
Computer Networks 56 (2012) 20–33
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet
Identifying botnets by capturing group activities in DNS traffic

Hyunsang Choi, Heejo Lee ⇑
Department of Computer Science and Engineering, Korea University, Seoul 136-713, Republic of Korea

a r t i c l e i n f o
Article history:
Received 13 October 2010
Received in revised form 21 June 2011
Accepted 22 July 2011
Available online 30 July 2011

Keywords:
Botnet
Group activity
DNS
1389-1286/$ - see front matter � 2011 Elsevier B.V
doi:10.1016/j.comnet.2011.07.018

⇑ Corresponding author.
E-mail addresses: realchs@korea.ac.kr (H. Cho

(H. Lee).
a b s t r a c t

Botnets have become the main vehicle to conduct online crimes such as DDoS, spam,
phishing and identity theft. Even though numerous efforts have been directed towards
detection of botnets, evolving evasion techniques easily thwart detection. Moreover, exist-
ing approaches can be overwhelmed by the large amount of data needed to be analyzed. In
this paper, we propose a light-weight mechanism to detect botnets using their fundamen-
tal characteristics, i.e., group activity. The proposed mechanism, referred to as BotGAD
(botnet group activity detector) needs a small amount of data from DNS traffic to detect
botnet, not all network traffic content or known signatures. BotGAD can detect botnets
from a large-scale network in real-time even though the botnet performs encrypted com-
munications. Moreover, BotGAD can detect botnets that adopt recent evasion techniques.
We evaluate BotGAD using multiple DNS traces collected from different sources including
a campus network and large ISP networks. The evaluation shows that BotGAD can auto-
matically detect botnets while providing real-time monitoring in large scale networks.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

A botnet is a network of computers compromised by
malicious software. The botnet is operated by a criminal
entity to perform Internet attacks, such as identity theft,
spam distribution, and DDoS attack. All of these infected
hosts are unwilling victims, performing malicious tasks
unbeknownst to their owners.

Researchers have focused on bot traffic detection using
incidental traits of prevalent bots. However, the detection
approaches can be quickly overcome by evasion tech-
niques. Moreover, some approaches need to run with an
overwhelming amount of data, which becomes ineffective
for high speed networks.

We have proposed a botnet detection mechanism
using a fundamental property of botnets [1,2]. We
focused on an underlying common association among
. All rights reserved.

i), heejo@korea.ac.kr
infected hosts, command and control (C&C) servers and
victims, and found that the botnet generally acts as a
coordinated group. Using this ‘‘group activity’’ property,
it is possible to detect unknown botnets, irrespective of
their communication protocol and structure. BotGAD
detects botnets using DNS traffic, since it is possible to
capture botnet group activities by monitoring the DNS
traffic and monitoring DNS traffic has less overhead than
monitoring the entire network traffic. Moreover, DNS
monitoring enables botnet detection at their early stages,
since botnet DNS traffic is often sent prior to performing
attacks.

However, our previous mechanism has three limita-
tions as follows:

� The mechanism may generate false negatives, when a
set of infected hosts in a botnet is changed frequently.
For example, a part of a botnet can appear only for a
short time because they are removed by users or
temporally deactivated. The changes in the botnet
can decrease detection accuracy of our previous
mechanism.

http://dx.doi.org/10.1016/j.comnet.2011.07.018
mailto:realchs@korea.ac.kr
mailto:heejo@korea.ac.kr
http://dx.doi.org/10.1016/j.comnet.2011.07.018
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

H. Choi, H. Lee / Computer Networks 56 (2012) 20–33 21
� The previous mechanism is too sensitive against detec-
tion parameters. For example, if a time window param-
eter of the previous mechanism is misconfigured, the
mechanism can generate a significant number of false
positives or false negatives.
� The mechanism cannot detect recently introduced eva-

sive botnets that utilize a domain generation algorithm
for C&C. For example, Kraken/Bobax [3], Srizbi [4], Tor-
pig [5] and Conficker [6] use the domain generation
algorithm (DGA) to evade detection.

To overcome the limitations, we improve the mecha-
nism by applying three methods: error correction, cluster
analysis, and hypothesis test.

� Error correction. We develop the error correction
method to alleviate errors caused when analyzing
group activities. Error correction can decrease false
alarms caused by unexpected changes in a botnet or
by misconfigured detection parameters. We devise col-
umn filtering and row filtering operations to correct the
errors.
� Cluster analysis. We develop a clustering method using

unsupervised machine learning to detect a set of corre-
lated botnets. Several features are devised to classify
correlated clusters. Each cluster is analyzed to detect
botnet clusters.
� Hypothesis test. We adopt Sequential Probability Ratio

Testing (SPRT) [7], as a hypothesis test for sequential
analysis, where a decision is made within a small num-
ber of rounds with bounded false alarm rates. The SPRT
method guarantees a higher level of confidence to make
decisions than simple threshold based detection used in
our previous mechanism.

The three methods are added in BotGAD to enhance
accuracy and robustness against evasions.

We evaluate BotGAD using real-life DNS traces col-
lected from several networks, such as a campus network
and a large ISP network. BotGAD can report hundreds of
botnet domains and correlated botnet domain clusters. It
takes only a few minutes to analyze an hour’s DNS trace
of a large ISP network. The evaluation shows BotGAD can
automatically detect botnets in real-time, even though
they apply evasion techniques, such as the DGA algorithm.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work. We describe the botnet group
activity, detection algorithms and a framework of BotGAD
in Section 3. We evaluate BotGAD performance in Section 4
and analyze results. We also discuss possible evasion tech-
niques in Section 4. We draw conclusions in Section 5.
2. Related work

In this section, we review several network based botnet
detection approaches that can be classified machine learn-
ing approaches and non-machine learning approaches. We
further classify the approaches according to their detection
object such as botnet traffic, cooperative behavior, and
spamming botnets. We also distinguish the approaches
by the source data they analyze (DNS traffic or other net-
work traffic).

2.1. Non-machine learning approaches

2.1.1. Botnet traffic detection
DNS-based mechanisms. Ramachandran et al. [8] devel-

oped techniques and heuristics derived from an idea that
detects DNSBL (DNS-based block list) reconnaissance
activity of the botmaster whereby the botmasters perform
lookups against the DNSBL to determine whether their
spam bots have been blacklisted. However, it is easy to de-
sign evasion strategies. Salomon et al. [9] proposed and
evaluated a Bayesian approach for bot detection based on
the similarity of their DNS traffic to that of known bots.
The hypothesis of the proposed approach is that bots in
the same botnet have similar DNS traffic that can be distin-
guished from legitimate DNS traffic. However, the ap-
proach may generate false positives when a domain
name is queried by one infected host and a few uninfected
hosts. Sato et al. [10] also proposed a similar approach to
detect botnets. Brustoloni et al. [11] described DNS Flagger,
a device for ISP bot detection. DNS Flagger matches sub-
scribers’ DNS traffic against IP and DNS signatures with
the IP addresses and domain names of blacklisted C&C
servers, respectively.

Network traffic-based mechanisms. BotHunter [12] mod-
eled the botnet infection life cycle as sharing common
steps. It then detects botnets employing IDS-driven dialog
correlation according to the bot infection life-cycle model.
Karasaridis et al. [13] also proposed a similar approach
using IDS-driven dialog correlation according to a defined
bot infection dialog model. These bot infection model-
based approaches are useful to detect botnets with low
false positives. However, malware not conforming to these
models would seemingly go undetected. BotCop [14] is a
botnet traffic detection system in which the network traffic
is fully classified into different application communities
using payload signatures and a decision tree model. How-
ever, the very nature of signature-based detection renders
it easy to evade. RB-Seeker [15] can automatically detect
redirection botnets. RB-Seeker gathers information about
bots redirection activities. Then it utilizes the statistical
methodology and DNS query probing technique to detect
botnet redirection domains. However, RB-Seeker only fo-
cused on the redirection botnets. Zeidanloo and Manaf
[16] proposed a general detection framework that focused
on P2P and IRC based Botnets. The framework is based on
the definition of botnets that is a group of bots that per-
form similar communication and malicious activity
patterns.

2.1.2. Cooperative network behavior detection
The approaches in this category are closely related to

BotGAD since they have a similar concept of capturing
the synchronized botnet communication.

DNS-based mechanisms. Manasrah and Hasan [17] pro-
posed a DNS-based mechanism that is similar to our previ-
ous mechanism [1,2] since they capture botnet group
activities from DNS traffic. However, their approach has
limited coverage because they use a MAC address as an

DNS server C&C server Victim

DNS
queries

Attack
traffic

C&C
traffic

Group
Activity

Target
(Object)

Bot Bot Bot Bot

… Botnet
(Group)

Fig. 1. Botnet group activities (centralized C&C).

22 H. Choi, H. Lee / Computer Networks 56 (2012) 20–33
identifier of a host rather than an IP address. The MAC ad-
dress is visible only to hosts on the same subnet. Therefore,
it is not appropriate for monitoring large-scale networks.

