of monitoring, collecting,

and analyzing the big data input to extract the essential

information. In this paper, we propose a scalable approach,

named PsyBoG, to discover botnet groups by analyzing

their periodic and simultaneous behavioral patterns

using DNS traffic, which are the essence of intrinsic botnet

characteristics appearing in large-scale network traffic.

Our main goal is to build a scalable method capable of

detecting botnet groups by analyzing the periodic and

similar behavioral patterns of DNS traffic without any

prior knowledge of the botnet.

Periodic behavioral pattern: At first, we observe the

periodic behavior of botnets. More precisely, bot hosts reg-

ularly communicate with C&C servers or other bot hosts

to maintain availability and capability of the botnet in

peacetime. When the botnets launch attacks, such as mass

spamming, click fraud, and DDoS attacks, each of these at-

tacks causes a huge and regular amount of network traf-

fic. These activities reflect the periodicity of botnet behav-

ior, which is one of its unalterable characteristics. PsyBoG

leverages power spectral density (PSD) analysis, which is

a signal processing technique, to discover the major fre-

quencies of periodic botnet behavior. The PSD analysis ad-

dresses the problems associated with the sporadic nature

of botnet behavior and the deterrent caused by traffic gen-

erated by normal users.

Simultaneous behavioral pattern: Second, PsyBoG

functions by discovering botnet group activities. A bot-

net is a group of compromised machines controlled by

an attacker, the so-called botmaster. Bot hosts can be ex-

pected to exhibit similar behavioral patterns. More sophis-

ticated botmasters are able to divide the entire group of

bot hosts into multiple subgroups. However, bot hosts from

the same subgroup still show similar behavioral patterns,

because the fundamental aim of a botnet is to commit

cyber-crimes, which can only be accomplished by using a

large amount of resources. We define these similar behav-

ioral patterns as a group activity, which forms an inherent

property of the botnet. Thus, PsyBoG groups hosts in ac-

cordance with the similarity of traffic patterns.

DNS traffic: Third, PsyBoG leverages DNS traffic to mea-

sure the periodicity of query patterns, but it does not rely
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on the domain names in the DNS traffic. Unlike previous

researches or existing countermeasures such as DNS sink-

hole and blacklist filtering, PsyBoG only utilizes the timing

information of domain queries irrespective of the amount

of DNS traffic, therefore, PsyBoG is designed to process

large-scale DNS traffic. The periodicity of DNS query pat-

terns is typically reflected by botnet traffic. Thus, the prob-

lems presented by traffic encryption and obfuscation, fast

flux, dynamic DNS, or DGAs no longer exist. Furthermore,

only three entities extracted from DNS traffic, including

time for query, target domain, and queried IP address, are

leveraged for the analysis. This approach makes PsyBoG ex-

tremely fast and scalable.

The concept of applying signal processing techniques

to identify an abnormal behavior in network is not a new

idea. Since Mitra et al. [21] suggested the notion that

signal processing techniques can contribute to improve the

internet security by identifying abnormal network behav-

iors caused by malware, some researchers have proposed

methods aiming the discovery of the presence of botnet

using the techniques analyzing repeating patterns of attack

packets and flows [22–26]. However, as we mentioned

above, most of the researches are still suffering from the

scalability problem due to the large quantities of network

traffic to be analyzed. Unlike previous botnet counter-

measures which also apply signal processing techniques,

PsyBoG solely deals with DNS traffic thereby solving the

scalability problem. Furthermore, it is more convenient to

establish the monitoring coverage both logically and phys-

ically by harvesting traffic from DNS servers for desired

network areas, whereas other methods have difficulties

to determine appropriate monitoring spot where network

traffic coming from monitoring network is aggregated.

PsyBoG was evaluated by performing experiments with

two different data sets. At first, we utilized DNS traces gen-

erated by real malware samples in a controlled environ-

ment. As it is hard to estimate the detection accuracy from

real-world DNS because of the uncertainty as to what to

use as the ground truth, we assessed the detection accu-

racy by using the first DNS traces as the ground truth. In

the first experiment, PsyBoG showed 95% detection accu-

racy with its robustness. Second, we utilized large-scale

DNS data collected from three different types of real-world

DNS servers. These data sets were used to evaluate the de-

tection performance, scalability, and overheads of PsyBoG.

As a result, PsyBoG detected 23 unknown botnets and 26

known botnets with 0.1% of false positives and a relatively

small overheads, which indicates the guaranteed scalabil-

ity of PsyBoG for large quantities of DNS traffic. The ex-

periments revealed the efficiency of PsyBoG as an effective

countermeasure to mitigate current botnet threats.

In summary, this paper makes the following contribu-

tions:

• High scalability: PsyBoG only uses the timing informa-

tion of each query. While given DNS traffic to be ana-

lyzed is increased linearly, the workload of PsyBoG in-

creases in logarithm scale. This indicates the scalability

of PsyBoG.

• Robustness: PSD enables the extraction of periodic pat-

terns from among the mixture of noisy signals. This al-
lows PsyBoG to distinguish botnets regardless of normal

user traffic.

• High detection accuracy: PsyBoG is an effective coun-

termeasure against sophisticated botnets which utilize

evasion techniques such as payload encryption, fre-

quent change of C&C communication patterns, and do-

main fluxing.

• Applicability: PsyBoG does not require any prior

knowledge of botnets, such as the binary signatures,

traffic signatures, and training data.

The rest of the paper is organized as follows. Section 2

describes the background of our mechanism including the

basic knowledge of DNS, characteristics of botnet behaviors

and PSD analysis. Section 3 describes the problem state-

ment and requirements for botnet detection. Section 4 in-

troduces our mechanism, and Section 5 outlines the ex-

perimental settings and results. In Section 6, we discuss

potential techniques that may exploit our mechanism and

further research topics. Section 7 describes related work,

and finally we conclude this paper with the outline of fu-

ture work in Section 8.

2. Background

We introduce the background knowledge of our work:

DNS, botnet characteristics and signal processing tech-

niques.

2.1. Domain Name System (DNS)

DNS is a large-scale distributed database for translat-

ing domain names into IP addresses and vice versa. The

name servers have a hierarchical structure consisting of

ROOT, Top Level Domains (TLDs), Second Level Domains,

and Third Level Domains. If a domain query arrives at a

local name server, the server firstly performs a lookup in

the zone file of the domain storing the domain-IP mapping

information. As the local name server is not an authorita-

tive name server, the information temporarily survives in

the zone file until its time to live (TTL) is expired. If the

local name server cannot find any corresponding data for

the query, in the worst case, the server recursively requests

the information from the ROOT to the Third Level Domain

name server. Finally, the local name server updates its zone

file to record the information and replies to a resolver.

DNS provides the domain-IP matching service for any

systems connected to the Internet. When a domain-based

Internet connection is established, a query for a certain

domain name is first generated to obtain the correspond-

ing IP address. Therefore, a DNS server is the gateway for

an Internet connection. Because botnets base their opera-

tions on domain-based Internet services, DNS servers form

a very important location in terms of botnet operations.

Now, we briefly provide basic information pertaining to

DNS, especially, information relating to botnet operation

and mitigation.

• Recursive DNS server (RDNS): RDNS is a local name

server responsible for providing the IP address corre-

sponding to an intended domain name to requesting
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hosts in the local area covered by the RDNS. Recur-

sive DNS servers are usually managed by ISPs or orga-

nizations with the authority to manage local networks.

RDNS is a very advantageous point to meet a large

number of hosts and comprehend the circumstances of

the hosts. Consequently, RDNS is an important asset to

mitigate botnet threats.

• Authoritative DNS server (ADNS): An ADNS server

stores a list of the IP addresses of domain names,

whereas the RDNS only temporarily stores the map-

ping information as a representative. ADNS servers are

usually operated by companies which own certain do-

mains. Every single query for domains belonging to an

ADNS server has to be congregated to the server, re-

gardless of where the queries originated, e.g., United

States, Switzerland, Ghana, or Australia. This is highly

advantageous for security responders, because it al-

lows single-point monitoring and mitigating in terms of

worldwide influence.

As DNS forms a very important part of botnet opera-

tions, botnets utilize numerous advanced DNS techniques

to avoid the single-point failure problem caused by C&C do-

main detection. The following are the representative DNS

techniques used by sophisticated botnets.

• Dynamic DNS (DDNS): DDNS is a method that allows

real-time updating of the domain-IP mapping data [27].

It is used to resolve domain names to IP addresses,

which may change frequently. It allows persistent ad-

dressing for domains that need to change their server

or location very often. Therefore, the DDNS method

is very useful for small businesses that need to pro-

vide consistent services, because these businesses use

a dynamic IP range assigned by their Internet Service

Provider (ISP). Recent botnets are designed to abuse the

DDNS method to increase the survivability of their C&C

servers. Traditional botnets experienced the single-point

failure problem, because they usually assigned a single

IP address to the C&C server. Once the IP address was

revealed, the entire botnet could be collapsed by simply

blocking the IP address. From this, DDNS has emerged

as an effective evasion technique to botnet users.

• Fast flux: Fast flux is a DNS technique that is used by

botnets to hide their rendezvous points behind proxy

servers (bot hosts) [28]. The key idea is to assign nu-

merous IP addresses to a single domain name, where

the IP addresses are changing very frequently because

of the use of a combination of round-robin (RR) IP ad-

dresses and a relatively short TTL. Although the method

seems similar to that of DDNS, fast flux and DDNS are

based on slightly different concepts. Most importantly,

the authoritative name servers of a DDNS domain be-

long to the DDNS provider, whereas fast flux is able to

make the name servers point to numerous IP addresses

of hosts located worldwide.

• Domain Generation Algorithm (DGA): DGA is another

advanced DNS technique used by sophisticated bot-

nets [16]. Even though the DDNS and fast flux meth-

ods are able to improve the survivability of botnets,

they are still suffering from the single-point failure prob-

lem caused by blocking certain domains (i.e., a domain
sinkhole). To overcome the problem, DGA has arisen

as a more advanced evasion technique for recent bot-

nets. DGA periodically generates thousands of domain

names, which can be used as rendezvous points for

C&C communication. Among these domains, only a few

are used as actual C&C domains at a certain moment.

The real C&C domains only live for short periods before

they are replaced with other domains; thus, if the C&C

domains were retained by the responders, the botnets

would persist. The large number of potential C&C do-

mains complicates taking down the botnets.

2.2. Botnet characteristics

A bot is a malware remotely controlled by an attacker

(botmaster). A botnet consists of a group of bot-infected

hosts forming a network, and it provides cyber criminals

with unlimited resources to enable them to commit seri-

ous Internet attacks. Despite a considerable amount of re-

search to develop ways to mitigate botnet threats, botnets

are regarded as one of the most significant Internet threats.

