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a b s t r a c t

Malicious activities on the Internet are one of the most dangerous threats to Internet users and
organizations. Malicious software controlled remotely is addressed as one of the most critical methods
for executing the malicious activities. Since blocking domain names for command and control (C&C) of
the malwares by analyzing their Domain Name System (DNS) activities has been the most effective
and practical countermeasure, attackers attempt to hide their malwares by adopting several evasion
techniques, such as client sub-grouping and domain flux on DNS activities. A common feature of the
recently developed evasion techniques is the utilization of multiple domain names for render malware
DNS activities temporally and spatially more complex. In contrast to analyzing the DNS activities for a
single domain name, detecting the malicious DNS activities for multiple domain names is not a simple
task. The DNS activities of malware that uses multiple domain names, termed multi-domain malware,
are sparser and less synchronized with respect to space and time.

In this paper, we introduce a malware activity detection mechanism, GMAD: Graph-based Malware
Activity Detection that utilizes a sequence of DNS queries in order to achieve robustness against evasion
techniques. GMAD uses a graph termed Domain Name Travel Graph which expresses DNS query sequences
to detect infected clients and malicious domain names. In addition to detecting malware C&C domain
names, GMAD detects malicious DNS activities such as blacklist checking and fake DNS querying. To
detect malicious domain names utilized to malware activities, GMAD applies domain name clustering
using the graph structure and determines malicious clusters by referring to public blacklists. Through
experiments with four sets of DNS traffic captured in two ISP networks in the U.S. and South Korea,
we show that GMAD detected thousands of malicious domain names that had neither been blacklisted
nor detected through group activity of DNS clients. In a detection accuracy evaluation, GMAD showed
an accuracy rate higher than 99% on average, with a higher than 90% precision and lower than 0:5% false
positive rate. It is shown that the proposed method is effective for detecting multi-domain malware
activities irrespective of evasion techniques.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Malicious software, namely, malware, is one of the most
significant sources of Internet intrusion. Uncountable malicious
activities caused by malwares, including information theft, DDoS
attack, and spamming, are the most critical problems in our infor-
mation life. According to the report of an AV vendor, Kaspersky,
over 1.5 billion attacks by malwares were observed in 2012, and
6.5 million unique malicious domain names were used for these
attacks [1]. In comparison with 2011, the increment of malicious
domain names in 2012 was 2.5 million. Another estimation result
for 2013 reports that thousands of new malware web-sites have
appeared each day during the last several years [2].

From the efforts of anti-virus vendors and researchers to com-
bat malwares, one of the most effective ways to reduce malware
activity is to block network access to a remote control server, gen-
erally called a command and control (C&C) server. This point of
view, of course, includes the malwares that are not remotely con-
trolled but send stolen information to their remote server, as well
as botnet, which are controlled through the C&C servers. In several
security reports [3,4], taking down malwares by blocking the C&C
servers has been shown to achieve an immediate reduction in
malicious activities.

Among the several approaches for detecting malicious remote
servers, Domain Name System (DNS) traffic monitoring has been
employed in many previous studies [5–12] because of its efficiency
and effectiveness. The DNS is a centralized network point that is
essential for using Internet services including the malicious
network activities. As malwares use domain names instead of
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static IP addresses to access their remote servers, DNS traffic
monitoring is indispensable for detecting malicious servers.

Despite the many studies on malware and malicious domain
name detection, recent intelligent malwares can survive even after
their C&C domain names are blocked. The main reason for this mal-
ware survivability is that the malwares have numbers of alterna-
tive C&C domain names. Traditional single domain malwares
have suffered from one-point failure problem. However, the recent
malwares [13–16] overcome the problem by using redundant
domain names for continuing to update the malware binaries
when their C&C domain names are detected and blocked. Further-
more, recent sophisticated malwares not only replace their C&C
domain names after blocking occurs, but also use various evasion
techniques such as sub-grouping, fake-query and one-time
domain, through the multiple domain names. In this paper, we call
the malware that utilizes multiple domain names for malicious
activities a multi-domain malware. In order to take down multi-
domain malwares effectively, it is important to detect the domain
names in their entirety against the evasion. Unfortunately, the
methods proposed in previous studies considered a single domain
name and limited patterns of multi-domain such as random
domain names, so that they are not robust enough to combat eva-
sion techniques that use multi-domains.