Network traffic-based mechanisms. Reiter et al. proposed
TAMD [18], a system to detect botnets by aggregating traf-
fic that shares the same external destination, similar pay-
load, and that involves internal hosts with similar OS
platforms. BotSniffer [19] is designed to detect IRC or HTTP
botnets using a spatial–temporal correlation of botnets. It
relies on the assumption that all botnets, unlike humans,
tend to communicate in a highly synchronized fashion.
BotSniffer performs string matching to detect similar re-
sponses from botnets, in contrast to BotGAD. Botnet can
encrypt their communication traffic or inject random noise
packets for evasion. Yu et al. [20] proposed a real-time
based botnet activity monitoring mechanism by using net-
work features such as bps, pps and bytes to detect botnet.
However, adversaries can easily manipulate the features
by adding a noise to their network traffic.

2.1.3. Spam bot detection
Most recent botnet detection approaches focus on spam

bot detection because botnets mainly perform spam distri-
bution. Husna et al. [21] investigated the behavior patterns
of spammers based on their underlying similarities in
spamming. Zhuang et al. [22] developed techniques to
map botnet membership by grouping bots into botnets
they look for multiple bots participating in the same spam
email campaign. SPOT [23] is a spam zombie detection sys-
tem for monitoring outgoing messages of a network. SPOT
is designed based on a powerful statistical tool, Sequential
Probability Ratio Test. Botgraph [24] used graph algo-
rithms to detect web provider email accounts used by bot-
nets to send spam. This analysis helped identify accounts
registered by bots during an interval when CAPTCHAs were
subverted, allowing automatic bot registration. Spam bot
detection obtains high accuracy with low false positives.
However, the approaches cannot detect zombie machines
or C&C servers that are important to disarm botnets. Only
spam relays or proxy servers (or some infected hosts when
they directly send spam) are detectable by spam bot detec-
tion approaches. Moreover, spam bot detection cannot pro-
vide early detection because they are post-mortem
methods that can detect botnets only after sending spam
mails.

2.2. Machine learning approaches

2.2.1. Bot traffic detection
DNS-based mechanisms. Antonakakis et al. [25] proposed

Notos, a dynamic reputation system for DNS that uses pas-
sive DNS query data and analyzes the network and zone
features of domains. It builds models of known legitimate
domains and malicious domains, and uses these models
to compute a reputation score for a new domain indicative
of whether the domain is malicious or legitimate.

Network traffic-based mechanisms. BotMiner [26] pre-
sented a botnet detection method that clusters botnet’s
communication traffic and activity traffic. Clustering algo-
rithms are applied and performed cross-plane correlation
to detect botnets. Yu et al. [27] proposed a technique to
detect botnet activities. They transform network traffic
flows into multi-dimensional feature, adopt the sliding
window to retain the continuous network traffic and select
correlation analysis as the similarity measurement. Hosts
whose feature streams belong to the same cluster with
high similarities will be regarded as suspected bot hosts.
Lu et al. [28] proposed an approach for detecting and clus-
tering botnet traffic on large scale network application
communities. They classified the network traffic into dif-
ferent applications using traffic payload signatures, and
used a decision tree model to classify the traffic to be un-
known by the payload content into known application
communities to differentiate the malicious botnet traffic
from normal traffic on each specific application.

2.2.2. Spam bot detection
SNARE [29] investigates ways to infer the reputation of

an email sender based solely on network-level features
that enable it to distinguish spammers from legitimate
senders.

Even though several approaches have been proposed to
detect the botnets, they often suffer from several tactics to
evade the detection methods. Stinson and Mitchell [30]
proposed a systematic framework to evaluate the evadabil-
ity of a detection method to assess the fitness of a detec-
tion method. We discuss possible evasion tactics and
evaluate our mechanism using their systematic framework
in Section 4.3.3.

3. Botnet group activity and detection scheme

In this section, we illustrate the concept of our mecha-
nism and a botnet detection scheme.

3.1. Botnet group activity

The main characteristic of a botnet is embedded C&C
(Command and Control) systems that allow an attacker
(botmaster) to control a pool of compromised machines.
Bots communicate through the C&C systems and perform
malicious behaviors in a coordinated manner. We start
with this fundamental property of a botnet defined as a
‘‘group activity’’. Fig. 1 shows an example of the botnet
group activity which has a centralized C&C. Botnet group
activities are frequently shown in a botnet life cycle,

Table 1
Differences between botnet and normal group activities.

Group
uniformity

Activity
periodicity

Activity
intensity

Botnet Consistent Periodic/
sporadic

Intensive

Normal
group

Fluctuate Irregular Moderate

H. Choi, H. Lee / Computer Networks 56 (2012) 20–33 23
particularly more often in centralized botnets since they
continuously communicate with their C&C servers. Group
activities can be also observed in P2P botnets that have a
decentralized architecture [31] (e.g., Bots within the Storm
P2P botnet frequently contact the NTP (Network Time
Protocol) server as a group to synchronize themselves.

In this study, we use DNS data to capture the botnet
group activities. We use the DNS data for three reasons.
First, DNS queries are frequently generated during the
operation of botnets. Second, DNS occupies only a small
portion of network traffic so that we can greatly reduce
the amount of data to be handled. Third, DNS monitoring
enables botnet detection at their early stages, because
the DNS traffic is often sent when bots find C&C servers
prior to performing attacks.

In general, the two main purposes of DNS lookup in bot-
nets are (1) rendezvous points lookup (C&C servers or up-
date download servers) and (2) victim lookup.

Rendezvous point lookup. Botnets send DNS queries
when they look up C&C servers or update servers. Once a
vulnerable machine has been infected, the machine con-
nects to C&C servers to receive orders, and finds update
servers to download new binaries. Generally, botnets use
DNS to find IP addresses of the rendezvous point [32].
IRC protocol based bots frequently send PING/PONG mes-
sages to keep their connection with a C&C server and HTTP
protocol based bots periodically/sporadically send HTTP
requests to deliver commands from C&C servers [33]. The
rendezvous point access and the connection maintenance
are repeatedly observed in a botnet lifecycle and can be
considered as group activities (accompanied with DNS
queries sent in a similar fashion). Some botnets apply a dy-
namic DNS [34] service to migrate C&C servers frequently.

Victim lookup. Botnets send DNS queries when they per-
form malicious behavior, such as DDoS attacks, spam dis-
tribution and click frauds. For example, when the botnet
sends spam, the botnets look up domains in spam recipient
lists [35]. Recent spam bots such as Rustock [36] periodi-
cally obtain a chunk of recipients and send spam to the
recipients. The spam sending behavior of a botnet can in-
duce massive DNS queries for the victim lookup.

Consequently, the coordinated DNS transmission is one
of the most frequently observed group activities in a botnet
lifecycle. Group activities can be monitored in normal com-
BotGAD (Bot net

Data
Collector

DNS
server 1

DNS
server 2

DNS
server N

…

Sensor 1

Sensor #2

Sensor N

…

Data
Mapper

Hash Map

Dom 1

Dom 2

Dom 3

Dom X

Domain Map

…

IP 1

IP 2

IP Y

…

IP M

IP M

IP M

…

White
&Black

list

DNS traffic

DNS Info.

DNS traffic

Domain
name

DNS traffic

DNS traffic

Fig. 2. BotGAD fr
munication as well (e.g., flash crowds). However, group
activities of botnet have discriminative characteristics as
shown in Table 1. Members of a botnet (i.e., bots) are rela-
tively stable when they perform group activities (consis-
tent group). Conversely, members in a normal group (i.e.,
benign hosts) generally keep changing over time (inconsis-
tent group). Botnet group activities generally appear inten-
sively having a periodic/sporadic pattern, whereas benign
group activities appear at random. Our detection mecha-
nism uses these characteristics to distinguish botnets from
legitimate groups. The dynamics of IP addresses can affect
the uniformity of the botnet group. The issue of IP dynam-
ics will be discussed in Section 4.3.2.
3.2. BotGAD framework

In this section, we describe the framework of BotGAD. It
consists of five main parts: (1) data collector, (2) data map-
per, (3) correlated domain extractor, (4) matrix generator,
and (5) similarity analyzer (see Fig. 2). The data collector
receives and aggregates DNS traffics from the sensors.
The data mapper parses the DNS traffic and inserts DNS
information into the hash map data structure. The hash
map data structure includes a domain map that has a do-
main name as a key and an IP map as a value, and IP maps
that have an IP address number as a key and the informa-
tion list as a value. The information list has timestamps of
each DNS query and DNS based feature values. The matrix
generator builds a matrix to measure a similarity score.
The correlated domain extractor classifies domain sets
using the DNS based features stored in the hash maps.
The similarity analyzer calculates the similarity score of
generated matrixes. It also performs a hypothesis test to
 Group Activity Detector)

Database

Info 1

Info 1

Info Y

ap 1

ap 2

ap X

…

Matrix
Generator

Similarity
Analyzer

Correlated
Domain

Extractor

Correlated domain
cluster analysis

Single domain
analysis

Map Info.

Map Info.

Domain
Cluster

Botnet
domains

Matrix

Estimated
similarity

amework.

24 H. Choi, H. Lee / Computer Networks 56 (2012) 20–33
make a decision to detect botnet domains. Detected botnet
domains are summarized in a database.