The mitigation of botnet threats requires us to understand

the pure nature of a botnet. Now, we describe three inher-

ent features of botnets: utilization of DNS, periodic com-

munication, and the group activity of bot hosts.

• Utilization of DNS: Hosts infected by bots use DNS to

access the C&C servers. Because the IP addresses of C&C

servers used by bot authors have been disclosed by re-

verse engineering, they attempt to use domain names

instead of static IP addresses. Furthermore, they pre-

vent detecting and blocking of the servers by periodi-

cally changing the IP addresses and domain names of

the C&C server by using techniques such as fast flux or

DDNS.

Generally, a bot transmits DNS queries to maintain con-

tact with the C&C servers. More intelligent botnets use

DDNS to hide their query patterns. A C&C server using

DDNS changes its IP address frequently and has smaller

TTL values in its DNS record, resulting in more frequent

DNS queries from the bots. However, in cases in which

data stored in the local cache is used, the DNS query is

invisible as it is not transmitted outward.

• Periodic communication: A bot program is compelled

to periodically communicate with the C&C server [22].

This is because the connection with the C&C channel is

necessary for the C&C server to check the host status

or to issue an attack. The periodic connection guaran-

tees the availability and capability of the botnet. A bot-

infected machine automatically accesses the C&C server

of the botnet. The bot host queries the DNS server us-

ing predefined domain names to obtain the IP address

of the C&C server, to which it periodically reports its

status.

More intelligent botnets change the IP addresses of

their C&C servers occasionally by using the DDNS and

fast flux techniques. In such cases, the DNS servers

maintain the domain-IP mapping data with small TTL

values, and consequently, more frequent DNS queries

can be observed. A DGA also shows periodic DNS

query generation. As the DGA algorithm automatically
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generates thousands of domain names and only a few

domains among the large number of domains are real

C&C servers, bot hosts generate a large number of

queries to find the real C&C channel.

• Group activity: Botnet communications are observed

in the form of group activities. A botnet requires cer-

tain predefined rules to manage several hundreds, or

even thousands, of bot hosts. A centralized botnet (IRC,

HTTP) uses DNS to look up the C&C server. The botnet

sends periodic DNS queries and connects to the chan-

nel. This is a good example of a group activity.

A distributed (P2P) botnet performs group activities,

which are observed while the P2P botnet performs an

upgrade or synchronization. For example, the storm P2P

botnet often synchronizes with the network time proto-

col server through the infected hosts. This synchroniza-

tion activity also shows a group activity. When a bot-

net behaves maliciously, including performing a DDoS

attack, spamming, and click fraud, each bot host simul-

taneously generates a massive amount of attack traffic

to ensure a more efficient and effective attack. For ex-

ample, a DDoS attack requires numerous bot hosts to

launch concurrent attacks on target systems.

2.3. Signal processing techniques

PsyBoG utilizes a signal processing technique for ex-

tracting the periodic communication pattern in a botnet.

Signal processing is the operation involving the analysis of

analog and digitized signals. One of the typical operations

in signal processing is to extract frequencies from a given

sequence of signals.

A discrete Fourier transform (DFT) operation is used to

convert a discrete-time domain signal, such as a time se-

ries, to frequency domain data as a sum of the sinusoidal

components (sine and cosine). The frequency domain data

contain the amplitudes of each frequency. A fast Fourier

transform (FFT) is an efficient algorithm capable of con-

ducting a DFT and its reverse execution in a short time.

The time complexity of DFT is O(N2), whereas FFT shows a

time complexity of O(Nlog2N).

FN =
N∑

n=1

fn · e−i2πkn/N. (1)

We input the sequence of data points (time series) f(1),

f(1), f(2), …, f(N) into Eq. (1), where N (2n) is the size

of the entire data, n is the index value, and k is the fre-

quency which needs to be known. The transformation to

the frequency area result consists of the complex numbers

of F(1), F(1), F(2), …, F(N).

Pxx(ω) = (�t)2

T

∣∣∣∣∣
N∑

n=1

fne−iωn

∣∣∣∣∣
2

. (2)

We assume that the periodic pattern displayed by the

host traffic can be determined from the high amplitudes

of certain frequencies. Second, Eq. (2) is the definition of

the PSD. The PSD uses a straightforward manner to gen-

eralize the finite time-series fn with 0 ≤ n ≤ N, such as

a signal sampled at discrete times fn = f (n�t) for a total
measurement period T = N�t . Pxx(ω) is the average of the

Fourier transform magnitude squared and ω is 2πk/N. The

PSD describes how the power of a signal or time series is

distributed with a unit of energy per frequency. The power

can be defined as the squared value of the signal.

3. Problem definition

This section presents a description of the problem to

be considered when detecting botnets, following which we

suggest the requirements for solving the problem along

with the goal of our study.

3.1. Problem statement

We state the following three problems for botnet detec-

tion.

• The huge volume of DNS traffic: As the volume of DNS

traffic skyrockets, previous anomaly detection mecha-

nisms require more resources and time to thoroughly

analyze the huge volume of traffic. Currently, the in-

crease in the volume of Internet traffic is usually the

consequence of an increase in the number of domain

names rather than the number of IP addresses. Unfortu-

nately, many of the countermeasures and much of the

research rely on domain-based analysis, and are there-

fore negatively affected by the increase in the num-

ber of domains. Consequently, scalability has become

an important issue.

• User traffic: A botnet consists of a group of compro-

mised hosts; hence, there is a great possibility that be-

nign users are also involved in DNS query generation.

Furthermore, sophisticated botnets mimic user behav-

ior by generating bogus DNS queries with well-known

domain names. From the point of view of a network,

distinguishing between legitimate and malicious DNS

queries is a great challenge because of the lack of in-

ternal information.

• Host detection: Detecting a botnet, either individu-

ally or in part, is insufficient to mitigate the threats

it poses. Because a botnet consists of a group of com-

promised hosts, it is difficult to prevent botnet attacks

without denying access to the entire host group. Un-

fortunately, many botnet mitigation methods insist on

targeting particular domains or IPs. As a result, these

methods are not able to effectively prevent botnet at-

tacks.

3.2. Requirements

Previous studies were unable to provide effective solu-

tions to the abovementioned problems. In this work, the

following requirements are addressed in an attempt to

overcome these problems.

• Scalability for data size increments: Motivated by

situations in which the DNS traffic volume in-

creases rapidly, a new approach capable of managing

huge quantities of traffic is required by considering

scalability.
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• Robustness against user traffic: In terms of bot host

detection, it is never possible to distinguish between

different types of user traffic originating from the same

host. Therefore, a new method should be able to distin-

guish the characteristics of botnet traffic from among

the combined traffic.

• Effective group detection: Botnet group has to be de-

tected through their group activities. Botnet attacks can

be prevented by denying access to the botnet group.

This requires the necessary capability to detect entire

botnet group.

3.3. Goal

Our goal is to suggest a fast and scalable method ca-

pable of detecting botnet groups by scanning the periodic

pattern of traffic without any prior knowledge of the bot-

net, in an efficient manner using only essential information

of the large-scale DNS traffic.

4. Proposed mechanism

In this section, we introduce the concept and structure

of our mechanism, which we have named PsyBoG (Power

Spectrum analYsis for detecting Botnet Groups). Then, we

explain the operations of PsyBoG in detail.

4.1. Overview

The periodicity of a bot host can be extracted from the

DNS traffic using PSD. Botnet groups can be detected by

performing a similarity measurement based on the peri-
Fig. 1. Design of PsyBo
odicity of bot hosts. Fig. 1 shows the structure of PsyBoG,

which consists of the following four modules.

• Traffic collector collects DNS traffic, such as host IPs,

domain names, and query time stamps from the DNS

servers.

• Periodicity analyzer uses PSD to extract the frequency

information of host DNS traffic.

• Significant peak analyzer analyzes the significance of

peak values in a power spectrum. If a peak crosses the

significance threshold, PsyBoG determines that the host

contains very suspicious periodic query patterns.

• Group activity analyzer analyzes the similarities be-

tween the power spectrums of the hosts, which contain

a significant periodic component. If these power spec-

trums show a high similarity rate with each other, it

indicates that they have similar periodic query patterns

and belong to the same botnet group.

Fig. 2 illustrates the flowchart of the main components

of PsyBoG including periodicity analyzer, significant peak

analyzer and group activity analyzer. Detailed descrip-

tions for each component will be shown in the following

sections.

4.2. DNS traffic collector

The sensors collect the DNS traffic from a monitored

network by tapping DNS servers and aggregating the DNS

traffic to the DNS traffic collector. Bot infected hosts could

widely spread across the entire world. An effective re-

sponse to the botnets necessitates a scalable detection

method covering a wide network range. Given these con-

siderations, the following two requirements are addressed:
G architecture.
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Input DNS traffic 

Build time series x[n] for host Hx 
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Fig. 2. Flowchart of the main functionality of PsyBoG.
(1) single-point monitoring to enable a wide network

range to be observed, and (2) reducing a huge volume of

data to an amount that is practically manageable.

Driven by the above requirements, we specify that Psy-

BoG only uses DNS traffic. The main reasons for this are

threefold. First, in accordance with the nature of the DNS

system, the DNS server is an incredibly efficient asset with

which to monitor a wide network. the RDNS and ADNS

servers are responsible for the local network (i.e., an ISP

network) and could even be responsible for the entire In-

ternet. Second, DNS closely relates to botnet activities. Nu-

merous botnets apply highly advanced DNS techniques,

such as fast flux, DDNS and DGAs, to avoid detection of

the C&C and spam servers; they show a higher rate of

DNS usage compared to normal users or systems. Third,

the amount of DNS traffic on a network is less than the

entire network traffic from the same network range.

The malicious attempts of the botnet can be prevented

by denying access to the DNS. As the C&C server period-

ically changes its IP address, blocking the DNS queries of

botnet hosts disables these hosts by preventing them from

accessing the server as they do not know its address. How-

ever, this may result in the problem of DNS caching. The

DNS cache can vary with different operating systems or

browsers. Therefore, it is necessary to consider the caching

procedures of the different kinds of operating systems and

browsers. Meanwhile, the advanced DNS techniques that

are used by the newer botnets maintain a shorter TTLs;

thus, the DNS caching problem will not occur.
Even though leveraging DNS traffic is a very efficient

way in terms of botnet detection and mitigation, the

amount of DNS traffic that would have to be analyzed re-

mains too large. To ensure more efficient usage of the DNS

traffic, PsyBoG is designed to only analyze queries. Further-

more, the sensors only aggregate the host IP, the domain

name, and its time stamp, which are extracted from the

DNS traffic. This approach renders PsyBoG scalable for pro-

cessing large volumes of DNS data by rapidly reducing the

volume of data to be analyzed.