In this paper, we propose a malware activity detection mecha-
nism, GMAD: Graph-based Malware Activity Detection, which uses
the sequential correlation between domain names. GMAD detects
malicious domain names used for malicious activities. Sequential
correlation is a spatial property among domain names, caused by
the query patterns of DNS clients. We express the sequential corre-
lation of domain names on a graph structure called DNTG: Domain
Name Travel Graph, which was proposed in our preliminary work
[17]. Using the graph expression, the proposed mechanism can find
suspicious domain names that have a high sequential correlation
with a known malicious domain name. In this way, our mechanism
detects malware domain names that have not yet been detected
and are not included in domain black lists.

Sequential correlation, which is the DNS behavior property used
in GMAD, is a spatial property that is robust against the malwares
that evade legacy detection methods. Malware activity detection
mechanisms can be classified into two categories according to
the kind of properties of malware behaviors: temporal properties
and spatial properties. Temporal properties, such as DNS query
timing synchronicity, have a weakness when combatting the eva-
sion techniques mentioned above. On the other hand, compared
with other approaches that use a spatial property, sequential cor-
relation is much less influenced by the number of queries, infected
hosts, and activities of the legitimate users. This advantage allows
the malicious domains that are queried at a low rate by less
infected hosts that have not been covered by legacy detection
methods to be detected. Several evasion techniques, such as sub-
grouping [16] and one-time domain using domain generation
[13–15], can be used for bypassing legacy detection methods
through a low query rate during the monitoring time and few
on-line hosts. Consequently, our mechanism has the advantage
that it can take down malwares more effectively by detecting the
malware domains that, due to temporal and spatial evasion tech-
niques, are not covered by legacy malware domain detection
approaches.

In our experiments with real network DNS traffic, GMAD shows
its ability to detect thousands of malware domain names. The DNS
traffic is gathered from DNS servers of ISPs in Korea and the U.S. In
detection accuracy evaluation, GMAD shows an accuracy rate
higher than 99% on average with a precision rate higher than over
90% and a false positive rate lower than 0:5%. In terms of detection
sensitivity, GMAD detects twenty-eight times more malicious
domain names than one of the most sophisticated malicious

domain detection methods, BotGAD [8,9], in experiments using
the same data set. The source of GMAD’s superior performance is
in that it detects sparse and low-rate malware activities that have
not been detected by the previous approaches.

Through GMAD, we achieve a sensitive detection that has not
been achieved in previous studies. Against the temporal and spatial
evasion techniques of the recent intelligent malwares, GMAD accu-
rately detects malicious domain names that are used at a low rate
and by a few infected machines. Its detection sensitivity allows of
GMAD to respond effectively to rapidly increasing numbers of mali-
cious domain names and malwares. In terms of efficiency, GMAD
achieves scalable malware detection in huge network environ-
ments. Through our experiments with real-world ISP level DNS
data, we evaluated that GMAD successfully detects malwares in
the wild that use various DNS query patterns and evasion tech-
niques and efficiently works in large and complex network
environments.

The rest of this paper is as follows. In Section 2, we review the
previous efforts for combating malwares by detecting their inher-
ent features of network behaviors, and we point out advantage of
our proposal. Before the explanation for GMAD mechanism, we
introduce our behavior property, i.e., sequential correlation, and
how sequential correlation is used for solving several faced prob-
lems in comparison with previously proposed behavior properties,
in Section 3. We explain detailed processes of GMAD with algo-
rithms in Section 4. In Section 5, we evaluate the performance of
GMAD in terms of accuracy and sensitivity using real world DNS
traffic. After that, we analyze the effects of heuristic clustering
metrics and data dependent features in experiment results for
the best configuration, and scalability of GMAD in Section 6. In
Section 7, we discuss several issues we should consider. Finally,
we conclude this paper in Section 8.

2. Related work

The DNS has been considered a monitoring place to detect mal-
ware activity. As compared with other approaches, DNS monitor-
ing has advantages when faced with encrypted protocols and
change of traffic behavior. Previous work can be classified into
two categories; DNS monitoring approaches for malware detection
and graph-based approaches for malware and malicious domain
name/URL detection.