3.2.1. Matrix generation and error correction
Conventional vector based similarity is one of the most

widely used methods to measure similarity [37]. The vec-
tors are constructed to represent original data and a coef-
ficient function operating on the vectors (e.g., cosine
coefficient) is used to output the similarity score. We used
a binary matrix representation to measure the temporal
similarity of group activities. The matrix has column vec-
tors that can be regarded as temporal vectors of a group.
Temporal similarity scores can be obtained using the vec-
tor based similarity method.

We first translate DNS queries into the form of a binary
matrix. In designing the binary matrix construction
scheme, we use a domain, a set of IP addresses which que-
ries the domain and a timestamp when each IP address
queries the domain. Assume there is an m by n matrix for
a domain D. Rows of the matrix represent unique IP ad-
dresses that send DNS queries for a domain D and columns
correspond to time windows that are evenly distributed
time intervals. For example, if an IP1 queries the domain
D within a time window w1, the matrix generator marks
1 at the matrix element (1,1). After marking all elements
in the binary matrix, the similarity analyzer computes
the similarity of each neighbor column vector of the
matrix.

The matrix representation is useful to measure tempo-
ral similarity and our previous mechanisms [1,2] measure
similarities in this way. However, we observed two types
of errors that can cause false detection. (1) If a time win-
dow parameter is misconfigured, especially when there is
a relatively loose/random C&C lookup, the matrix is likely
to have column vectors that decrease similarity values be-
tween neighbor column vectors. (2) If a part of a botnet is
removed by users or temporally deactivated, the matrix
may have erroneous rows that also decrease similarity val-
ues. We devise two filtering operations (column filtering
and row filtering) to eliminate such errors. The filtering
operation is designed as a pre-processing method to de-
crease errors incurred by erroneous vectors of a matrix.

Column filtering. Columns of a botnet domain matrix
tend to have same (or similar) vector lengths since bots be-
have as a coordinated group and botnet domains are peri-
odically queried. However, columns of a normal domain
matrix tend to have random vector lengths, because the
user web access model is known to follow the Poisson
model [38].1 Therefore, we use a vector length difference
to find erroneous columns for a botnet domain matrix. In
column filtering, column vector ~wx is deleted when it
satisfies

1
m

Pn
i¼1k~wik2

n
� k~wxk2

 !
> gc;
1 Roughly, more than 60% of normal domains have random column
lengths that follow the Poisson distribution in our datasets. We used a
matrix rank value to measure randomness of the matrix [39].
where m is the number of rows (i.e., the number of unique
IPs seen) and n is the number of columns (i.e., the number
of time windows). The equation yields a squared vector
length difference between ~wx and the average length of
column vectors in a matrix. If the difference is larger than
the column filter threshold gc, the matrix generator re-
moves the column vector as an error. The pre-defined
threshold determines how aggressively to filter erroneous
columns of the matrix.

Row filtering. Periodicity difference and row vector
length difference metrics are used to delete erroneous
row vectors (errors by the bot deviation or deletion). The
periodicity metric is measured to find a row that has same
temporal patterns as the others and the difference of vec-
tor lengths is used similarly as used in the column filtering
operation. We choose an erroneous row when a row has a
small periodicity difference (shows temporal property of
botnets) but has a large row vector length difference. We
first measure a time interval between a successive pair of
timestamps to estimate the periodicity. Assume the time
interval for the xth row is Tx = t1, t2,t3, . . . , tk and �t is a mean
value of Tx. Then, the periodicity for x can be measured by
the following equation.

PðxÞ ¼

ffi
1
k

Xk

i¼1

ðti � �tÞ2
vuut :

The periodicity (i.e., a standard deviation of time intervals)
is measured for each row in the matrix. The difference be-
tween the periodicity and the mean value of the periodic-
ity P
� �

is used to measure how similar the periodicity of a
row is. We also measure a vector length difference be-
tween a row vector ~ipx and an average length of row vec-
tors in a matrix. If the length difference is larger than the
row filter threshold gr and the periodicity difference is lar-
ger than a periodicity difference threshold gp, the row is re-
moved as an error. In summary, the row filter operation
removes a row vector ~ipx that follows

1
n

Pm
i¼1

~ipi

��� ���2

m
� ~ipx

��� ���2

0
B@

1
CA > gr ; and

PðxÞ � P
�� ��

P
< gp:

The pre-defined thresholds gc, gr and gp are decided
considering the detection rate and false positive/negative
rates (discussed in Section 4.2.3).

3.2.2. Correlated domains clustering
Our previous mechanism [1,2] cannot detect a botnet if

the botnet utilizes multiple domains at random. The multi-
ple domains can be hard-coded in a bot code or generated
by an embedded algorithm. We found three typical cases
from real-world botnets: (1) botnets query a domain using
a domain generation algorithm, (2) botnets randomly
query domains from hard-coded C&C domains and (3) bot-
nets query a domain from a spam recipient list.

Domain generation algorithm. Adversaries have recently
developed a flexible and robust channel lookup mecha-
nisms against C&C break down. Kraken/Bobax [3], Srizbi
[4], Torpig [5] and Conficker [6] are examples that use a do-
main generation algorithm to be robust against a sinkhole

H. Choi, H. Lee / Computer Networks 56 (2012) 20–33 25
defense mechanism [40]. Each bot independently uses the
generated domains and queries the domains frequently.
The bots keep contacting the domains until one of them
succeeds.

Multi-domain C&C. Some botnets have a list of multiple
domains for C&C and query domains sequentially/
randomly.

Botnet spamming. When botnets distribute spam using
recipient lists, bots query the mail server domains in the
recipient lists. The spam bots share their recipient lists
and choose victims randomly. The spam distribution corre-
sponds to overlapped multi-domain lookups.

We devise a cluster analysis method using a machine
learning algorithm, X-means [41], to detect these corre-
lated domains.

Features. We develop a feature set obtainable from DNS
traffic for the cluster analysis. Selection of discriminative
features plays a critical role for machine learning based ap-
proaches. Therefore, we carefully choose 13 features from
three different aspects: (1) DNS lexicology, (2) DNS query
information and (3) DNS answer information. These three
groups of features can effectively represent the properties
of botnet domains to classify the correlated domains.

� DNS lexicology features. DNS lexicology features are the
textual properties of a botnet domain itself. Domains
queried by botnets may have distinguishable textual
patterns. For example, spam [42] and phishing [43]
domains have different textual patterns from benign
domains. Algorithmically generated botnet domains
tend to have similar length and number of domain
tokens [6]. Therefore, we adopt the token count, the
average length of tokens and the longest length of
tokens as lexicology features. Moreover, the correlated
botnet domains are likely to be hosted by the same pro-
vider who often serves malicious domains (e.g.,
3322.org); therefore, we employ a binary feature,
‘‘blacklisted SLD presence’’ to check whether a SLD (Sec-
ond Level Domain) of a domain is matched to a SLD con-
tained in a blacklist. Consequently, four lexical features
listed in Table 2 are used in our method (domains are
delimited by ‘�’, ‘/’, ‘?’, ‘=’, ‘�’, ‘_’ to obtain the domain
tokens).
� DNS query features. A set of domains queried by a botnet

are sent in a similar way. Bots send a similar number of
DNS queries that have the same query type (e.g., A, NS,
CNAME, MX and PTR). Therefore, we employ the num-
ber of queries sent and the query type as DNS query fea-
tures. DNS queries from botnets also have similar
temporal patterns so we adopt the measured similarity
as a DNS query feature (even if it has a small value). The
bots are usually distributed over different networks.
Thus, we adopt the number of distinct sender IPs and
ASNs (Autonomous System Numbers) as DNS query
features.
� DNS answer features. A DNS answer packet returned by a

DNS server usually has several DNS A (address) records.
Attackers typically use botnet domains that map to
multiple IP addresses that reside in different ASNs,
countries and regions. With this insight, we extract four
features from the DNS answer data. The number of
unique IP addresses, ASNs and countries that are
resolved for a given domain are used as DNS answer
features. AS numbers and country codes are extracted
using MaxMind’s database [44]. Every DNS record has
a TTL (Time To Live) value that specifies how long the
answer for a domain should be cached. Setting lower
TTL value is useful for the attackers to achieve higher
availability and resistancy against take downs. In par-
ticular, botnet domains usually have a very low TTL
value when they use DDNS [34] or FFSN [45] service.
Thus, we select the TTL value as a DNS answer feature.

Using the features, we apply X-means in order to cluster
correlated domains.

X-means clustering. X-means is a clustering algorithm
based on a very popular K-means clustering algorithm. Dif-
ferent from K-means, the algorithm X-means does not have
to choose the number of final clusters in advance. It tries to
incorporate a search for the best K in the process itself.
While more comprehensive criteria for finding optimal K
require running independent K-means and then comparing
the results, X-means tries to split a part of the previously
constructed cluster based on the outcome of Bayesian
Information Criterion [41]. This gives a much better initial
guess for the next iteration and covers a user specified
range of admissible K.