4.3. Periodicity analyzer

We can analyze the periodicity of the botnet communi-

cations by using PSD. When using this analytical technique,

we assume that the periodic traffic of a botnet is trans-

formed into certain high-power frequencies, while the ape-

riodic traffic caused by normal users is transformed into a

broadly distributed rage of low-power frequencies. There-

fore, botnet traffic can be extracted by scanning for cer-

tain high-energy frequencies, and we use PSD to transform

signal-time data into frequency data.

First, we specify a number of segments to use as in-

put time series for the PSD analysis. The number of seg-

ments affects the frequency domain and its range. For a

high-quality PSD, the number of segments is selected from

among the powers of two, and we limit the length of the

number of segments to 214 = 16,384 to ensure a fast PSD

analysis. Note that the size of a single segment is 1 s,
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Fig. 3. Concepts of time window and segmentation.
and we apply the sliding time-window strategy to cover

a long input trace. Fig. 3 briefly shows the concept of the

segments, time window, and sliding window. The second

step in the PSD estimation is to remove the mean value of

the Fourier mode from the time series. This is a standard

technique [29] that allows a more accurate PSD estimation.

In the third step, we use a Hanning window that is used on

half-overlapped intervals to ensure the best signal-to-noise

ratio (SNR). The last step consists of operating the PSD

analysis for the specified segments of the input time series.

Fig. 4 represents an example of the periodic and aperi-

odic signals and their periodograms, which project the re-

spective corresponding PSDs for the signals. The first plot

shows a periodic query sample in which the period of the

query is 10 s, the duration of each query is 3 s, and the

number of segments is 256. The second plot, which is a

periodogram of the first plot, consists of the largest peak at

0.1 Hz, small peaks at multiples of the largest peak 0.1 Hz

and almost at zero, which indicates that the original sig-

nal has a periodic query pattern within every 10 s. The

third plot contains an aperiodic signal that follows a Gaus-

sian random distribution, and its associated periodogram,

the last plot, contains several peaks, but none of them has

sufficiently large power; thus, there is no periodicity. Note

that the decision as to whether a peak value is sufficiently

large, will be explained in the following section.

4.4. Significant peak analyzer

As we can see in Fig. 4, there is always a peak in

the periodogram regardless of whether the original signal

contains a periodic pattern. Therefore, the decision as to

whether the peak is sufficiently significant to determine

whether it is caused by a periodic component with a spe-

cific frequency, has to be made. To this end, we use sig-

nificant peak testing (SPT) by applying the significant test

method which is commonly used in signal processing and

communications.

The design of a critical test for significant frequencies

has long been researched in signal processing area. Since
the introduction of the periodogram by Schuster in 1898

[30], the investigation of periodicity in time series has

widely been researched. Walker [31] studied the statisti-

cal significance of the periodicities for large sample test.

Fisher [32] introduced the exact probability distribution in-

dicating that it is not required to use the large sample

asymptotic assumptions at the Walker’s test. Further re-

searches by Lomb [33], Scargle [34], and Horne and Bali-

unas [35] have been presented as the key papers. Among

them, we consider that Walker’s large sample test would

be more appropriate for PsyBoG rather than other tests,

because Walker’s test is known to be more accurate for

large sample data [36,37] and the most important contri-

bution of PsyBoG is to guarantee the scalability for large

scale network.

The extraction of the significance of the largest peak in

periodogram performs as follows. Commonly, the signifi-

cant test for periodogram ordinates is designed to work on

the binary hypothesis [38,39]. For a query sequence x[n],

H0: x[n] follows a Gaussian distribution, while

H1: x[n] has a periodic component at the largest ordi-

nate.

For H0, the ordinates Pxx[ω] for the sequence x[n] has a

distribution which is proportional to χ2 in two degrees of

freedom. Therefore,

Pxx[ω] = σ 2
x χ2

2 (3)

The probability distribution of a χ2
2 is an exponential

function [40],

f (z) = 2−1exp(−z/2) (4)

Hence, for any value of z ≥ 0, the probability that

Pxx[ω]/σ 2
x ≤ z is given by,

Pr[Pxx[ω]/σ 2
x ≤ z] =

∫ z

0

f (x)dx

=
∫ z

0

2−1exp(−x/2)dx

= 1 − exp(−z/2). (5)
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Fig. 4. Periodograms for periodic and aperiodic signals.
Under H0 that γ x indicates one of the N/2 indepen-

dently identically distributed variables, then for any value

of z ≥ 0,

Pr[γx > z] = 1 − Pr[Pxx[ω]/σ 2
x ≤ z, for ω]

= 1 − [1 − exp(−z/2)]N/2 (6)

Eq. (6) can be used for determining whether the largest

ordinate in the periodogram is significantly different from

a zero mean distribution with variance σ 2
x , which can be

evaluated directly by using Eq. (7):

σ 2
x = N−1

N/2∑
k=1

Pxx[ω] (7)

According to the above estimation of σ 2
x , we can de-

rive the asymptotic distribution g∗
x from Eq. (3), which is

Walker’s large sample test for max(Pxx[ω]),

g∗
x = max(Pxx[k])

N−1
∑N/2

k=1
Pxx[k]

(8)
Under H0, g∗
x will have the same distribution as γ x, thus

for z ≥ 0,

Pr[g∗
x > z] ∼ 1 − [1 − exp(−z/2)]N/2 (9)

In order to be significant, g∗
x has to be larger than the

critical value of:

z = −2 ln(1 − Pr2/N
c )

= −2 ln(1 − (1 − PrFPR)
2/N) (10)

Where Prc is the confidence level probability, 1 − PrFPR,

and PrFPR indicate the expected probability of false alarm.

By simply applying this test to the example exhibited in

Fig. 4, we obtain the following results. The critical value

z0.1% with the binary hypothesis for the expected false pos-

itive rate 0.1% is 23.52, where the number of segments

N = 256. The periodic and aperiodic signals (first and third

plots) return g∗
x as 35.34 and 5.39, respectively. This en-

ables us to determine that the first plot has a periodic

component at a frequency of k = 0.1Hz, whereas the third

plot does not display any periodicity.

The critical value z is regarded as the threshold of

SPT, threshold . Note that, as shown in Eq. (10), z can be
SPT
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Algorithm 1 Botnet grouping.

Input: Frequencies fn for hosts hn

Output: Botnet group set B = {b}
1: k ← 0;
2: for i = 0 to n − 1 do

3: for j = i + 1 to n do

4: dist ← pDist( fi, f j);
5: if dist ≤ thresholdpDist then

6: bk ← bk ∪ {hi, h j};
7: end if

8: end for

9: if |bk| ≥ 0 then

10: k ← k + 1;
11: B = B ∪ bk;
12: end if

13: end for
flexible according to the number of segments N and the

probability of the expected false positive rate PrFPR. Psy-

BoG has the predefined values of N for input time series,

therefore our only concern for appropriate z is the PrFPR.

In order to set an optimized thresholdSPT, we performed

an experiment and it will be discussed in Section 5.2.

4.5. Botnet group activity detection

PsyBoG investigates the activities associated with en-

tire botnet group, because detecting the group is neces-

sary for the efficient prevention of botnet threats. This is

done by applying the similarity measurement algorithm

pDist (Power Distance) [41] to detect the group activities of

botnet. pDist compares the periodic structure of two input

signals. More precisely, pDist utilizes the specific frequen-

cies in the periodogram with sufficient power (Fig. 4). Sup-

pose there are two distinct periodograms Paa[kn], Pbb[kn]

with length n, and it is determined that their largest or-

dinates exceed the threshold for significant testing. Now,

we can obtain the frequencies with sufficient power values

pa ⊂ [{x1, y1}… {xi, yj}]. Finally, we can simply compare the

power values located at the frequencies fa with fb. The dis-

tance pDist represents the similarity between two signals

a and b:

pDist = ‖ fa − fb‖ (11)

For example, three time series a, b and c ex-

ist and their Fourier transforms are A = {(1 + i), (2 +
i), (1 + i), (3 + 2i)}, B = {(1 + i), (1 + 2i), (1 + i), (4 + i)},
and C = {(1 + i), (1 + i), (3 + 3i), (1 + i)} respectively. The

periodogram of A can be represented as: Paa = ‖A‖2 =
(2, 5, 2, 13), and its significant power vector would be

Pâa = (0, 0, 0, 13). Similarly, we can derive the other signif-

icant power vectors for B and C as P
b̂b

= (0, 0, 0, 16) and

Pĉc = (0, 0, 18, 0).

To make the distance measurement more meaningful,

pDist was designed to perform the normalization of any

sequence x(n) for power vector Pxx as follows:

x̂(n) = x(n) − N−1
∑N

i=1 x(i)√∑N
i=1(x(n) − N−1

∑N
i=1 x(i))2

(12)

In [41], the clustering accuracy of pDist was exam-

ined and compared with four other clustering approaches

namely, Euclidean, DTW, Cepstrum, and CDM. Among

them, pDist not only shows the highest accuracy but is also

the most lightweight method, because pDist functions in a

very low-dimensional space, precisely only on the i dimen-

sion.

Algorithm 1 describes a method for investigating bot-

net grouping with pDist. Once a certain number of hosts

hn are revealed to exhibit a significant periodicity on their

queries, the group activity analyzer performs botnet group-

ing by comparing the periodograms fn extracted from the

hosts. Performing this comparison for every hosts might

result in relatively large computation overheads of the or-

der O(n2). Nevertheless, these overheads are nonnegotiable

if each host faces the possibility of being compromised by

a number of distinct bots. The bot hosts used to be com-

promised by different bot codes simultaneously due to the

poor security awareness. Furthermore, the number of bot
hosts included in the comparison could be reduced to a

manageable size (please refer to Section 5.6). PsyBoG only

considers hosts that show a significant periodicity, thus

only a small number of hosts in a particular network is

regarded as input for this analysis.

5. Experimental results

In this section, we present the experimental results ob-

tained by evaluating the performance of PsyBoG, including

robustness, scalability, speed and detection accuracy. We

implemented a prototype of PsyBoG using the .NET frame-

work and collected the large number of real-world DNS

traces for the experiments. The experiments were con-

ducted on an in-lab machine with a 3.30 GHz Intel i5 CPU,

8 GB main memory and Microsoft Window 7 64bit. The

PsyBoG prototype was implemented in a fully automatic

manner, but we considered a manual investigation to ver-

ify the detection accuracy.