DNS monitoring approaches, such as BotGAD [8], Pleiades [11],
Bayesian DNS traffic similarity based detection [18], BotSniffer [19],
and the black list extension mechanism using DNS queries [10],
have been studied in several ways. DNS-based approaches share
the advantages of robustness against encrypted communications
and the efficiency of centralized detection. Choi et al. [8,9] distin-
guished group activities in DNS traffic from legitimate users activ-
ities in a study using the concept of the client set of a domain
name. They measured the similarity of the DNS clients of each
domain name using quantitative likelihood. This approach is coun-
tered by recent multi-domain malwares that separate their activi-
ties into multiple domain names.

The most recent study of the BotGAD [9] and a DGA detection
approach of Yadav et al. [12] respond to the multi-domain mal-
ware problem by grouping domain names based on the lexical sim-
ilarity among the domain names and network features, such as
corresponding IP addresses. However, these approaches still have
limitations when faced with the multi-domain malwares that do
not use DGA and have little lexical similarity in their domain
names.

Antonakakis et al.’s botnet C&C detection system [11] used NX
domain names for detecting DGA domain names. Use of DGA is
one of the important features of recent malwares. Their DGA
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models are efficient to classify newly generated domain names.
However, it could not respond to most of malware DNS activities
except DGA-based C&C queries, because the clustering method of
Pleiades was dependent on lexical and structural features of
domain names. Because DNS activities of malwares are not limited
on C&C communication, detecting DGA that are used only for C&C
domain names has relatively small detection coverage.

Villamarín-Salomón and Brustoloni [18] proposed a Bayesian
method for detecting botnet-based DNS traffic. Known botnet,
mutations of the botnet, and their fluxed domain names can be
detected by the similarity of their DNS traffic by using this method.
However, their study results can be affected by traffic noise from
background traffic because there is a high possibility of a similarity
of DNS traffic in famous domain names. In our study, we applied
the sequence of queries to the concept of DNS traffic similarity. If
the concept of sequence is applied to previously proposed meth-
ods, it may enhance their performance.

Guofei et al. [19]’s work focused on the spatial–temporal
correlation and the similarity of botnet activities for detecting
C&C servers. The approach was also based on the automated and
repeated activities of bots. Analysis of the temporal property of
bots is effective for detecting many traditional botnets, but not
modern botnets that use avoidance methods, such as fake queries
and asynchronous DNS queries. The spatial correlation which they
considered is a repeated similar pattern, and it can be evaded by
the scattered and randomized query patterns used by recent
malware.

Blacklist extension using the co-occurrence relationship
between DNS queries was proposed by Ishibashi et al. [10]. The
major difference of our method is that a cascading co-occurrence
of DNS queries raises more than only at suspicion about the
domain names. The infected heavy user problem addressed in this
study is reduced, because the co-occurrence of domain names que-
ried with an irregular sequence carries a low weight in our work.

Several studies have applied the graph structure to botnet
detection. Shishir et al. [20], attempted to distinguish botnet
communications. In their graph approach, they represented com-
munication relationships between bot hosts on a graph. Their
approach shares several concepts with this study. However, the
type of botnets covered by their method is mainly P2P due to their
focus and target data.

Yamada et al.’s study [21] applied a temporal relationship and
graph structure to URLs. Our work uses the topological feature of
sub graphs, which is hard to express at the degree of a node, as
compared to analyzing link features. However, the learning
approach that uses link features, which they applied, may be useful
for expressing node characteristics and automating our detection
mechanism.

Jiang et al. [22] proposed a graph-based suspicious DNS activity
detection method from failed DNS queries. Using failed DNS que-
ries is effective to detect abnormal DNS activities, such as domain
fluxing and spamming, but it has limitation for detecting malicious
domain names which are actually working. In addition, the tri-
nonnegative matrix factorization algorithm that they used for
extracting distinct DNS activities needs too large size of matrix to
analyze much larger DNS traffic which includes valid domain
names efficiently.