3.2.3. Similarity analysis
Numerous similarity measures in use, differ primarily in

the way they normalize the intersection value. We use the
cosine similarity coefficient to measure the domain/cluster
similarity. The cosine similarity coefficient is based on the
binary term vectors and normalizes the similarity value
between 0 and 1. The similarity yields the probability of
how many members are presented in a single group and
presented in the other group simultaneously. Therefore,
the cosine similarity coefficient between column vector
w1 and w2 indicates measured similarity of the group be-
tween w1 and w2. The cosine similarity SCos is measured
as the following equation,

SCos ~wi; ~wiþ1ð Þ ¼
~wi � ~wiþ1

~wik k ~wiþ1k k :

In the case of a domain cluster, we measure two values:
cosine similarity and intensity of a cluster matrix. We gen-
erate a matrix for a cluster using every DNS queries in-
volved in the cluster. The intensity value is used to
estimate periodic/sporadic pattern of a cluster. Assume
that a cluster has n domains and kmik2 is the number of
elements that have a value of 1 in a domain matrix i, and
kMk2 is the number of elements that have a value of 1 in
a cluster matrix. Then, the matrix intensity is calculated as

I ¼ kMk2Pn
i¼0kmik2 :

The similarity analyzer detects botnet domain clusters
using a metric of SCosþI

2 : The metric is used for a hypothesis
test of a cluster instead of a similarity value.

Sequentialprobability ratio test. Our previous mechanism
calculates an average value of the similarity and uses a

Table 2
Selected features for clustering.

Feature type Feature name

DNS lexicology
features

Number of domain tokens
Average length of domain tokens
Longest length of domain token
Blacklisted SLD presence

DNS query features Number of queries sent
Number of distinct sender IPs
Number of distinct sender ASNs
Query type (A, NS, CNAME, MX, PTR)
Estimated similarity of a domain

DNS answer feature Number of distinct resolved IPs
Number of distinct ASNs of resolved IPs
Number of distinct countries of resolved
IPs
TTL value in a DNS answer packet

26 H. Choi, H. Lee / Computer Networks 56 (2012) 20–33
fixed threshold to detect botnet domains. However, the
simple threshold based method can make an incorrect
decision, particularly when botnets loosely/randomly look
up domains or a time window parameter is misconfigured.
Therefore, we apply a hypothesis test that utilizes multiple
observations for decision making can guarantee a higher
level of confidence than the simple threshold method.
We use the Sequential Probability Ratio Testing (SPRT)
which is a statistical method for testing a hypothesis with
a bounded false positive rate and false negative rate. Bot-
GAD measures similarity and after a number of tests, Bot-
GAD produces the acceptance or rejection of the
hypothesis.

We consider two hypotheses: H0 denotes the domain
(or the cluster) is detected as a benign domain and H1 de-
notes the domain (or the cluster) is detected as a botnet
domain.

PrðXijH0Þ ¼ h0; PrðXijH1Þ ¼ h1:

Let h0 and h1 denote the probability of a domain being a
botnet domain and a normal domain, respectively. Let S1,
S2, . . . ,Sn be an observed samples sequence of a domain
(or a cluster), then we have the likelihood ratio Kn as

Kn ¼ ln
PrðS1; S2; . . . ; SnjH1Þ
PrðS1; S2; . . . ; SnjH0Þ

¼
Yn

k¼1

ln
PrðSkjH1Þ
PrðSkjH0Þ

:

The equation represents the step in the hypothesis test
that generates the accumulated likelihood ratio. The
hypothesis test is then defined as follows. Given two user
specified threshold k0 and k1 where k0 < k1, at each test
we compute the likelihood ratio and check the stopping
rule as follows:

Kn 6 k0; then accept H0;

Kn P k1; then accept H1;

k0 < Kn < k1; then pend the decision:

The thresholds k0 and k1 can be set according to the user-
chosen false positive rate a and false negative rate b. By
setting the threshold k0 ¼ 1�b

a and k1 ¼ b
1�a, the true

bounded false positive rate and false negative rate can be
acquired.
4. Evaluation result and analysis

We tested BotGAD on three different real-life traces to
evaluate its performance. We also evaluate the perfor-
mance of the three modules, i.e., error correction, corre-
lated cluster analysis and hypothesis test. We discuss
evadability and compare BotGAD to other mechanisms.
4.1. Datasets and result verification

We obtained three DNS traces from three different
networks:

� Trace #1: This DNS traffic was tapped from the gateway
router of a /16 campus network on December 24th,
2008. There are 4.6 million DNS queries in 1.48 GB of
captured DNS traffic.
� Trace #2: This DNS traffic was collected from ISP DNS

servers on July 7th, 2009. The network size is much lar-
ger than the campus network (453.6 million DNS que-
ries were captured).
� Trace #3: This data has DNS logs tapped from ISP DNS

servers on June 15th 2010. The data consists of dynamic
DNS logs that have more than 15 million DNS queries.

We need a method to ensure the result for the evalua-
tion since it is difficult to know all hidden botnets in the
real-life traces. Hence, we design a method to verify exper-
imental results with the help of third parties such as search
engines. A combination of the following approaches is used
to verify the results.

1. Blacklist matching: We match detected domains with a
blacklist collected from several resources (Korea Infor-
mation Security Agency (KISA) sinkhole domain list
[46], DNS-BH list [47] and Cyber-TA list [48]). The
blacklists include more than 200,000 domain names.

2. Web reputation search: We use online Web reputation
search tools such as McAfee SiteAdvisor [49] and WOT
(Web of Trust) [50] that provide the reputation of a sub-
mitted website domain including the detailed catego-
ries to which it belongs.

3. IP address resolution: Resolved IP information is used to
check whether the resolved IP address is abnormal or
inaccessible.

4. Domain information investigation: We look up the
domain using Google and a domain crawler [51] to
determine whether it is a domain for a name server,
mail server, or web server and to find that resolved IP
addresses of the domain is listed on RBLs such as Spam-
haus SBL.

We categorize the detected result into known botnets,
unknown botnets and false positives. The known botnets
are revealed in steps 1 and 2. If a domain is listed in the
blacklist or reported as a malicious domain by the Web rep-
utation tools, the domain is classified as a known botnet do-
main. We verify unknown botnets from steps 3 to 4. If a
domain is determined as suspicious at these steps, we re-
gard the domain as an unknown suspicious domain. For

Table 3
Single domain analysis result.

Trace #1 Trace #2 Trace #3

DNS queries 4.6 M 453.6 M 15 M
No. of distinct domains 7,850 984,000 151,326
Detected domains 43 512 486
Unknown suspicious 12 250 191
Known botnets 10 135 170
False positives 21 127 125
False negatives 54 1805 897

Detection rate (%) 28.9 17.6 28.7
False positive rate (%) 0.27 0.01 0.08
False negative rate (%) 71.1 82.4 71.3

Table 4
Detected botnet domains and false positives.

Result type Domain name Group
size

Average
similarity

Suspicious
domains

bosam.gnway.net 13 0.99
shiyansend.zyns.com 33 0.98
shiyansend.solaris.nu 33 0.97

H. Choi, H. Lee / Computer Networks 56 (2012) 20–33 27
example, if a domain has a resolved IP address listed on RBL,
the domain is classified into the unknown suspicious.
Remainders are considered as false positives. Knowing a
complete set of hidden botnets can be hardly done since
we evaluate them with the real-life traces.2 Therefore, the
exact number of false negatives is difficult to acquire. In
the evaluation of our study, the false negatives are approxi-
mately estimated by comparing the detection result to our
blacklist. When a domain is listed in the blacklist but not de-
tected by BotGAD, it is counted as a false negative. The detec-
tion rate and false negatives in our evaluation are likely to be
altered depending on the blacklist. However, they can show
the improvements of relevant metrics.

We use three metrics in the evaluation: (1) detection
rate: the proportion of true detected botnet domains by
BotGAD over a union of true detected botnet domains by
BotGAD and by the blacklist. (2) false positive rate: the
number of false positive domains divided by the total
number of distinct normal domains. (3) false negative rate:
the number of false negative domains divided by the total
number of true botnet domains.
shiyansend.servebbs.org 29 0.87

Known
botnet
domains

tzhen.3322.org 14 0.92
proxima.ircgalaxy.pl 33 0.87
proxim.ntkrnlpa.info 4 0.85
roon.shannen.cc 11 0.83
time.nist.gov⁄ 50 0.91

False
positives

updates.installshield.com 22 0.94
us.update2.toolbar.yahoo.com 33 0.93
asp.ircdevilz.net⁄⁄ 1 0
4.2. Evaluation results

4.2.1. Single domain analysis result
This section describes the evaluation results of the sin-

gle domain analysis. We observe 142,045, 16,420,531 and
1,301,919 unique queried domains in the trace #1, #2,
and #3, respectively. More than 80% of the domains are
queried by only a single host. In the single domain analysis,
BotGAD measures the similarity of a domain that is que-
ried by more than three hosts (three unique IPs). BotGAD
analyzes 7,850, 984,000 and 151,326 distinct domains as
shown in Table 3.

We measure the similarity coefficients (with a 10 min
time window parameter). 72% of domains had similarities
estimated to 0.