5.1. Data set

5.1.1. Collecting real-world data

The performance of PsyBoG was evaluated by collecting

the real-world DNS traces, including malware traces, and

real DNS server traffic. These data sets have different pur-

poses. First, we verified the detection accuracy and robust-

ness of PsyBoG by utilizing the DNS traces generated from

the real malware samples, and second, we evaluated the

scalability and overheads of PsyBoG with the large-scale

DNS data collected from the real DNS servers.

Table 1 lists the detail of the DNS traces extracted from

real malware samples. In the background of this paper,

we explained that recent malware connected to the Inter-

net generates DNS traffic very frequently and periodically.

After obtaining our initial experimental results, we were

strongly motivated by the need to prove how malware cur-

rently functions in the real world. To this end, we utilized

the PCAP dumps provided by the Contagio Web site. The

files store all the network traffic generated by real malware

samples in controlled environments. We extracted the DNS

traffic from the dump files, and selected the top 20 mali-

cious DNS traces in the order of their size.
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Table 1

Twenty DNS traces obtained from malware dumps.

Malware name Tracing time (s) Number of queries Number of domains DNS size Original PCAP

BIN_Ramnitpcap.. 66,469 60,116 382 2.87 MB 16.30 MB

Sality.. 13,570 K 26,509 6341 1.08 MB 39.20 MB

BIN_Kuluoz-Asprox.. 1171 6479 1334 279 K 25 M

purplehaze 2177 2689 786 114 KB 230 MB

BIN_Cutwail-Pushdo(2).. 1990 2260 188 83.10 KB 6.16 MB

BIN_Wordpress_Mutopy_Symmi.. 140 1159 289 45.40 KB 1.68 MB

BIN_ZeroAccess_Sirefef.. 941 1004 224 42.4 KB 11.7 MB

BIN_dirtjumper.. 123 770 4 32.2 KB 1.57 MB

BIN_CitadelPacked.. 90,312 662 4 26.0 KB 1.61 MB

cryptolocker.. 169 524 130 24.6 KB 77.0 KB

Sweet-Orange-EK.. 164 899 404 47.0 KB 557 KB

Angler-EK-uses-java.. 71 572 285 31.7 KB 1.67 MB

Angler-EK-uses-silverlight.. 52 564 280 31.3 KB 1.79 MB

Magnitude-EK.. 350 628 251 26.4 KB 7.16 MB

phishing-malware.. 231 437 219 24.7 KB 60 KB

Sweet-Orange-EK..(2) 161 416 206 24.5 KB 310 KB

Angler-EK-uses-flash.. 35 412 203 22.7 KB 1.80 MB

Sweet-Orange-EK..(3) 92 414 207 22.6 KB 92 KB

phishing-malware..(2) 329 407 188 22.5 KB 393 KB

phishing-malware..(3) 630 336 163 18.9 KB 484 KB

Table 2

DNS data captured from real-world DNS servers.

Data set Date Time Number of queries Number of domains Number of clients DNS type

Campus1 Feb. 24, 2014 00:00–23:59 24,278 K 100 K 25 K RDNS

Campus2 Feb. 25, 2014 00:00–23:59 23,768 K 93 K 23 K RDNS

DDNS1 Jun. 15, 2010 00:00–23:59 15,563 K 1668 K 51 K ADNS

DDNS2 Jun. 22, 2010 00:00–23:59 17,097 K 1578 K 50 K ADNS

KrTLD1 Aug. 19, 2014 00:00–23:59 14,643 K 3583 K 64 K TLD

KrTLD2 Aug. 19, 2014 00:00–23:59 33,937 K 2720 K 387 K TLD

1 Note that, selection of the threshold 13 for host filtering will be dis-
Evaluating PsyBoG in terms of scalability and applica-

bility required us to utilize large-scale DNS traces captured

from real DNS servers. Table 2 provides a brief overview

of the distinct DNS data sets captured from different lo-

cations. Campus1 and Campus2 are DNS traces obtained by

tapping a gateway router of a /16 campus network on Feb.

24 and 25, 2014. DDNS1 and DDNS2 were given by a com-

pany providing a dynamic DNS service in the US. These

traces were captured on Jun. 15 and 22, 2010. KrTLD1 and

KrTLD2 were collected from two different .kr TLD servers

on Aug. 19, 2014.

The above data sets are distinguishable by the charac-

teristics of the queries they contain; for example, Campus1

and Campus2 were collected from an RDNS server in a local

network. These queries are only received from local hosts,

but the queried domains may be located worldwide. On

the other hand, the DDNS server is an ADNS server; thus,

DDNS1 and DDNS2 were aggregated from a server contain-

ing queries received from hosts located across the world

and the target domains could also be located in any coun-

try. Even though the last data sets were obtained from

TLD servers that also function as an ADNS server, the IP

range of target domains was limited to a certain region.

We expected that the distinguishable data sets enable us

to evaluate the effectiveness of PsyBoG under real-world
circumstances.
5.1.2. Filtering

We applied both host and domain filtering for effec-

tive DNS traffic analysis. Because the amount of DNS data

collected from real DNS servers is relatively large, analyz-

ing every single host, even those hosts that rarely gener-

ate queries, would be a tedious task. Under the considera-

tion, we decided to improve the efficiency of the data. As

a preprocessing step, we removed the hosts that generated

fewer than 13 DNS queries in DNS trace lasting one hour,

because this number is too small to allow for the discovery

of behavioral periodicity.1 The preprocessing step enabled

us to reduce the number of hosts to approximately 80% of

the original number.

Domain queries listed on the whitelist are also ex-

cluded from our trace. In recent times, many benign pro-

grams periodically connect to specific domains to ensure

they remain up-to-date, e.g., Windows update, and AV up-

date. Furthermore, well-known Web sites, such as Google,

Facebook, and Twitter are queried very frequently. These

well-known and thriving domains would therefore expose

some periodicity. To this end, we built the whitelist to

include top legitimate domains collected from Alexa.com

[42].
cussed with the analysis in Section 6.4.
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Fig. 5. Example of DNS queries and the corresponding PSD graph for real malware samples BIN_Ramnit (images were captured with the PsyBoG prototype).

Table 3

Examples of queried domain names by BIN_Ramnit.

Domain name Domain name

ufxsqnjtryrny.com stleikxkbjwo.com

stleikxkbjwo.com lrqxvrqsihwtudox.com

eeuprbpohspwje.com tlxfrilp.com

: :

bvkdfvxoqxsabk.com atfkpyicxsrrwqbct.com

wqnefkerofcmrap.com jjfcilvuchkjvutlho.com

ginbkjuweobmwp.com mmwhewlrckie.com

: :

kbadlfpgtec.com kjuldacvvmdffxi.com

ymcwineqkj.com jyvfsnsqddbgxq.com
5.1.3. Time series

In this step, we sample the DNS trace as though it were

a binary signal by assigning it the value of 1 at each query

request and 0 at intervals between query requests, and the

sampling interval is 1 s. According to the recommendation

for accurate and fast signal processing operation, a power

of two, precisely 256, 512, and 1024, until 16,384, is re-

garded as the length of a time series. Although we ob-

served the introduction of large gaps between queries, a

large gap does not significantly compromise the PSD re-

sults [24].

5.2. Detection accuracy

Before evaluating the accuracy of PsyBoG, first we had

to prove our assumption that recent botnets generate pe-

riodic DNS queries. To this end, we utilized real malware

traffic (refer to Table 1) to observe the pattern of DNS

queries generated by the malware. Fig. 5 illustrates an ex-

ample showing the representative periodic pattern of mal-

ware BIN_Ramnit. The queries are generated within almost

every second (upper graph). Even though the queries fluc-

tuate, the fluctuation also represents a certain periodic pat-

tern. The PSD result peaks at near 0.5 MHz with g∗ = 44.50

(lower graph). BIN_Ramnit generated 60,116 queries for 382

domains which consisted of unreadable strings. It seems

that the abnormal domains are generated via DGA to avoid

blocking of its communication channel. Recall that, DGA is

a DNS technique used by botnets that dynamically gener-

ates many “quasi-random” domain strings for C&C com-

munication purposes. Examples of the abnormal domain

strings are listed in Table 3.

The malware traces prove that our assumption is cor-

rect. Now, as mentioned in Section 4.4, we need to set an

optimal threshold z for g∗. z depends on the expected false

positive rate PrFPR which can be set by users, but the de-

tection accuracy will be affected accordingly in a tradeoff

relationship. In order to get appropriate Pr for an opti-
FPR
mal threshold z, we performed a simple test of detection

accuracy for the given malware traces with various PrFPR.

Fig. 7 indicates that the detection accuracy seems stable as

long as PrFPR ≥ 0.1%, but dramatically drops when z is set

with PrFPR < 0.1%. From this observation, we conclude that

the proper thresholdSPT is z0.1%.

Table 4 exhibits the detection results. Nineteen of the

malware traces in the test set were detected based on

their abnormal periodicity, whereas only BIN_dirtjumper re-

mained undetected in our experiment. To understand the

reason for the miss-detection, we examined the detail of

the trace. Fig. 6 illustrates the DNS trace and correspond-

ing PSD graph. As we can see, it reveals that BIN_dirtjumper

did not generate periodic queries during the monitoring

time; therefore, the PSD score was not significant. The

highest PSD value was 11.36, where s = 1, n = 64 and t =
832. Despite the number of queries (1004 queries within

941 s), concentrating the generation of queries in certain

time periods complicates discovery by periodicity estima-

tion. However, a partial periodic pattern of DNS queries

emerged from around 650 to 940 s where the interval is

approximately 70 s; thus, we strongly believe that there is

a rare chance to reveal the periodicity of the malware as

http://ufxsqnjtryrny.com
http://stleikxkbjwo.com
http://stleikxkbjwo.com
http://lrqxvrqsihwtudox.com
http://eeuprbpohspwje.com
http://tlxfrilp.com
http://bvkdfvxoqxsabk.com
http://atfkpyicxsrrwqbct.com
http://wqnefkerofcmrap.com
http://jjfcilvuchkjvutlho.com
http://ginbkjuweobmwp.com
http://mmwhewlrckie.com
http://kbadlfpgtec.com
http://kjuldacvvmdffxi.com
http://ymcwineqkj.com
http://jyvfsnsqddbgxq.com
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Table 4

Detection results for the 20 real malware samples of which 19 were successfully detected.