John et al. [23] reported a valuable analysis result using their
own system. Their approach and concrete analysis of active botnet
are applicable, since they provide data basis for proving the prop-
erties of botnet, although the observed results may have a limita-
tion in the case of artificially generated malware traffic.

Lastly, our preliminary work [17] proposed a graph structure for
detecting multi-C&C botnets by clustering domain names accord-
ing to the number of clients and DNS query density. It showed
an ability to tracking continuously generated botnet domain

names which are hard to detect through temporal or spatial
similarity. In GMAD, we attempts to extend the detection coverage
from naive botnet activity to complex malware activity which is
more irregular and sparser. GMAD enhances the detection coverage
by adopting domain clustering with client sharing in addition to
the simple graph filtering. As a result, we detected more than ten
times of malicious domain names in the same data set, as com-
pared with the preliminary work which detected less than five
hundreds of botnet domain names.

Thus, previous studies on detecting malware including botnet
are dependent on the temporally and spatially similar DNS
activity patterns, but recent intelligent malware processes no
longer work identically. A malware activity detection method
needs to consider that different activity patterns generated by
the same malware need to be detected. Another important limita-
tion is detection sensitivity. The detection ability of statistical
approaches using graph analysis or machine learning techniques
is limited to distinguishing dense and regular activities from the
legitimate activities. The malwares that show similar or even
sparser DNS activities with a few infected machines should be
considered.

Our mechanism uses the graphs constructed from DNS moni-
toring to detect malware activities. Because most of large scale
malicious activities have been occurred by remotely controlled
groups of malwares, i.e., botnet, previous studies for combatting
to botnet share the fundamental problems and response
approaches with our work.

As compared to the previous studies, our work considers tem-
porally and spatially irregular DNS query patterns generated by
evasion techniques and adapts a robust property, sequential
correlation. Moreover, our graph structure and clustering process
with an increasing threshold provide a wide detection spectrum
from low-rate malware activity to C&C servers with hundreds of
multi-domain malware.

3. Malware DNS behavior properties and problems

3.1. Proposed DNS behavior property: sequential correlation

Sequential correlation is the correlation between two domain
names that are queried after or before each other. The degree of
the sequential correlation is determined by the client sharing ratio
(CSR) between the connected domain names. The client sharing is
estimated using the Jaccard similarity of query source IP addresses.
The CSR formula CSRðv i;v jÞ is defined as Eq. (1), where Cv i

is the set
of IP addresses querying a domain v i.

CSRðv i;v jÞ ¼
jCv i
\ Cv j

j
jCv i
[ Cv j

j ð1Þ

The higher the CSR the higher the dependency between two
domain names, but the opposite is not always true. In many prac-
tical cases observed in our experiments, even if the CSR between
two domain names are low, the CSR among the entire domain
members of a malware is observed to be high. For example, access-
ing www.google.com through an Internet browser automatically
causes DNS queries to the domain names of the statistics and
image server of google. Moreover, in many countries other than
the U.S., a DNS query to www.google.com is redirected to a local
domain such as google.ca or google.co.kr. These DNS query patterns
are forced by the system and have high sequential dependency.
The sequence of the domain names is hardly changed and CSR is
high. We categorize the causes of sequential DNS queries into three
relationships: server-driven, client-driven, and accidental. The
intentional sequential correlation is caused by either the server-
driven or client-driven relationship.
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� The server-driven relationship constitutes those cases where
the subsequent domain names to be queried are determined
by the response of the prior query, or the content of the
accessed server. For example, imported images give rise to
other DNS queries if they are below different domain names.
Another important case is the pre-defined domain names for
load balancing or contents distribution. These types of
sequential query are performed regardless of the user’s will
and occur systematically with a high probability. Conse-
quently, the sequential relationships among the domain
names have statistically high regularity with few exceptions.

� The client-driven relationship constitutes the cases where
the sequence and list of querying domain names are deter-
mined by the process or by a human on the client side. The
programs that try to connect some domain names periodi-
cally also cause periodic DNS queries. In many cases, the
programs have a static list and the order of querying
domain names including the query strategy such as when
and how many times they are queried. In this context, it
is hard for human users to generate the program-like query
pattern and vice versa.