We obtain 28.9%, 17.6% and 28.7% of detection rate
using the trace #1, #2 and #3, respectively. The detection
rates are very low and the false negative rates are very high
because many correlated botnet domains (e.g., Conficker
domains) are not detected in the single domain analysis.
Moreover, BotGAD cannot detect a single infected client
in the single domain analysis, e.g., asp.ircdevilz.net⁄⁄. The
result shows the necessity of the cluster analysis.

Examples of detected botnet domains and false posi-
tives are listed in Table 4 (trace #1). Most false positives
are related to update domains such as antivirus software
updates, installshield updates and toolbar updates. The up-
date related domain groups occur frequently and periodi-
cally, similar to botnets. BotGAD reports time.nist.gov⁄ as
a botnet domain. We find that 20 of the 89 hosts who
query the domain generate excessive queries, estimated
at 4.2 queries/s. Obviously, they are abnormal because
NIST does not allow queries being sent more frequently
than once every four seconds. The hosts had been infected
by the Storm botnet, known as the largest P2P botnet.
2 Thus, network anomaly detection approaches commonly use synthetic
network traffic data for evaluation, e.g., MIT/DARPA data sets.
Storm synchronizes the system time of the infected ma-
chine with the help of the Network Time Protocol (NTP)
using time server domains (time.nist.gov and time.win-
dows.com) [52]. The result implies BotGAD can capture
not only IRC and HTTP botnets but also P2P botnet (Storm)
synchronization activities.
4.2.2. Cluster analysis result
This section shows the evaluation result of the cluster

analysis. Several machine learning based clustering [26–
28] approaches are proposed to detect botnets. However,
the clustering approaches differ from our clustering method.
We devise DNS based features using domain lexicons, DNS
query and answer information, whereas other approaches
use network traffic based features such as pps (packets per
second) and bps (bytes per second). Generally, those net-
work traffic features are easy to manipulate for evasion.

By analyzing each trace (#1, #2 and #3), BotGAD classi-
fies 144, 320, 208 clusters, respectively. Table 5 lists the
clustering result for each trace. As expected, most detected
botnet clusters are: (1) algorithmically generated domains
by botnets (Conficker’s domain, e.g., yrxhwjlzg.org, yle-
haairwse.biz, ykywftwssjc.com), (2) randomly used multi-
ple C&C domains or binary download domains (e.g.,
⁄.jiangmin.com, ⁄.duba.net, ⁄.http://www.duba.net), and
(3) domains for sending spam mails (mail server domains,
e.g., mail.global.frontbridge.com, mail.global.sprint.com,
mail.global.mas.att.com). The result shows the cluster

http://asp.ircdevilz.net
http://time.nist.gov
http://time.nist.gov
http://time.windows.com
http://time.windows.com
http://www.duba.net
http://mail.global.frontbridge.com
http://mail.global.sprint.com
http://mail.global.mas.att.com
http://bosam.gnway.net
http://shiyansend.zyns.com
http://shiyansend.solaris.nu
http://shiyansend.servebbs.org
http://tzhen.3322.org
http://proxima.ircgalaxy.pl
http://proxim.ntkrnlpa.info
http://roon.shannen.cc
http://time.nist.gov
http://updates.installshield.com
http://us.update2.toolbar.yahoo.com
http://asp.ircdevilz.net

Table 5
Cluster analysis result.

Trace #1 Trace #2 Trace #3

Clusters 144 320 208
Detected clusters 12 42 7
Botnet clusters 9 27 5
False positive clusters 3 15 2

Table 6
The precision gain for each feature (%).

Type Feature Precision+

DNS lexicology
feature

Number of domain tokens 4.2
Average length of domain tokens 4.7
Longest length of domain token 3.5
Blacklisted SLD presence 6.3

DNS query
feature

Number of queries sent 8.8
Number of distinct sender IPs 9.2
Number of distinct sender ASNs 6.7
Query type (A, NS, CNAME, MX,
PTR)

4.5

Estimated similarity of a domain 9.6

DNS answer
feature

Number of distinct resolved IPs 6.7
Number of distinct ASNs of
resolved IPs

3.3

Number of distinct countries of
resolved IPs

2.7

TTL value in a DNS answer packet 3.9

Table 7
Result summary using both single domain analysis and cluster analysis (%).

Trace #1 Trace #2 Trace #3

Detection rate 97.2 95.4 96.1
False positive rate 0.31 0.11 0.05
False negative rate 2.8 4.6 3.9

 0.2

 0.3

 0.4

 0.5

 0.6

Fa
ls

e
po

si
tiv

e
ra

te
 (

%
)

ηr = 0.1
ηr = 0.2
ηr = 0.3
ηr = 0.4
ηr = 0.5

28 H. Choi, H. Lee / Computer Networks 56 (2012) 20–33
analysis enables BotGAD to detect all three types of corre-
lated botnet domains.

Most false positive clusters are related to consequently
generated domains when accessing a website. Different
domains are queried all together to get each content of
the Web page. In particular, a website served by Content
Delivery Network (CDN) often uses an array of domains
and the domains have temporal properties of a botnet
group activity. Therefore, the domains of the website are
likely to be detected as a botnet domain cluster. These false
positives can be decreased by whitelisting popular do-
mains3 that are usually served by CDNs.

Feature analysis. We evaluate each individual feature to
know the effectiveness of each feature. We use the preci-
sion metric4 to measure clustering accuracies. First, we per-
form clustering with all features. About 97% precision is
obtained (averaged precisions using the three traces). We
then exclude a feature one-by-one and measure a precision
improvement (leave-one-out approach). Table 6 shows the
results.

The number of queries sent, the number of distinct sen-
der IPs, and the estimated similarity of a domain are the
top three features that contribute the most to the cluster-
ing precision. We find out that the three features have dif-
ferent distributions for each type of cluster (i.e., normal
clusters, generated botnet domain clusters, multiple C&C
domain clusters, and spam domain clusters). The DNS lex-
icology features have different distributions for the gener-
ated botnet domain clusters and the multiple C&C domain
clusters, but not for the spam domain clusters. The DNS an-
swer features are effective to cluster the multiple C&C do-
main clusters. However, the features were not effective in
distinguishing the other types of clusters because most of
generated botnet domains do not have answer records (a
few of them had the answer records) and spam domains
do not have similar answer record patterns. If we consider
the reliability of the features, DNS query features are the
most effective features, since they are more difficult to
manipulate than the other two types of feature. Therefore,
the top three features, i.e., the number of queries sent, the
number of distinct sender IPs, and the estimated similarity
of a domain, are the most effective features that contribute
to both precision and reliability.

Performance improvement. Table 7 lists the detection re-
sults using both the single domain analysis and the cluster
analysis. The result shows the improvements of the cluster
analysis that was not applied in our previous mechanism.
[1,2]. The cluster analysis significantly increases the detec-
3 Whitelist domains are taken from the Alexa top 500 site list.
4 Precision = number of true positive classifications/number of positive

classifications.
tion rates and the false negative rates, e.g., 71% improve-
ment of the detection rates on average.
4.2.3. Error correction result
This section shows evaluation results of the error cor-

rection method. As mentioned in Section 3.2.1, we deter-
mine the thresholds gc, gr and gp to minimize false
positive/negative rates.

Figs. 3 and 4 show false positive and negative rates
using trace #1. In the experiment, we set the time window
w = 10 min. When both row filtering threshold (gr) and col-
umn filtering threshold (gc) are increased, both filtering
operations coarsely eliminate errors. Therefore, high filter-
ing thresholds result in low false positive rates but high
false negative rates as shown in the figures. Conversely,
low filtering thresholds result in low false negative rates
 0.1
0.1 0.2 0.3 0.4 0.5

Column filter threshold (ηc)

Fig. 3. False positive rate of trace #1.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0.1 0.2 0.3 0.4 0.5

Fa
ls

e
ne

ga
tiv

e
ra

te
 (

%
)

Column filter threshold (ηc)

ηr = 0.1
ηr = 0.2
ηr = 0.3
ηr = 0.4
ηr = 0.5

Fig. 4. False negative rate of trace #1.

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0

 10

 20

 30

 40

E[N|H1]
α=0.001, β=0.01
α=0.01, β=0.01

θ0

θ1

E[N|H1]

Fig. 5. Average number of observation rounds (E[NjH1]).

H. Choi, H. Lee / Computer Networks 56 (2012) 20–33 29
but high false positive rates because the filtering opera-
tions aggressively delete not only erroneous rows/columns
of a botnet domain matrix but also scarce rows/columns of
a normal domain matrix. When monitoring networks gen-
erate a small amount of traffic (DNS queries), aggressive
filtering can affect the detection accuracy critically. Thus,
high thresholds should be designated for small networks.

When the filtering thresholds are gr = 0.3 and gc = 0.2 ,
we have the best results with an optimal trade-off between
false positives and negatives on trace #1. Similarly, when
gr = 0.2 and gc = 0.1, best results are obtained on trace #2
and trace #3. We set periodicity threshold gp = 0.3 since
it produced the best results for all cases. It is possible to de-
crease 12% of false positives and 28% of false negatives on
average. In this analysis, we do not count the number of
detected correlated botnet domains that are only detect-
able by cluster analysis as false negatives to know the ex-
act improvement in the error correction method.