Malware name Detected g∗ Segment size s Number of segment N Detected time t

BIN_Ramnitpcap.. O 44.50 1 4096 20,480

Sality.. O 30.70 4 1024 1024

BIN_Kuluoz-Asprox.. O 39.45 1 1024 1024

purplehaze O 33.16 1 2048 2048

BIN_Cutwail-Pushdo(2).. O 25.78 1 256 1046

BIN_Wordpress_Mutopy_Symmi.. O 22.05 1 32 96

BIN_ZeroAccess_Sirefef.. X – – – –

BIN_dirtjumper.. O 19.45 8 8 128

BIN_CitadelPacked.. O 36.25 6 16,384 540,672

cryptolocker.. O 18.62 1 64 128

Sweet-Orange-EK.. O 25.09 1 128 128

Angler-EK-uses-java.. O 27.41 1 64 64

Angler-EK-uses-silverlight.. O 16.27 1 51 51

Magnitude-EK.. O 42.93 1 128 128

phishing-malware.. O 27.38 1 64 64

Sweet-Orange-EK..(2) O 41.58 1 64 104

Angler-EK-uses-flash.. O 18.71 1 16 16

Sweet-Orange-EK..(3) O 25.32 1 64 64

phishing-malware..(2) O 49.34 1 128 128

phishing-malware..(3) O 44.87 1 64 474

Fig. 6. DNS query pattern and corresponding PSD values of undetected malware sample (BIN_dirtjumper).
long as the subsequent trace is available. Nevertheless, we

decided to consider the malware trace as a false negative;

consequently, the detection accuracy of PsyBoG for the test

data is 95% (19/20).

Now, we discuss the parameters that are used in the

PSD estimation step. Recall that, in PsyBoG, we apply two

different parameters for a single PSD calculation round,

namely the size of a segment s and the number of seg-

ments n. For example, PSD can utilize 4,096 input signals

with s = 1 and n = 4096, or s = 2 and n = 2048. The

parametric divergence was intended to cover various types

of periodic communication patterns emerging from the ac-

tivities of different types of botnets. Even though we in-

tended performing multiple PSD calculations according to

the parameters, our computational resources may be insuf-

ficient in some environments. Therefore, suggesting a cer-

tain parameter setting which shows the best performance
for general botnets was considered helpful. To this end, we

evaluated the detection performance with different param-

eter combinations, where s = {1, 2, 3, …, 9, 10} and n = {8,

16, 32, …, 8192, 16384}. Fig. 8 shows the detection results.

The best detection performance was obtained when s

was 1 s and n ranged from 256 to 4096. More precisely,

s recorded the best result with 1 s, and the detection

performance was continuously lowered as long as s was

increasing. It seemed that the shortest segment size pro-

vided a better reflection of the traffic pattern, whereas a

longer segment size might dispel the characteristics of the

pattern in some sense. Similar results were obtained for

n ranged from 256 to 16,384. This is because n directly

indicates the observation time, which has to be sufficiently

long to determine characteristic behavior. Even though the

best performance was obtained for n = 256, this result

only covers 15 of the 20 malware samples. Our in-depth
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Fig. 7. Detection performance along with the PSD parameters.

Fig. 8. Detection performance along with the PSD parameters.
analysis revealed that the different values of n could cover

different types of malware.

Based on the experimental results, we regarded the size

of a segment s as 1 and the number of segments n as rang-

ing from 256 to 16,384 in further experiments.

5.3. Signal-to-noise test

The robustness of PsyBoG against the normal user traf-

fic was verified by conducting signal-to-noise ratio (SNR)

tests with the malware traces. The SNR has been re-

searched in previous studies, and it has already been

proven that the noise signals cannot influence other spec-

trum components in the frequency domain. Nevertheless,

we conducted an experiment on similarity analysis with

SNR to investigate the extent to which PsyBoG is robust

to normal user traffic. The reason is that there is no guar-

antee that the similarity of the significant ordinates of the

periodogram between two signals would not be affected

by noise, even though the noise has no effect on the ordi-

nates in which the periodicity is located. To this end, we

utilized the real malware traces, to which we randomly

added noise traffic by increasing the SNR up to 95% of the

total traffic volume.
Fig. 9 shows the variation in the similarity results be-

tween two signals according to the SNR. We performed the

experiment by using both PSD and pDist, and illustrate five

representative results in the figure. The Y and X axes rep-

resent the similarity ratio and the SNR respectively. When

the noise traffic accounted for 75% of the total traffic, pDist

between the original traffic and the mixed traffic archived

approximately 80% of similarity on average. At SNR values

exceeding 75%, pDist continued to show reasonable simi-

larity results with 60% being the worst case. In the best

case in this experiment, BIN_Kuluoz-Asprox scored over 96%

of similarity across all the SNRs. Considering the fact that

bot programs typically generate a relatively larger number

of queries compared to normal users, the SNR test shows

that PsyBoG is very robust against the noise traffic and

that it has the ability to discover the periodic behavior and

group activities of botnets regardless of user behavior, even

if there are many users queried in the DNS traces.

5.4. PsyBoG performance with large-scale data

This section describes the estimation of PsyBoG per-

formance with large-scale DNS traces. The scalability and

overheads are also discussed in detail.
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Fig. 9. SNR tests for the malware traces.

Fig. 10. Detection accuracy as the number of segments of time series.
5.4.1. Detection performance in real DNS

In the experiments described in the previous section,

we showed that PsyBoG is accurate and robust. Here, we

describe the results of allowing PsyBoG to operate on

the large-scale DNS traffic captured from real-world DNS

servers (refer to Table 2).

As mentioned before, the PSD input data is based on

time series of different lengths. This difference impacts the

detection accuracy; thus, we investigated the relations be-

tween the number of segments and the detection accu-

racy to determine the efficiency for different time series.

Fig. 10 exhibits the detection results for the different time

series. The results show that increasing the number of seg-

ments improves the performance, while maintaining the

false positive rate around 0.1%.

Interestingly, even though the small number of seg-

ments (i.e., 256, 512, and 1024) shows a relatively low per-

formance, the detection results are still valuable, because

some bot hosts were discovered by only using input set-

tings with a small number of segments. According to our

analysis, this result was caused by the sporadic behavior

of the bot hosts. For example, a bot host would only oper-

ate for a while until the host owner turns off the system.
In such a case, even if the bot host were to show periodic

behavior, it would only be reflected during a short period

of the time series. Therefore, for a large time series, the pe-

riodic behavior would not be able to affect the peak value

significantly.

The sporadic behavior of a botnet presents an ac-

tual problem for many botnet countermeasures in terms

of practicality. Advanced botnets automatically show

generated domain names with time seeds for the synchro-

nization of each bot host irrespective of the condition of

hosts, such as being turned off. The existence of a long

term consisting of two algorithmically generated domain

queries resulting from the machines being powered off

complicates discovery of the botnets. This is the reason

some research leveraging the characteristics of continu-

ously generated domain names are unable to determine

the relationship between the two domain names under

these circumstances. Another type of botnet mitigation,

which monitors synchronized botnet behavior, also has

difficulties with such sporadic behavior.

By contrast, PsyBoG operation is based on the divide

and conquer strategy. We separate the input data into sev-

eral time series in accordance with n, and perform the PSD



J. Kwon et al. / Computer Networks 97 (2016) 48–73 63

Fig. 11. Accumulative detection rate.
analysis for each input signal by using the sliding window

approach. Finally, we extract a representative periodicity

for each host from the entire monitoring data. Therefore,

PsyBoG is available to accurately analyze the behavior of

each host even if some of the bot hosts only operate dur-

ing a short period of time. This strategy improves the ro-

bustness of PsyBoG against sporadic botnet patterns.

Fig. 11 exhibits the accumulative detection rates of Psy-

BoG on the 24-h traces. As we can see, the detection rate

continuously increases as a function of time. Before we ac-

cumulated the detected hosts, we expected an increasing

trend to occur on a log-scale, as shown in the accumula-

tive number of total hosts (please refer to Fig. 14(b)). In-

terestingly, the increasing trend observed for the detection

rate is linear. According to our analysis, the increments are

caused by the sporadic behavior of the bot hosts. Approxi-

mately 50% of bot hosts perform periodic query generation

at a certain time after the first DNS query generation. Fur-

thermore, some bot hosts only show periodic query gener-

ation during a short time period, when the host machines

continuously generate DNS queries. From the analysis, we

can say that, in the real world, the sporadic behavior of

botnets is an actual problem, although PsyBoG is practi-

cally robust against this problem.

5.4.2. Botnet group detection

The group detection results for the real-world DNS

traces are presented in the appendices. Note that we uti-

lized a DNS blacklist [6,43–46] to classify the detection re-

sults into the following categories: known malicious, un-

known malicious, and false positives. If a domain name is

involved in periodic DNS queries and the domain appeared

on the blacklist, we determined the host group querying

the domain to be known malicious. If a domain name was

queried periodically, but was not listed on the blacklist,

then we performed a manual investigation through Google

search to determine whether the host group belonged to

the unknown malicious or false positive categories.

As a result, PsyBoG discovered six known botnets,

19 unknown botnets, four adwares and three suspicious
groups from Campus1 and Campus2 (Appendix A). The sus-

picious groups showed relatively high periodicity and ab-

normal domain queries. Especially, one group generated

queries against more than 3000 domain names which are

variants of 15 original domains. The domain variations

showed very similar patterns with the DGA domains. The

only reason why we classified the groups as suspicious was

that there was insufficient evidence to prove that these do-

mains were malicious.

With DDNS1 and DDNS2, 20 known botnets and three

unknown botnets were successfully detected (Appendix B).

The detection results include well-known botnets such as

Maliposa, Palevo, and Geinimi. Our in-depth inspection re-

vealed the individual botnet groups to show distinct peri-

odic query patterns even though they belong to the same

botnet families. This is because of the prevalence of the bot

codes at that time; thus, many attackers utilized these bot

codes with different operational settings. Among the three

unknown botnets, Nitrol, which utilized the domain names

3322.org, showed an identical infection rate. The domain

3322.org, which is served by a Chinese DDNS provider, was

notorious for malware hosting until 2012, but in Sep. 2012,

Microsoft took down the domains using DNS sinkholing.

Even though these domains are disappeared, we show

that PsyBoG has the ability to discover malicious DDNS

usage.

We discovered another seven suspicious botnets and

one unknown botnet from KrTLD1 and KrTLD2. Unlike the

other results, all the botnets had unreadable strings in the

third domain name. It seems that the detected botnets uti-

lized DGA approaches to evade current countermeasures.

Although the domains are obviously malicious, we were

unable to obtain any information from the Internet, secu-

rity report, or any blacklists about these domains. The lack

of information about these DGA domains appears to be

caused by the cost efficiency problem. As we mentioned,

DGA generates a huge amount of random domains for tem-

porary use. From the point of view of security responders,

counteracting every single DGA domain results in a huge

cost requirement. Considering the problem of practicality,
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Table 5

False positives.