3.2. Previous malware behavior properties

The properties previously proposed for distinguishing malware
DNS activities from legitimate DNS activities can be classified into
two classes: temporal and spatial. Fig. 1 illustrates the conceptual
comparison between previously proposed properties and our prop-
erty for malicious DNS activity detection. A rectangle on the figure
represents a DNS client ci, and a circle represents a domain name
di. An arrow from a client to a domain name represents a DNS
query for the domain name di from the clients at time ti. The
arrows that have the same query time on the first row of the figure,
a temporal property approach, represent simultaneously generated
DNS queries within a time slot. On the other hand, in the case of
one of the most recent approaches using a spatial property, i.e.,
DNS co-occurrence, the arrows do not have a query time because

the approach does not consider the time and order of the DNS que-
ries. Finally, the proposed property, sequential correlation, consid-
ers the order and the list of queried domain names, irrespective of
the regularity of the time intervals between DNS queries and time
synchronicity of each client. These two properties have been used
for detecting malwares from their DNS activities. The pros and cons
of the properties are as follows.

� The temporal property is an inherent feature of malware
due to the centralized, automated, and time synchronized
C&C structure characteristics, such as DNS queries at the
same time and in a regular time period to a same domain
name. The temporal property is effective for distinguishing
distinguish human user activities from those of traditional
IRC botnets and simple malware sending messages to the
C&C server periodically. However, this property is also seen
in legitimate background processes such as daemons com-
municating with their update or remote support servers.
Moreover, many sophisticated malwares that do not use
IRC as the C&C protocol rarely show the temporal property.

� Conversely, spatial properties are manifested by a set of
malwares that share an identical and pre-defined domain
list. A malware has a list of domain names for malicious
activity and its C&C servers, and the domain names in the
list are queried to a DNS server by the same malwares on
the Internet. The spatial property is robust against inten-
tionally and unintentionally unsynchronized DNS activities
and changes in the member clients of malwares. Like the
temporal property, this property is also evident in the legit-
imate processes that share centralized servers. Thus, sev-
eral advanced approaches that use spatial properties
adopt a knowledge-base such as a domain or IP blacklist,
to estimate the credit of domains and clients. One of
the recent approaches that use a spatial property, DNS
co-occurrence [10], achieved black list enhancement by
tracking domain names queried from the DNS clients that
had queried a known malicious domain name.

Fig. 1. Sequential correlation in compared with previous malware detection properties.
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The most significant advantages of our property, sequential cor-
relation are twofold. The first advantage is the sensitivity of its
detection, which is achieved by gathering the scattered and indi-
vidualized behaviors achieved by evasion techniques. In spite of
the various approaches that have been developed, the evasion
techniques of recent malwares have succeeded in taking a step for-
ward in the race between detection and avoidance. Recent mal-
wares no longer repeat their DNS behaviors infinitely without
hibernation. Moreover, the behaviors of the infected clients are
not temporally synchronized. This means that we cannot find ver-
tical (repeated similar patterns of a client) [24] and horizontal
(shared similar patterns between clients) [8,19] correlations in
the DNS behaviors of infected clients. However, GMAD gathers
the temporally scattered behaviors of a client and unsynchronized
behaviors between clients on a graph structure, DNTG.

The second advantage of sequential correlation is the accuracy
of its detection, which is achieved by distinguishing the noise
DNS behavior toward legitimate domain names. Temporal proper-
ties, such as the repeated query patterns of a client [24] and the
similarity of the patterns between numbers of clients [8], are also
shown for the legitimate domain names and provide few addi-
tional evidence about their reputation because their reputation is
evaluated only by the behavior of their clients. Spatial properties,
such as lexical similarity among domain names and spatial similar-
ity between DNS clients [19], are hardly shared between legitimate
and malicious domain names, but they are satisfied only by limited
old types of malwares. Methods that use other spatial properties,
such as co-occurrence [10], are practical against the evasion tech-
niques by adopting obvious evidence, i.e., domain black lists. How-
ever, they are not strict enough to distinguish intentional fake and
casually occurred noise legitimate queries from the infected
machines. Several sophisticated malwares hide the spatial proper-
ties of their DNS activities in noise by using fake-DNS queries gen-
erating numbers of legitimate or invalid DNS queries. However,
sequential correlation allows us to cluster legitimate domain
names to form a legitimate domain group even though the domain
names are intentionally queried by infected clients. The sequential
correlation of the domain names working together, which are sup-
ported by legitimate clients, leads a domain name to belong to the
corresponding group of domain names that should be queried
together in a legitimate access case.