4.2.4. Hypothesis test
BotGAD uses SPRT to determine botnet domains/clus-

ters so that the average number of observation rounds
(E[NjH1],E[NjH0]) to reach the decision are represented as
the two following equations [7]:

E½NjH1� ¼
b ln b

1�aþ ð1� bÞ ln 1�b
a

h1 ln h1
h0
þ ð1� h1Þ ln 1�h1

1�h0

;

E½NjH0� ¼
ð1� aÞ ln b

1�aþ a ln 1�b
a

h0 ln h1
h0
þ ð1� h0Þ ln 1�h1

1�h0

;

where a and b are user-chosen false positive and false neg-
ative probabilities, respectively.

Fig. 5 shows the value of E[NjH1] as a function of h0 and
h1 with fixed a = 0.01, b = 0.01 and a = 0.001, b = 0.01. Only
small observations are needed to reach the decision for
SPRT as shown in the figure. For instance, if the user-de-
fined false positive and negative rates are 0.01 and
h0 = 0.2, h1 = 0.8, then BotGAD needs six observations to
make the decision. BotGAD needs a smaller number of
E[NjH1] if we apply smaller h0, a, b, and larger h1. The rela-
tionship between false alarm rates (a,b) and observation
rounds (E[NjH1]) illustrates the trade-offs between effec-
tiveness and efficiency of the detection algorithm.
4.3. BotGAD analysis

4.3.1. Deployment and performance analysis
BotGAD can be used to detect botnet domains at any

network location that sees a collective DNS query sent by
users. If a monitoring network is large, more infected hosts
can be found. Therefore, it is recommended to setup Bot-
GAD to monitor large scale network or to deploy sensors
in distributed networks. There are good options for receiv-
ing DNS data, e.g., from anti-virus softwares, browser tool-
bar, or such types of products.

We now present system performance to justify the real-
time nature of BotGAD. This is a very important aspect for
two reasons. First, adversaries continuously change their
domains and IP addresses of the domains. Therefore, real-
time blocking of such domains is needed to alleviate them
effectively. Second, it is important to identify suspicious
botnet domains that need a real-time inspection to ensure
the result. We run BotGAD on a machine that has a 3.0 GHz
dual core CPU with a 4 GB RAM. Coarsely speaking, BotGAD
can run as a real-time system since it took about 20, 318
and 58 min to process the day traces #1, #2 and #3,
respectively. For an hour DNS trace analysis, it even took
less than 1, 5 and 2 min.
4.3.2. Parameter analysis
This section describes an analysis of a similarity mea-

sure along with relevant parameters. Through the parame-
ter analysis, we can estimate appropriate values of
parameters to measure accurate similarities. We divide
the parameters into two types: the botnet related parame-
ters and the BotGAD related parameters as shown in Table
8. If Dn = 0, it is clear that we can detect a botnet domain
group. Suppose the worst case that a botnet forms a group
appeared randomly. We derive a similarity equation using
Poisson distribution.
S ¼ n
nþ jDntj 1� 1

ecðt�xÞ

� �
; x ¼

w; w P TL;

TL; w < TL:

	

The derived equation consists of four parts: TTL in DNS re-
source record TL, group size parameter n and Dnt, parame-
ters from the detection mechanism t and w, and DNS
querying ratio c.

Table 8
Parameters related with BotGAD.

Parameter description Variable

Botnet
parameters

TTL in DNS resource record TL

DNS querying ratio c
Group size and change in the group
size

n,Dn

BotGAD
parameters

Monitoring time t
Time window w

 0.1
 1

 10
 100 0.001

 0.01
 0.1

 1
 0

0.2
0.4
0.6
0.8
 1

Time Windows Size
DNS Quering Ratio of Group

Similairty

Fig. 6. Relationship among similarity S, time window w, and DNS
querying ratio c.

30 H. Choi, H. Lee / Computer Networks 56 (2012) 20–33
� TTL in DNS resource record TL: Most operating systems,
including Windows, have a DNS resolver cache. For
example, when the Windows resolver receives a posi-
tive or negative response to a query, it adds that posi-
tive or negative response to its cache, and as a result,
creates a DNS resource record. If a DNS resource record
is in the cache, the resolver uses the record from the
cache instead of querying. After a period specified in
TTL in the DNS resource record, the resolver discards
the record from the cache. The cache can decrease bot-
net DNS queries as well as normal queries. Botnets com-
monly use DDNS [53]. Therefore, it is possible to
roughly estimate the value of TTL applied in botnet
domains.
� DNS querying ratio c: We set w to 10 min (<1 h) in our

experiment, so we can assume Dn = 0. TL < w. The
derived equation can be approximated to
S � 1� 1
ecðt�wÞ :
Table 9
Evasion tactics used for defeating BotGAD, the tactic’s implementation
complexity and effects on botnet utility.

Evasion tactic Implementation
complexity

Effects on botnet
utility

1. Threshold attacks High ;Attack rate
2. Botnet subgrouping Low ;Botnet size
3. Minimize the

synchronicity
High ;Attack diversity

4. Induce IP churn Unknown None
5. Generate fake DNS

queries
Low None
If t = 5w, similarity S will be approximated as shown in
Fig. 6. The graph implies that c is also one of the most
important parameters of BotGAD.
� Change in the group size Dn: We can estimate Dn from

the botnet propagation model [32]. In addition, dynam-
ics of IP address should be considered. The authors in
[54] address that more than half (61.4%) of the IP
addresses were observed as dynamic IP addresses.
However, over 95% of IP addresses have inter-user dura-
tions longer than an hour. Errors derived from dynamics
of IP addresses can be ignored when we choose the w
within an hour.
� Time window w: To set an appropriate value of a time

window w, relevant parameters, i.e., c,TL and false posi-
tive/negative rates should be considered. (1) If c is lar-
ger than w, false negatives will be increased because
too small w will decrease the estimated similarity. (2)
If TL is larger than w, false negatives will be increased
due to the DNS resolver cache effect. (3) If w is too large,
false positives will be increased since many normal
groups are possibly selected as suspicious groups. Con-
sequently, the lower bound of w should be larger than
both c and TL(w P max(c,TL)). The c and TL can be esti-
mated, considering existing bot implementations. The
upper bound of w should be determined to have the
smallest number of false positives possible.
4.3.3. Evadability analysis
Even though several automated botnet detection mech-

anisms have been proposed, botnets can evade them with a
high level of attacker power. Our mechanism is to be
evaded to a certain degree, as for the existing mechanisms.
However, it is an improvement if we can raise a bar of eva-
sion difficulty by either increasing the evasion cost or
decreasing the effectiveness of botnets. We refer to Stin-
son’s [30] systematic evaluation which demonstrates an
evasion tactic in respect of two associated costs: imple-
mentation complexity and effect on botnet utility. An eva-
sion tactic’s implementation complexity is based on the
ease with which bot writers can incrementally modify cur-
rent bots to evade detection. If it takes a high implementa-
tion cost, the evasion tactic is less useful. Affecting on
botnet utility is also important to the adversaries, because
an evasion tactic is less effective if the tactic restricts the
botnet utility. Stinson et al. list the botnet utility including
diversity of attacks, lead time required to launch an attack,
botnet size, attack rate, and synchronization level. We ad-
dress likely evasion techniques of BotGAD and evaluate the
evadability as shown in Table 9.

1. Evasion by threshold attacks: BotGAD relies on time
related variables such as the time window parameter.
Therefore, a botmaster can control the frequency of bot-
net behaviors to decrease similarities. We add the error
correction and hypothesis test method to BotGAD to be
more robust against such threshold attacks. Moreover,
the implementation complexity is high and applying

H. Choi, H. Lee / Computer Networks 56 (2012) 20–33 31
this tactic reduces attack rates of the botnet. Therefore,
the threshold attack is less effective than the other tac-
tics to evade BotGAD.

2. Evasion by the botnet subgrouping: A botmaster can
apply multi-purpose time sharing botnets where a sub-
set of bots is used for a single purpose (e.g., DDoS) and
others for another purpose (e.g., spamming). If elements
(bots) of each subset are not changed, BotGAD can
detect each subset independently. Even if a botmaster
randomly changes subsets, BotGAD can detect the sub-
sets with cluster analysis. Therefore, the subgrouping
tactic is also less useful for attackers.

3. Evasion by minimizing the synchronicity: Bots can delay
communication time and do not perform any synchro-
nized attacks to evade BotGAD. For example, many
new botnets have adopted a P2P architecture, where
bots are coordinated in a distributed fashion. BotGAD
cannot capture the P2P bots if bots have a long time
delay for communications and attacks. However, botnet
utilities including botnet’s synchronization level and
diversity of attacks will decrease significantly in such
a case.

4. Evasion by inducing IP churn: BotGAD uses an IP address
as an identifier of a host. Therefore, if bots can change
their IP address on demand, BotGAD will be defeated.
The implementation complexity of this technique is
unknown.

5. Evasion by generating Fake DNS queries: If bots inten-
tionally generate fake DNS queries using a source spoof-
ing method, the queries can poison our previous
mechanism.