Type IP#

Torrent trackers i.e., tracker.gaytorrent.ru 17

A scientific research crawler 3

Mail servers 1

Network Time Protocol (NTP) queries 8

Web hard service 161

Web streaming service 49

Etc. 4
again, PsyBoG was shown to be an effective and efficient

countermeasure against DGA botnets.

Table 5 shows the false positives detected in our ex-

periments. These false positives were caused by legitimate

services such as Torrent trackers, mail delivering services,

and NTP. One false positive group was identified as a sci-

entific research crawler, which crawled information from

thousands of Web servers. Despite the low false positive

rate obtained by PsyBoG (0.1%), we expect it to be possible

to continue reducing the false positive rate by listing the

legitimate domains in the whitelist.

5.5. Scalability analysis

In this section, we analyze the scalability of PsyBoG.

The definition of scalability is a characteristic of a system

that describes its capability to perform under an increase

or expanding workload. In a point of view of PsyBoG that

performs an analysis using network information, i.e. DNS

traffic, the next three features including the number of

queries (feature 1), domains (feature 2), and IP addresses

(feature 3), which affect the PsyBoG’s workload, can be

considered. In order to estimate the scalability of PsyBoG,

we therefore investigate the performance of each compo-

nent in PsyBog along with the increase of workload based

on the features.

Early researches analyzing network packets or flows

have suffered from the expansion of network usage, be-

cause the number of packets and flows to be analyzed is

also dramatically increased. To solve the problem, many
Fig. 12. Comparison between the number of IP addresses and the number of do
methods have focused on the probability model of sam-

pling data [47–49]. The sampling has drawbacks in which

the sampling may bring incorrect results or delay the ag-

gregation of meaningful data. Adopting signal processing

techniques is able to provide a great advantage at this

point. Since signal processing transforms a data from the

time domain to the frequency domain, the increase of the

number of packets is not an issue any more. Similarly, it is

applicable to solve the problem of the number of queries,

and therefore the workload of PsyBoG is not affected by

the feature 1.

Since PsyBoG analyzes the traffic generation pattern for

each host irrespective of domains, the feature 2 cannot af-

fect PsyBoG. Therefore, we only need to see how the in-

crease of the number of IP addresses affects the PsyBoG

workload. Figs. 12 and 13 illustrate the relationship be-

tween the number of queries m and the number of IP ad-

dresses k. As we can see, k shows a relatively small in-

cremental trend while m increases, which makes perfect

sense. The maximum number of k in a certain network is

obviously limited, i.e., the IP range for the /16 campus net-

work is only 65,536. Therefore, the incremental ratio of the

number of IP addresses decreases while m increases, and

finally, k will no longer increase when it reaches its max-

imum value max(k). Accordingly, a relation function f be-

tween m and k can be evaluated directly as follows.

k = f (m) = log m

The workload of PsyBoG increases in a logarithm scale

while the size of given DNS traffic is linearly increased.

Consequently, we can conclude that PsyBoG is scalable.

5.6. Overhead estimation

The practicality of PsyBoG was evaluated by estimating

the computation and memory overhead for each of its core

methods, PSD, SPT, and pDist. We first consider the compu-

tation overhead as follows:

• PSD computation overhead: The computation time for

PSD is affected by the length of the input signal (seg-

ments) n and the number of execution rounds r = L
n ,
mains as a function of the number of queries for scalability estimation.
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Fig. 13. Number of IP addresses accounted in a linear increment with a log-scale x axis. This provides proof of the log-scale increment of the number of

IP addresses.

Table 6

PSD computation time for a 24 h trace (per IP address) and

the pDist calculation time for a single IP address.

Number of segment n Time for PSD Time for pDist

(ms) (μ s)

256 9.62 3.6

512 10.30 7.0

1024 10.87 16.0

2048 11.64 31.1

4096 12.73 63.4

8192 12.58 117.8

16,384 13.75 243.0
where L is the total time length of input data. In our

experiments, the maximum value of n is limited to

16,384; therefore, the PSD computation time for a sin-

gle round is reduced to the expected time. Moreover,

the number of PSD execution rounds r is decreasing as

long as n is increasing. Consequently, the computation

overhead for PSD depends only on the total length of

the input data L and the number of hosts k.

Table 6 shows the average PSD execution time per IP

address for a 24-h trace. As we can see, the PSD com-

putations required only 9.62–13.75 ms, which is a small

variation in spite of the different lengths of the input

signal n. Considering the different length of n, the PSD

computations required only 81.52 ms for a single host.

Based on the execution time, the PSD calculation for

the B-class network (65,536 IP range) will require 5342

s (less than 2 h). In fact, it required only approximately

2 h to analyze a 24-h trace for approximately 387 K

hosts (KrTLD2) using a multi-threading scheme with a

quad-core processor. We believe that this PSD compu-

tation overhead is relatively small.

• SPT computation overhead: SPT only requires a small

portion of computation overhead. After the PSD anal-

ysis, SPT performs n
2 ∗ r time comparisons for a single

IP address. In our experiments, SPT only required an

average of 8.58 μ s for a 24-h DNS trace. Considering
the different lengths of n, SPT only requires 0.6 ms. For

the B-class network, SPT will require less than 40 s. As

mentioned above, we used multi-threading, and as a re-

sult, SPT required less than 1 min for KrTLD2. This is an

almost negligible computation overhead.

• pDist computation overhead: pDist is performed for

each pair of hosts, which requires k ∗ (k − 1) times

computation. Even though the pDist operation for a sin-

gle round only requires several microseconds, the to-

tal computation overhead might be huge as a result

of the k2 computation rounds. Nevertheless, the num-

ber of IP addresses k could be limited in accordance

with the IP range of a certain monitoring network as

we mentioned before. Fig. 14 exhibits the statistics of

our test data. As we can see, the accumulative num-

ber of IP addresses represents the log-scale increment

(Fig. 14(b)), while the total number of queries is con-

stantly increasing (Fig. 14(a)). Furthermore, the num-

ber of IP addresses detected during every hour does not

show significant change (Fig. 14(c)). From this observa-

tion, we can say that the number of IP addresses k for

a certain moment is grounded in a reasonable and ex-

pectable number.

Table 6 presents the average computation time for

pDist. pDist records different computation times de-

pending on the length of the input signal n, but the

maximum value of the computation time is only 243

μ s. Recall that pDist leverages only the hosts discov-

ered by the SPT analysis as they display significant

periodic communication attempts. Accordingly, we ex-

pect the number of hosts k for the pDist operation to

be considerably reduced. In our experiments, only 223,

116, 711, 713, 111, and 750 IP addresses are actually

fine-grained from a total of 25K, 23K, 48K, 46K, 63K,

and 378K IP addresses, respectively. Under the assump-

tion that there are 1,000 revealed IP addresses and the

hosts are all discovered by n = 16,384, pDist will re-

quire 243 s (1000 × 1000 × 0.000243 s), which is also a

relatively short computation time.
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Fig. 14. The statistics of the DNS data. The number of IP addresses is converged while the total number of queries is continuously increased.
Now, we estimate the memory overhead for PsyBoG.

• PSD memory overhead: PsyBoG applies the sliding

window strategy for an input data length L. According

to the strategy, PSD generates the corresponding peri-

odograms for every round r, where r = L
n . The peri-

odogram ordinates have a length n
2 and each ordinate

can be represented with 4 bytes (type double) to store

the power of each frequency n
2 .(

r ∗ n

2

)
∗ 4 =

(
L

n
∗ n

2

)
∗ 4 = L

2
∗ 4 bytes

In addition, PsyBoG utilizes different lengths of n, e =
|n|. Because the periodograms are temporarily stored

in memory before SPT is performed, we can measure

the PSD memory overhead for a single IP address as

follows.

e ∗ L

2
∗ 4 bytes

In our experiments, e = 7 and L = 86,400 s; thus, the

total PSD memory overhead for each IP address was

1.2 MB. Note that, the PSD computations for individ-

ual IP addresses are not influenced by each other, which

means that only four PSD computation were operating

simultaneously in our experiments due to the multi-

threading scheme running on a quad-core processor. As

a result, 4.8 MB of memory overhead was incurred.

• SPT memory overhead: In terms of SPT memory over-

head, we only have to consider the memory spaces for

a single periodogram with the highest significant peak

value. From the periodograms Pxx[Kn/2] which are the

results of the PSD computation for a single host, SPT

analyzes g∗
x for Pxx[Kn/2] and selects a representative

periodogram Pii[Kn/2] with the highest significant peak

value g∗
i
. Therefore, the SPT memory overhead for a sin-

gle IP address is,

n

2
∗ 4 bytes

A comparison of each of the SPT results in the pDist op-

eration requires us to maintain the representative peri-

odograms for k hosts in memory.

k ∗ n ∗ 4 bytes

2

In the worst case achieved with our experiments,

where n = 16,384 and k = 387K (KrTLD2), SPT requires

approximately 12 GB of memory space, which is con-

siderable. Nevertheless, considering the fact that there

was only a relatively small portion of IP addresses (kSPT

= 750), where kSPT = |IP| and IP = {ip|SPT(ipi) ≥ z, ipi ∈
IPk}, the SPT memory overhead was reduced to 24 MB,

which is almost negligible.

• pDist memory overhead: The result of a single pDist

computation occurs in the range between 0 and 1; thus,

pDist requires 4 bytes of memory space (double) to

store the result for a single computation. Because there

are kSPT IP addresses that have to be compared, the

memory overhead for pDist would be,

(kSPT )2 ∗ 4 bytes

As we mentioned above, the number of IP addresses

kSPT is a small number. The pDist memory overhead is

also accounted in a very practical manner.

Through the overhead estimation, we show that the

core methods of PsyBoG, namely, PSD, SPT, and pDist, are

very efficient and scalable even for large-scale DNS traces.

We believe that the overheads for PsyBoG operations are

tolerable in terms of practical usage.

6. Discussion

In this section, we discuss potential techniques that

may exploit PsyBoG, and discuss the extent to which Psy-

BoG is resilient against those techniques. Ways to improve

the efficiency of PsyBoG and further research topics are

also addressed.