3.3. Robustness problem against evasion techniques

Given the escalation in the evasion techniques of malwares, a
detection method should consider robustness against these eva-
sion techniques. The key idea of known evasion techniques is to
hide the group activity of the malware processes on the Internet.
Malware authors construct their malwares such that they do not
generate the same DNS queries at the same time, in order to imper-
sonate a normal user. However, it is significantly difficult to make
numbers of malwares on remote hosts work individually without
any shared domain names and common query patterns.

An evasion technique is used for hiding the infected clients and
malicious domain names from detection. The evasion techniques
against detection mechanisms that use DNS analysis can be classi-
fied into two classes, in the same way as the detection approaches,
i.e., temporal and spatial evasion. Temporal evasion techniques
drive the DNS queries from infected machines to temporally scat-
tered timing. Given that the C&C protocol of malwares has moved
from IRC to HTTP and custom protocols, malwares no longer need
to be temporally synchronized. Even during malicious activity
causing DNS queries, the attackers, generally called bot-masters
in much of the research papers, use only a part of their infected
machines in order to avoid exposing all the members. Concrete

examples of the temporal evasion techniques that have been
observed in malware in the wild are ‘‘client sub-grouping’’,
‘‘domain sub-grouping’’, ‘‘query timing randomization’’ and so on.
Sub-grouping means dividing the resources, such as infected cli-
ents and C&C servers, for malicious activity into several small
groups to avoid detection of all the resources and to hide their
group activities. Consequently, the DNS activities that adopt a tem-
poral evasion technique shows different client sets at each time
slot for a domain name. For instance, malicious domain d1 d4

which are queried by infected client c1 and c2 in Fig. 2, evade the
detection based on DNS group activity by using temporal evasion,
querying at each different time slot. Previous detection approaches
using temporal properties, such as time synchronized group
activity from a static and exclusive client set of a domain name,
are easily evaded by these techniques.

Spatial evasion techniques drive the DNS queries from infected
machines to complex target domains and query orders. Static or

Fig. 2. Problem case 1: temporal and spatial evasion techniques and the counter-
measure using sequential correlation.
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random order query patterns with multiple C&C domain names are
well known spatial evasion techniques. The most sophisticated
spatial evasion technique uses domain names that are continu-
ously generated by the domain generation algorithm (DGA). The
tremendous numbers of domain names are used for redundant
C&C domain names and fake domain names to hide the real C&C
domain names in the domain crowds. In terms of DNS analysis,
the spatial evasion techniques show us different domain names
for each query from an infected client. The spatial evasion tech-
nique in the lower part of Fig. 2 using DGA and domain fluxing also
evades the detection system based on temporal properties.

In contrast, the sequential correlation on a graph allows us to
track the newly generated domain names and represents the
connectivity between the old and new domain name. Even if each
client makes queries to each different subset of the entire domain
set, as in the temporal evasion case shown in Fig. 2, the sequential
correlation on a graph organizes an accumulated graph of the
entire domain set as in the framed example against the temporal
evasion techniques. In more severe cases, against the spatial eva-
sion techniques used by several known malwares, such as Conficker
[14] and Torpig [15], the domain names are distinguished as an
independent domain group, because the randomized sequential
correlation has exclusiveness with the sequential correlation of
the other non-randomized domain names. GMAD solves this prob-
lem of domain clustering through the DNTG as in the example in
the lowest frame of Fig. 2.

3.4. False detection problem for legitimate domain names

Another problem that has been a challenge for the DNS moni-
toring approaches is distinguishing the DNS queries for legitimate
domain names from infected clients. Popular domain names that
are frequently queried by the users of infected machines cause
false detection and noise in order to confuse the temporal and spa-
tial malware query patterns. Even these DNS queries for legitimate
domain names are utilized intentionally. Several well-known mal-
wares that have a large number of infected machines insert legiti-
mate or invalid domain names into their DNS query lists. These
fake DNS queries make the process of finding real C&C domain
names inefficient and labor-intensive by inserting false detection
and garbage domain names into their DNS behaviors.