If botnets avoid using DNS, BotGAD cannot detect the
botnets. Some botnets have been observed to use hard-
coded IP addresses for C&C even though the IP based C&C
is easy to take down.5 Group activities of the IP based C&C
cannot be detected by BotGAD, but other group activities
(e.g., infection, binary download and spamming) are detect-
able if the activities utilize DNS. To be sure, botnets can
never use DNS during every part of its lifecycle. In such a
case, however, the botnet utility will be restricted.

4.3.4. Comparison to other mechanisms
This section lists advantages and disadvantages of the

BotGAD based on key features including: (1) ability to de-
tect unknown bots, (2) capability of botnet detection
regardless of botnet protocol and structure, (3) robust
against evasions including channel encryption, packing,
traffic manipulation and random domain generation, (4)
capability of real-time detection and ability to monitor
large scale networks, and (5) capability of early detection.
These features are used in the study by Feily et al. [55].

� Unknown botnet detection. BotGAD can detect unknown
botnets, whereas some other works, such as signature-
based techniques, are unable to detect them.
5 DNS based C&C is harder to take down since they can circumvent
botnet defense systems by changing resolved IP addresses continuously.
� Protocol & structure independent. BotGAD can detect bot-
nets regardless of botnet protocol if the botnets use DNS
traffic. However, botnets that do not use DNS are unde-
tectable by BotGAD. Moreover, BotGAD cannot detect
C&C of P2P botnets since it is not a group activity
according to our definition. Only malicious attacks by
P2P botnets are able to be captured by BotGAD. These
limits are the disadvantages of BotGAD compared to
other approaches [26–28] that provide protocol & struc-
ture independent botnet detection.
� Robust against evasions. BotGAD is robust to channel

encryption, packing, traffic manipulation (by adding a
noise in communications) and random domain genera-
tion for C&C. However, many approaches introduced in
Section 2 are weak to such evasions. Therefore, the
robustness to evasions is one of the most important
benefits of this study.
� Real-time detection and scalability. BotGAD is designed

as a light-weight system to provide real-time detection
and large coverage of monitoring networks. However,
there are many approaches that cannot detect botnets
in real-time or are only deployable to small networks.
We regard the abilities of real-time detection and large
coverage as major benefits of this study.
� Early detection. BotGAD can detect botnets in their early

stages, since BotGAD can capture botnet DNS queries
that are often sent when bots find C&C servers prior
to performing attacks. The early detection is helpful
for network operators to clean up compromised com-
puters inside their networks, alleviating further infec-
tions and losses from attacks. However, many other
mechanisms (e.g., spam bot detection approaches) do
not provide early detection.

In summary, BotGAD has advantages in four aspects: (1)
ability to detect unknown botnet detection, (2) robustness
to evasions, (3) ability to monitor large scale networks in
real-time and (4) ability to detect botnets at their early
stage. Our mechanism can effectively and efficiently detect
unknown botnets in large scale networks due to these
advantages.

5. Conclusion

Botnets are the major threats to network security and
major contributors to unwanted network traffic. Thus, it
is necessary to provide appropriate countermeasures to
botnets. We propose BotGAD to reveal both unknown do-
main names of C&C servers and IP addresses of hidden in-
fected hosts. We define an inherent property of botnets,
termed group activity. Using this property, we propose a
light-weight mechanism to detect botnets. Our mechanism
needs a small amount of data from DNS traffic, not all the
traffic content or known signatures. BotGAD can detect
botnets from a large-scale network in real-time even
though the botnet performs encrypted communications.
Moreover, BotGAD can detect not only individual botnets
but also correlated evasive botnets, using unsupervised
machine learning. Our method provides over 95% detection
rates while generating less than 0.4% false positive rates
and 5% false negative rates based on experiments with

32 H. Choi, H. Lee / Computer Networks 56 (2012) 20–33
real-life campus and ISP DNS traces. It takes only a few
minutes to analyze an hour-long DNS trace of a large ISP
network. The evaluation results prove that BotGAD can
automatically detect botnets in large scale networks.

Acknowledgments

This research was supported by the MKE, Korea, under
the ITRC support program supervised by the NIPA (NIPA-
2011-C1090-1131-0005) and the Seoul R&BD Program
(WR080951). The preliminary version of this paper was
presented in IEEE CIT [1] and COMSWARE [2].

References

[1] H. Choi, H. Lee, H. Lee, H. Kim, Botnet Detection by monitoring
group activities in dns traffic, in: Proceedings of the IEEE
International Conference on Computer and Information
Technology (CIT), 2007.

[2] H. Choi, H. Lee, H. Kim, BotGAD: detecting botnets by capturing
group activities in network traffic, in: Proceedings of International
Conference on COMmunication System softWAre and MiddlewaRE
(COMSWARE), 2009.

[3] S. Shevchenko, Kraken changes tactics. <http://
www.blog.threatexpert.com/2008/04/kraken-changes-tactics.html>,
2009.

[4] J. Wolf, Technical details of Srizbi’s domain generation algorithm.
<http://www.blog.fireeye.com/research/2008/11/technical-details-
of-srizbis-domain-generation-algorithm.html>, 2008.

[5] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R.
Kemmerer, C. Kruegel, G. Vigna, Your Botnet is My Botnet: Analysis
of a Botnet Takeover, 2009.

[6] P. Porras, H. Saidi, V. Yegneswaran, A foray into Conficker’s logic and
rendezvous points, in: Proceedings of the USENIX Workshop on
Large-Scale Exploits and Emergent Threats (LEET), 2009.

[7] A. Wald, Sequential tests of statistical hypotheses, The Annals of
Mathematical Statistics (1945) 117–186.

[8] A. Ramachandran, N. Feamster, D. Dagon, Revealing botnet
membership using DNSBL counter-intelligence, in: Proceedings of
the Workshop on Steps to Reducing Unwanted Traffic on the Internet
(SRUTI), 2006.

[9] R.V.-Salomon, J.C. Brustoloni, Bayesian bot detection based on DNS
traffic similarity, in: Proceedings of the ACM Symposium on Applied
Computing (SAC), 2009.

[10] K. Sato, K. Ishibashi, T. Toyono, N. Miyake, Extending black domain
name list by using co-occurrence relation between dns queries, in:
Proceedings of the workshop on Large-scale Exploits and Emergent
Threats (LEET), 2010.

[11] J. Brustoloni, N. Farnan, R. Villamarin-Salomon, D. Kyle, Efficient
detection of bots in subscribers’ computers, in: Proceedings of IEEE
International Conference Communications (ICC), 2009.

[12] G. Gu, P. Porras, V. Yegneswaran, M. Fong, W. Lee, BotHunter:
detecting malware infection through ids-driven dialog correlation,
in: Proceedings of the USENIX Security Symposium (Security),
2007.

[13] A. Karasaridis, B. Rexroad, D. Hoeflin, Wide-scale botnet detection
and characterization, in: Proceedings of the Workshop on Hot Topics
in Understanding Botnets (HotBots), 2007.

[14] W. Lu, M. Tavallaee, G. Rammidi, A.A. Ghorbani, BotCop: an online
botnets traffic classifier, in: Proceedings of the Conference on
Communication Networks and Services Research (CNSR), 2009.

[15] X. Hu, M. Knyz, K.G. Shin, RB-Seeker: auto-detection of redirection
botnets, in: Proceedings of the Annual Network and Distributed
System Security Symposium (NDSS), 2009.

[16] H.R. Zeidanloo, A.B.A. Manaf, Botnet Detection by Monitoring Similar
Communication Patterns, International Journal of Computer Science
and Information Security (IJCSIS) (2010).

[17] A.M. Manasrah, A. Hasan, O.A. Abouabdalla, S. Ramadass, Detecting
Botnet Activities Based on Abnormal DNS traffic, International
Journal of Computer Science and Information Security (IJCSIS)
(2009).

[18] M. Reiter, T. Yen, Traffic aggregation for malware detection, in:
Proceedings of the Conference on Detection of Intrusions and
Malware and Vulnerability Assessment (DIMVA), 2008.
[19] G. Gu, J. Zhang, W. Lee, BotSniffer: detecting botnet command and
control channels in network traffic, in: Proceedings of the Annual
Network and Distributed System Security Symposium (NDSS), 2008.

[20] X. Yu, X. Dong, G. Yu, Y. Qin, D. Yue, Y. Zhao, Online botnet detection
by continuous similarity monitoring, in: Proceedings of
International Symposium Information Engineering and Electronic
Commerce IEEC’09, 2009.

[21] H. Husna, S. Phithakkitnukoon, S. Palla, R. Dantu, Behavior analysis of
spam botnets, in: Proceedings of the International Conference on
COMmunication System softWAre and MiddlewaRE (COMSWARE),
2008.

[22] L. Zhuang, J. Dunagan, D.R. Simon, H.J. Wang, I. Osipkov, G. Hulten,
J.D. Tygar, Characterizing botnets from email spam records, in:
Proceedings of the workshop on Large-scale Exploits and Emergent
Threats (LEET), 2008.

[23] Z. Duan, P. Chen, F. Sanchez, Y. Dong, M. Stephenson, J. Barker,
Detecting spam zombies by monitoring outgoing messages, in:
Proceedings of the Annual IEEE Conference on Computer
Communications (INFOCOM), 2009.