6.1. Random query pattern

PsyBoG leverages the periodic query patterns of bot

programs in accordance with the assumption that the bot

program simply follows the source code that is written to

ensure automatic and constant bot operations. We already

used experiments to show that this assumption holds for

real-world botnets. Nevertheless, bot writers might at-

tempt to evade PsyBoG by modifying their query patterns.
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Fig. 15. Periodicity measurements against randomly generated query patterns.

t

A reasonable potential alternative would be to apply a ran-

dom function to generate non-periodic queries. More pre-

cisely, bot authors could randomize the time interval be-

tween DNS queries by applying a random function rand(y),

where the time interval ranges from 0 to y. A randomized

time interval i located within this range, could exploit the

periodicity of query patterns.

To examine this, we analyzed the periodicity measure-

ments against artificially randomized query patterns. First,

we generated random query traffic with different maxi-

mum random ranges from 2 to 3600, which means that,

e.g., a random query traffic x[n]rand(600) has a query se-

quence such as xk−1, xk, and xk+1, and the time intervals

between the queries can be random numbers between 0

and 600. Second, the input time series was built by varying

the size of the segment s, e.g., 5, 10, 30, 60, 300, and 600

s. According to s, every query generated on time from t to

+ s, is accumulated into a single segment of time series

Tj. Finally, the PSD of time series T was analyzed. Fig. 15

depicts the significant peak testing with the randomized

query patterns.

According to the simple tests, we confirmed that the

randomization of query pattern is able to disturb the pe-

riodic pattern extraction. Even though some random query

traffic like x[n]rand(25) could be detected by using s ≥ 5,

growing s would bring serious false positives. In order to

detect the randomized query patterns, it is necessary to

leverage more information such as queried domain names,

which are not affected from the randomization. This prob-

lem will be investigated as part of our future work.

6.2. Slow query pattern

Bot authors might apply slow query patterns to hide

their communications. For example, some bots could gen-

erate a DNS query once every hour, day, or week to com-

municate with the botmaster. However, the application of

slow query patterns causes the function of botnet to de-

teriorate considerably. The only reason botnets continue to
prevail is their ability to concentrate attack resources for

massive attacks; therefore, the power of a botnet com-

pletely depends on its availability and capability. Slow

query patterns ruin the availability and capability, because

slow queries limit the response to the master’s commands.

Generating slow queries also limits the agility of a botnet,

which may be the cause of a single-point failure. Despite

the limitations, a botmaster could apply slow query gen-

eration. However, theoretically, PSD analysis is not affected

by large gaps of two queries, as long as the given time se-

ries is long enough to carry the periodic signal.

6.3. Bot hosts behind NAT boxes

Bot hosts can be behind a NAT box. In such a case, Psy-

BoG is only able to recognize the IP address of the NAT,

because it is limited to harvest an enough information of

the hosts from DNS traffic. However, it does not mean that

PsyBoG fails to extract the periodic queries coming from

behind of the NAT. No matter how many hosts are behind

a NAT, if a periodic query signal qi from one of the hosts is

aggregated at the NAT, Q ⊂ {q1, …, qk}, the periodicity of qi

is reflected in a certain frequency of aggregated signal Q.

Therefore, detecting periodic behavior of bot hosts behind

a NAT is not our concern.

6.4. More efficient PsyBoG

The efficiency of PsyBoG could be further improved

by considering another approach, which involves the

coarse-graining of the IP addresses in accordance with the

number of queries per host. In the real world, the network

usage per host follows a power law, and the DNS usage

also follows a similar pattern. Furthermore, considering

the fact that recent botnets generate a large number of

domain queries to evade botnet countermeasures, there

is a great possibility that bot hosts could be ranged in

IP addresses located in the upper region of the power

law. Driven by this phenomenon, we could improve the
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Fig. 16. Statistics of the number of queried domains per IP address.
efficiency of PsyBoG by narrowing down the number of

hosts to be investigated.

Fig. 16 depicts the number of queries generated by each

host for 24 h. Among the hosts appearing in our data set,

only approximately 20% of the hosts generate over 300

queries, and none of the other 80% of the hosts was iden-

tified as an abnormal host. The number 300 should obvi-

ously not be regarded as a precise number for the thresh-

old for every DNS server, but we strongly believe that there

is an appropriate threshold for DNS servers in accordance

with their circumstances i.e., considering the number of

clients, regions, and monitoring times. Because the PsyBoG

operations rely on the number of hosts to be analyzed,

reducing this number should enhance the speed and ef-

ficiency of the PsyBoG operations. If we require a more

efficient way to apply PsyBoG in the view of the limited

system resources in practical usage, reducing the number

of hosts before the PSD analysis according to their query

amounts could be a reasonable choice.

6.5. Malicious domain extraction

In the modern Internet, DNS is very important from a

security perspective. Considering the way in which mod-

ern botnets utilize DNS in their life cycle and the fact that

DNS is the gateway for current Internet usage, DNS forms

the topic of many security research efforts and attracts the

attention of many network operators. More precisely, a do-

main name is the key element of botnet mitigation. Once

a domain name is revealed as a malicious domain used by

a botnet, the responders are able to seize the botnet by

simply updating the zone files to deny access to the corre-

sponding domain information. Driven by this reason, most

of the botnet countermeasures have focused on the discov-

ery of malicious domain names.

Unfortunately, the number of domain names is growing

extremely fast; thus, the scalability problem has a negative

impact on previous countermeasures. The rapid increase in

Internet usage as a consequence of the growth in the num-

ber of Internet users and devices has resulted in an in-

crease in the total volume of DNS traffic along with the In-

ternet traffic. Especially, the increasing number of domain

names simply follows the increase in DNS traffic. Hence,
extracting malicious domains from among the millions of

domains is a great challenge in terms of practicality.

PsyBoG operations do not rely on the domain names.

Rather than extracting malicious domain names, we have

focused on IP address discovery, because the number of

IP addresses is limited in the modern Internet. Actually,

discovering the malicious host constitutes another way to

mitigate botnet threats. With IP address discovery, PsyBoG

effectively mitigates the damage caused by botnets. Never-

theless, there is no doubt that denying access to the ma-

licious domains is the most efficient approach. Therefore,

the question remains as to which other approaches could

be considered to achieve the malicious domain extraction

with PsyBoG.

The most reasonable approach would be to extract

those domains with the most significant effect on the

periodicity. For example, if thousands of distinct domain

names have been queried and only a small number of

malicious domains are queried periodically, by performing

signal processing, only the malicious domains would be af-

fected by significant peak values. Therefore, the malicious

domains can be extracted if we can calculate the rate at

which each domain influences the significant peak value.

This work will form part of further research.

7. Related work

Since botnet becomes one of the most significant Inter-

net threats, numerous research efforts have been devoted

to mitigate botnet threats. In this section, we review vari-

ous botnet detection mechanisms that can be classified ac-

cording to their approaches, detection object, and source

data.

In the early period of the age of botnet, many botnet

detection approaches have been suggested and host-based

detection is the one of them. Host-based detection ap-

proaches mainly aim to investigate abnormal activities

in a computer by analyzing the internal components of

the computer system [5,50]. Main advantage in using

host-based detection approaches is that they allow normal

users to easily and actively detect abnormal activities in

their system.
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BotSwat [9] is a tool to monitor the execution of Win32

binary by intercepting the system calls. BotSwat traces all

input data using a taint propagation trace technique to

discover botnet commands, regardless of botnet’s commu-

nication protocol and architecture. Unfortunately, BotSwat

showed unignorable false alarms and high system over-

heads caused by the taint propagation scheme.

Liu et al. [51] models botnet behavior into three phases;

automatic startup, C&C channel establishment, and launch-

ing attack. In their work, a tool called BotTracer was im-

plemented to analyze these phases with the assistance of

virtual machine. BotTracer was built on an assumption in

which a bot code is unable to recognize the virtual ma-

chine, but, in real-world, there are many techniques which

can detect the virtual machine. Furthermore, the three

phases of behavior can be monitored in normal program;

thus, it brings many false detection results in practice.

Jacob et al. present JACKSTRAWS [52], which leverages

system call information extracted from bot code execution.

By monitoring system call graphs observed from the code

execution, they distinguish unknown C&C communication

traffic and unrelated traffic with machine learning tech-

niques. However, if traffic that is not related to C&C com-

munication is included in the learning process, the detec-

tion results would be compromised. Moreover, recent bot-

nets may not strictly follow the system call graphs.

Despite the devoted research efforts, host-based detec-

tion approaches have a fundamental weakness. Performing

individual computer system analysis is a cost inefficient

approach. Because of security awareness of normal users,

deployment of detection mechanism is also an unsolved

problem [53].

There have been efforts on network-based detection

such as Bothunter, BotSniffer, BotMiner, and BotGrep. BotH-

unter [54] models a botnet infection model and deals with

IDS-driven dialog correlation. BotSniffer [55] focuses on a

highly synchronized communication of botnets, and Bot-

Miner [13] applies clustering algorithms to perform cross-

plane correlation. BotGrep [56] analyzes C&C communi-

cation on the overlay topologies to defeat P2P botnets.

BotCop is a botnet traffic detection system which classifies

the network traffic into different application communities

using packet payload signatures and a decision tree model.

In spite of these outstanding research results, network-

based botnet detection is still suffering from high false

alarms and significant overhead due to the massive traffic

volume.

Tegeler et al. proposed BotFinder [24], a system to de-

tect infected hosts in a network using only high-level prop-

erties of bot traffic. BotFinder applies a clustering approach

to model botnet behaviors, especially bot traffic patterns

including time interval, duration, and FFT of communica-

tion. This work is the one which is partially similar to our

work, but BotFinder still suffers from the user generated

traffic and huge volume of network traffic.

As the network-based botnet detection mechanisms

have experienced difficulties when processing huge

amounts of network traffic, the DNS has been considered

a source of malware detection [57,58]. Compared to other

research, DNS-based approach gives researchers advan-

tages to face with payload encryption and huge amounts
of traffic. From the advantages, many research has focused

on DNS traffic analysis [59].

BotGAD [15] distinguished group activities in DNS traf-

fic from legitimate users activities by using the concept of

the client set of a domain name. BotGAD defined a group

activity as an inherent property of botnets. They mea-

sured the similarity of the DNS clients according to domain

names using quantitative likelihood. Unfortunately BotGAD

can be countered by sophisticated botnets which separate

their bot hosts into several sub-groups using multiple do-

main names.

Choi et al. [60] and Yadav et al. [61,62] respond to the

multi-domain botnet problem by grouping domain names

based on the lexical similarity of domain names and net-

work features, such as corresponding IP addresses. How-

ever, these approaches still have limitations when faced

with the multi-domain malwares that do not use DGA and

have little lexical similarity in their domain names.

Sharifnya et al. [63] introduced reputation-based DGA

botnet detection approach. They identify DGA domain

names by estimating the number of failed DNS queries.