[24] Y. Zhao, Y. Xie, F. Yu, Q. Ke, Y. Yu, Y. Chen, E. Gillum, Botgraph: Large
scale spamming botnet detection, in: Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation
(NSDI), 2009.

[25] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, N. Feamster, Building a
dynamic reputation system for DNS, in: Proceedings of the USENIX
Security Symposium (Security), 2010.

[26] G. Gu, R. Perdisci, J. Zhang, W. Lee, BotMiner: clustering analysis of
network traffic for protocol- and structure-independent botnet
detection, in: Proceedings of the USENIX Security Symposium
(Security), 2008.

[27] X. Yu, X. Dong, G. Yu, Y. Qin, D. Yue, Data-adaptive clustering
analysis for online botnet detection, in: Proceedings Third
International Computational Science and Optimization (CSO) Joint
Conference, 2010.

[28] W. Lu, G. Rammidi, A.A. Ghorbani, Clustering botnet communication
traffic based on n-gram feature selection, Computer
Communications (2010).

[29] S. Hao, N. Syed, N. Feamster, A.G. Gray, S. Krasser, Detecting
spammers with snare: spatio-temporal network-level automatic
reputation engine, in: Proceedings of the USENIX Security
Symposium (Security), 2009.

[30] E. Stinson, J.C. Mitchell, Towards systematic evaluation of the
evadability of bot/botnet detection methods, in: Proceedings of the
USENIX Workshop on Offensive Technologies (WOOT), 2008.

[31] J. Grizzard, V.Sharma, C. Nunnery, B. Kang, D. Dagon, Peer-to-peer
botnets: overview and case study, in: Proceedings of the Workshop
on Hot Topics in Understanding Botnets (HotBots), 2007.

[32] D. Dagon, G. Gu, C. Lee, W. Lee, A taxonomy of botnet structures, in:
Proceedings of the Annual Computer Security Applications
Conference (ACSAC), 2007.

[33] L. Liu, S. Chen, G. Yan, Z. Zhang, BotTracer: execution-based bot-like
malware detection, in: Proceedings of the Information Security
Conference (ISC), 2008.

[34] P. Vixie, S. Thomson, Y. Rekhter, J. Bound, Dynamic updates in the
domain name system (DNS update). <http://www.faqs.org/rfcs/
rfc2136.html/>, 1997.

[35] J. John, A. Moshchuk, S. Gribble, A. Krishnamurthy, Studying
spamming botnets using botlab, in: Proceedings of the Usenix
Symposium on Networked Systems Design and Implementation
(NSDI), 2009.

[36] K. Chiang, L. Lloyd, A case study of the rustock rootkit and spam bot,
in: Proceedings of the Workshop on Hot Topics in Understanding
Botnets (HotBots), 2007.

[37] W. Yih, C. Meek., Learning vector representations for similarity
measures, Technical Report MSR-TR-2010-139, Microsoft Research.

[38] S. Gündüz, M.T. Özsu, A Poisson model for user accesses to web
pages, in: ISCIS: Computer and Information Sciences, 2003.

[39] G. Marsaglia, L.-H. Tsay, Matrices and the structure of random number
sequences, Linear Algebra and its Applications 67 (1985) 147–156.

[40] D. Dagon, C. Zou, W. Lee, Modeling botnet propagation using time
zones, in: Proceedings of the Annual Network and Distributed
System Security Symposium (NDSS), 2006.

[41] D. Pelleg, A.W. Moore, X-means: extending k-means with efficient
estimation of the number of clusters, in: Proceedings of the
International Conference on Machine Learning (ICML), 2000.

[42] J. Ma, L.K. Saul, S. Savage, G.M. Voelker, Beyond blacklists: learning
to detect malicious web sites from suspicious URLs, in: KDD:
Proceedings of the international conference on Knowledge
Discovery and Data mining, 2009.

http://www.blog.threatexpert.com/2008/04/kraken-changes-tactics.html
http://www.blog.threatexpert.com/2008/04/kraken-changes-tactics.html
http://www.blog.fireeye.com/research/2008/11/technical-details-of-srizbis-domain-generation-algorithm.html
http://www.blog.fireeye.com/research/2008/11/technical-details-of-srizbis-domain-generation-algorithm.html
http://www.faqs.org/rfcs/rfc2136.html/
http://www.faqs.org/rfcs/rfc2136.html/

H. Choi, H. Lee / Computer Networks 56 (2012) 20–33 33
[43] D.K. McGrath, M. Gupta, Behind Phishing: An Examination of Phisher
Modi Operandi, in: LEET: Proceedings of the USENIX Workshop on
Large-Scale Exploits and Emergent Threats, 2008.

[44] GeoIP API, MaxMind, LLC, Open source APIs and database for
geological information. <http://www.maxmind.com/app/api>, 2002.

[45] T. Holz, C. Gorecki, K. Rieck, F.C. Freiling, Detection and mitigation of
fast-flux service networks, in: Proceedings of the Annual Network
and Distributed System Security Symposium (NDSS), 2008.

[46] Korea Information Security Agency (KISA), Botnet C&C server
domain list, 2009.

[47] DNS-BH, Malware Prevention through Domain Blocking (Black Hole
DNS Sinkhole). <http://www.malwaredomains.com/>, 2007.

[48] Cyber-TA, SRI Honeynet and BotHunter Malware Analysis Automatic
Summary Analysis Table. <http://www.cyber-ta.org/releases/
malware-analysis/public/>, 2005.

[49] McAfee SiteAdvisor, Service for reporting the safety of web sites.
<http://www.siteadvisor.com/>, 2006.

[50] WOT, Web of Trust Community-based safe surfing tool. <http://
www.mywot.com/>, 2006.

[51] Domaincrawler, Domain Information Services. <http://
www.domaincrawler.com/>, 2006.

[52] T. Holz, M. Steiner, F. Dahl, E. Biersacky, F. Freiling, Measurements
and mitigation of peer-to-peer-based botnets: a case study on storm
worm, in: Proceedings of the Workshop on Large-scale Exploits and
Emergent Threats (LEET), 2008.

[53] S. Herona, Working the botnet: how dynamic DNS is revitalising the
zombie army, Network Security 2007 (2007) 9–11.

[54] Y. Xie, F. Yu, K. Achan, E. Gillum, M. Goldszmidt, T. Wobber, How
dynamic are ip addresses?, in: Proceedings of the ACM SIGCOMM
Conference on Data communication (SIGCOMM), 2007.

[55] M. Feily, A. Shahrestani, S. Ramadass, A survey of botnet and botnet
detection, in: Proceedings of the Conference on Emerging Security
Information, Systems, and Technologies, 2009.
Hyunsang Choi received the B.S. and M.S.
degree in computer science and engineering
from Korea University in Seoul, Korea, in 2007
and 2009, respectively. He is currently work-
ing toward doctorate degree in computer and
communication security at Korea University
in Seoul, Korea. He was an intern at Microsoft
Resarche Asia (Beijing, China) from 2009 to
2010.
Heejo Lee is an associate professor at the
Division of Computer and Communication
Engineering, Korea University, Seoul, Korea.
Before joining Korea University, he was at
AhnLab, Inc. as a CTO from 2001 to 2003.
From 2000 to 2001, he was a postdoc at the
Department of Computer Sciences and the
security center CERIAS, Purdue University. Dr.
Lee received his BS, MS, PhD degree in Com-
puter Science andEngineering from POSTECH,
Pohang, Korea. Dr. Lee serves as an editor of
Journal of Communications and Networks. He

has been an advisory member of Korea Information SecurityAgency and
Korea Supreme Prosecutor’s Office.

http://www.maxmind.com/app/api
http://www.malwaredomains.com/
http://www.cyber-ta.org/releases/malware-analysis/public/
http://www.cyber-ta.org/releases/malware-analysis/public/
http://www.siteadvisor.com/
http://www.mywot.com/
http://www.mywot.com/
http://www.domaincrawler.com/
http://www.domaincrawler.com/

	Identifying botnets by capturing group activities in DNS traffic
	1 Introduction
	2 Related work
	2.1 Non-machine learning approaches
	2.1.1 Botnet traffic detection
	2.1.2 Cooperative network behavior detection
	2.1.3 Spam bot detection

	2.2 Machine learning approaches
	2.2.1 Bot traffic detection
	2.2.2 Spam bot detection

	3 Botnet group activity and detection scheme
	3.1 Botnet group activity
	3.2 BotGAD framework
	3.2.1 Matrix generation and error correction
	3.2.2 Correlated domains clustering
	3.2.3 Similarity analysis

	4 Evaluation result and analysis
	4.1 Datasets and result verification
	4.2 Evaluation results
	4.2.1 Single domain analysis result
	4.2.2 Cluster analysis result
	4.2.3 Error correction result
	4.2.4 Hypothesis test

	4.3 BotGAD analysis
	4.3.1 Deployment and performance analysis
	4.3.2 Parameter analysis
	4.3.3 Evadability analysis
	4.3.4 Comparison to other mechanisms

	5 Conclusion
	Acknowledgments
	References