Their idea is that only small number of DGA domain

names are resolved to be used as C&C servers; thus, there

is a high possibility that the failed DNS queries indicate an

infection of DGA botnet. However, their approach is not ca-

pable of mitigating other domain-fluxing techniques used

by botnet, such as DDNS and fast flux.

Antonakakis et al. [64] utilized NX domain names for

detecting DGA domain names. Their approach is efficient

to detect newly generated DGA domain names. However, it

could not respond to most of malicious DNS queries except

DGA-based C&C queries, because the clustering method

of Pleiades was dependent on lexical and structural fea-

tures of domain names. Therefore, their detection coverage

would be limited, because DNS activities of botnet are not

limited on C&C communication.

Salomon et al. [65] proposed a Bayesian approach for

botnet detection based on the similarity of their DNS traf-

fic. The hypothesis of their approach is that bot hosts be-

longing to the same botnet have similar DNS traffic query

pattern that can be distinguished from normal DNS traffic.

However, their study results can be affected by background

traffic, because there is a high possibility of a similarity of

DNS traffic in well-known domain names.

As compared to the previous studies, PsyBoG is the

most capable approach to detect sophisticated botnets

leveraging highly advanced evasion techniques, by consid-

ering inherent properties of botnet e.g., fully automated

DNS query generation. Furthermore, PsyBoG has resilience

against large-scale DNS traffic, therefore the increase in the

number of network traffic is no longer a problem.

8. Conclusion

This paper presented an introduction to PsyBoG, a

novel botnet detection approach that leverages large-scale

DNS traffic. PsyBoG addresses practical problems associ-

ated with real-world DNS traffic analysis, including scala-

bility, normal user traffic, and botnet grouping issues. Be-

cause the number of domains has been increasing rapidly,

recent botnet countermeasures that rely on domain-based
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analysis have experienced difficulties to deal with huge

amounts of DNS traffic. By contrast, PsyBoG is based on

IP-based analysis. Despite the rapid increase in the vol-

ume of DNS traffic, the total number of IP addresses is

limited in accordance with the size of the monitoring

network. Therefore, PsyBoG guarantees scalability for

large-scale DNS traffic. Through the PSD analysis, we can

successfully identify malicious behavior regardless of the

existence of normal user traffic. The PSD analysis leverages

the periodic patterns of query generation, such that ad-

vanced botnets, which utilize domain-fluxing techniques,

such as DDNS, fast flux, and DGA, can be successfully dis-

covered. Furthermore, PsyBoG performs botnet detection

by grouping the periodic behavioral patterns of bot in-

fected hosts. In our experiments, we evaluated the per-

formance of PsyBoG with large-scale DNS traces collected

from real-world malware samples and DNS servers. With

the various real-world DNS traces, we also analyzed the

effectiveness, efficiency and robustness of PsyBoG. The ex-

perimental results showed that PsyBoG is capable of deliv-

ering superior performance in terms of accuracy and prac-

ticality. In the future, we plan to extend the abilities of

PsyBoG. To improve the resilience of PsyBoG against highly

advanced botnet threats, we are considering fine-grained

clustering methods as well as the extraction of malicious

domains. We believe that PsyBoG will provide efficient and

effective prevention of botnet operations in the current

and future Internet.
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Appendix A. Detection results for Campus1 and

Campus2

Known malicious group

Name Domains IP#

Palavo ilo.brendz.pl 2

ant.trenz.pl

Palavo(2) peer.pickeklosarske.ru 3

juice.losmibracala.org

jebena.ananikolic.su

teske.pornicarke.com

Palavo(3) pica.banjalucke-ljepotice.ru 2

sandra.prichaonica.com

l33t.brand-clothes.net

W32/Tupym-D h1.ripway.com

Worm.Win32.AutoRun.fnc www.balu0{xx}.0catch.com (14)1 3

www.gearext.com

Trojan-pws.Win32.QQPass @[a-z]{3,6}.@[a-z]{2,3}.ijinshan.com

(4)

6

@[a-z]{2,3}.@[a-z]{2,5}.duda.net

(14)

up.liebao.cn
Unknown malicious group

Name Domains IP#

N/A @[a-z]{2}.cdn.qhimg.com (4) 24

@[a-z]{3}.shouji.360tpcdn.com (3)

loveting.no-ip.org 1

sexman69.mlbfan.org 3

sh.rstrainer.net 1

sh.rstrainer.net.local

biz5.sandai.net 9

miserupdate.aliyun.com

www.xiaopijia.com 2

data2.168sm.com 1

r.usyncapp.com 12

t.usyncapp.com

l33t.brand-clothes.net 3

d2uzsrnmmf6tds.cloudfront.net 92

@[a-z]{3,6}orbitdownloader.com (3) 2

sc{xx}.rules.mailshell.net (6) 10

js.moatads.com 45

optimizedby.brealtime.com 35

mydati.com 5

c.ztstatic.com 5

cm1.jssearch.net 109

s@[a-z]{1}.kgridhub.net (6) 37

hcimg.realclick.co.kr 51

Adware servedby.bigfineads.com 2

b.scorecardresearch.com 61

servedby.bigfineads.com 2

servedby.myinfotopia.com 4

1The domains have (n) variations with changing characters at the

braces.

Suspicious group

Name Domains IP#

N/A @[a-z][a-z0-9]{0,7}.www.0538hj.com (2644) 1

@[a-z][a-z0-9]{0,7}.lieb.76yxw.com (40)

@[a-z][a-z0-9]{0,7}.www.8885ok.com (82)

@[a-z][a-z0-9]{0,7}.baidu.915hao.com (178)

@[a-z][a-z0-9]{0,7}.www.jrj001.net (38)

@[a-z][a-z0-9]{0,7}.www.kr5b.net (40)

@[a-z][a-z0-9]{0,7}.wwee.iinfobook.net (154)

@[a-z][a-z0-9]{0,7}.www.jeeweb.net (40)

@[a-z]{8}.www.chuansf-1.com (19)

@[a-z]{1}.wwww.boeeo.com (10)

@[a-z]{1}.www.booooook.com (24)

@[a-z]{1}.www.jiaduolu.net (15)

@[a-z]{1}.jiaduolu.net (15)

@[a-z]{1}.qianliri.com (13)

@[a-z]{1}.hj19.com (24)

@[a-z]{4,8}}.com (134) 3

@[a-z]{8}.info (128)

@[a-z]{8}.net (132)

xayazkesh.in 6

dubstepdrop.net

halo4beta.co
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Appendix B. Detection results for DDNS1 and DDNS2

Known malicious group

Name Domains IP#

P2P -Worm.Win32 a0.twimg.com 263

a2.twimg.com

Kolabl worm mails3.pes2009.biz 34

mails.pes2009.biz

TR/Dropper.Gen mefound.com 13

Mal/FBScam-E medialand.net 1

rpcthai.com

e-junky.net

Geinimi clicksor.com 12

trafbuy.ru

bhek webs.ono.com 20

youvoid.info

www.ffil.uam.es

Travnet gamil.com 10

Mariposa legion.sinip.es 4

Mariposa(2) booster.estr.es 15

shv4b.getmyip.com

shv4.no-ip.biz

Mariposa(3) bfisback.no-ip.org 23

butterfly.sinip.es

qwertasdfg.sinip.es

youare.sexidude.com

mierda.notengodominio.com

Mariposa(4) legionarios.servecounterstrike.com 6

legion.sinip.es

Palevo irc.zief.pl 13

Palevo(2) tlaloc666.com 4

Palevo(3) alotibi.panadool400.com 3

Palevo(4) shv4b.getmyip.com 14

shv4.no-ip.biz

Palevo(5) panchitox.laweb.es 1

penchatox.sin-ip.es

Palevo(6) f5v9w.com 3

Palevo(7) ns3.mclovin.org 4

Palevo(8) bff4.7oorq8.com 1

bff.7oorq8.com

Palevo(9) masterkey.com.ua 2

mst.com.ua

bunker.org.ua

ssl.aukro.ua

Unknown malicious group

Name Domains IP#

Nitol @[a-z]{5,9}.3322.org (52) 195

N/A google.2waky.com 1

isasecret.com 1

Appendix C. Detection results for KrTLD1 and KrTLD2

Unknown malicious group

Name Domains IP#

N/A @[a-z]{3,17}.aghouse.kr (18) 247

@[a-z]{3,17}.bsassy.kr (12)

@[a-z]{3,17}.dygl.kr (32)

@[a-z]{3,17}.f4u.kr (24)

@[a-z]{3,17}.fnplus.kr (16)

@[a-z]{3,17}.iticker.kr (13)

@[a-z]{3,17}.kyland.kr (13)

@[a-z]{2,17}.lemonsky.kr (17)

@[a-z]{2,17}.sc2424.kr (17)

@[a-z]{2,17}.shoepreme.kr (17)

@[a-z]{5,17}.sj4989.kr (11)

@[a-z]{3,17}.sweetaroma.kr (17)

@[a-z]{2,15}.ycosori.kr (16)
Suspicious group

Name Domains IP#

N/A @[a-z]{10}.interiorfine.kr (5,484) 114

@[a-z]{10}.interni.kr (748)

@[a-z]{10}.project365.kr (1,695)

@[a-z]{3}.apzr.kr (24) 6

@[a-z]{3}.bwep.kr (52)

@[a-z]{3}.jtvx.kr (96)

@[0–9]{4}[a-z0-9]{4,13}.b8z.kr (10) 9

@[0–9]{4}[a-z0-9]{4,13}.q0z.kr (7)

@[a-z0-9]{5}.biztalkguy.kr (19) 223

@[a-z0-9]{5}.gallery-m.kr (32)

@[a-z0-9]{7,13}.ayj.kr (7) 283

@[a-z0-9]{5}.cyberna.kr (52)

@[a-z0-9]{3,5}.missingchild.kr (25)

@[a-z0-9]{2,12}.mirrorball.kr (22)

@[a-z0-9]{10,14}.star777.kr (6)

@[a-z0-9]{4,18}.villet.kr (28)

@[a-z]{5,10}.bo0.kr (19) 157

@[a-z]{4,6}.brkfpeyz.kr (5) 6

@[a-z]{4,8}.cakdlsjt.kr (52)

@[a-z]{4,7}.dltkfkadltksms.kr (17)

@[a-z]{3,5}.hoojo.kr (21)

@[a-z]{4,8}.pvkskfduw.kr (7)

@[a-z]{4,9}.xalefhoeg.kr (9)

@[a-z]{3}[0–9]{2,3}.yxqpo.kr (33)

@[a-z]{4,7}.zekflakh.kr (12)

@[a-z]{2,13}.tooz.kr (19) 110
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