To resolve the false detection problem, previous studies have
used a white list of well-known and popular legitimate domain
names collected from statistics services, such as Alexa [25], or a
popularity metric using the number of querying clients [26]. How-
ever, this approach is easily evaded by using legitimate domain
names that are not sufficiently popular for being distinguished to
the malicious domain names, as in the case illustrated in Fig. 3.
In contrast, sequential correlation allows legitimate domain names
to be distinguished from malicious domain names. Because legiti-
mate domain names also have a server-driven and client-driven
sequential correlation, like d3 and d4 in the figure, even if the cli-
ents are automated processes, the legitimate domain names are
clustered into a domain group separate from the malicious domain
group. The exceptional case is when a domain name is queried by
only infected clients that query a known malicious domain name,
or when a dominant portion of the clients are infected. These
domain names would be considered as domain names used by
malwares. In contrast, if a legitimate domain name has a client
set that is completely different from that of the other domain
names in a domain group, it would be separated by our mecha-
nism, even if several infected clients query legitimate domain
names. As summarized in Table 1, detection systems that use the
temporal and spatial properties among malware processes and
the density and size of activities, i.e., the numbers of queries and
on-line memberships in DNS, are effective for detecting traditional

malware such as IRC botnets, but have been evaded by the intelli-
gent query techniques of recent malwares. Sequential correlation
is sufficiently discriminatory to meet the challenges of malware
activity detection.

4. Malware activity detection using DNTG

In this section, we introduce a malware activity detection mech-
anism called GMAD: Graph based Malware Activity Detection.
GMAD detects malware activity by analyzing DNS traffic using a
graph expression named DNTG: Domain Name Travel Graph. DNTG
is a graph that expresses a domain name as a node and the sequen-
tial correlation among the domain names as a directed edge, an arc.
Sequential correlation is a relationship between two domain names
that are continuously queried at a DNS. And a graph structure is
suitable to represent the sequential correlation. The sequential cor-
relation has increasing and equivalent entities, i.e., domain names,
and their relationship that has direction and loop. A loop is an indis-
pensable property to express repeated DNS activities without obvi-
ous start and end node. DNTG satisfies these required conditions.

GMAD constructs DNTG from DNS traffic and clusters domain
names that are queried in a patterned order and by similar client
sets. This clustering allows malware domain names to be distin-
guished from the legitimate domain names that are casually or
intentionally queried. Lastly, GMAD determines the maliciousness
of each domain cluster using a domain blacklist. In this section,
we explain in detail the algorithms for graph construction from
DNS traffic, graph clustering and malware activity detection start-
ing with brief overview of the mechanism.

4.1. Mechanism overview

GMAD detects malware activities in DNS traffic through three
processes: P1 – graph construction; P2 – graph clustering; and

Fig. 3. Problem case 2: legitimate domain queries from infected machines causing
false detection on the detection mechanisms using spatial property, and the
countermeasure using sequential correlation.

Table 1
Comparison for legacy and proposed malware detection properties on DNS.

DNS behavior property Traditional malware Users Intelligent malware

DNS query volume High Low Various
Temporal property High Low Low
Spatial property High Low Various
Sequential correlation High Low High
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P3 – malware activity detection, as shown in Fig. 4. As its results, it
reports malware domain names that are used not only for malware
C&C servers but also for malicious activities, such as malware drop-
ping, update, spamming, and blacklist check. The summarized
functionality of each process is as follows.

� P1 – graph construction. DNS query traffic captured in front
of a DNS server is converted to a DNTG. Through P1, the
mechanism extracts the sequential correlation of domain
names as a pre-processing step for graph clustering. P1
extracts four information from the DNS traffic: (1) A list
of queried domain names as the nodes of a graph; (2)
sequential correlations as the edges of a graph; (3) a table
of query source IP addresses for each domain name; and
(4) the number of queries of each domain name. The
domain names that are queried only by one client during
a monitoring time are removed.

� P2 – graph clustering. This process is a key part of the mecha-
nism. P2 groups intentionally related domain names to
detect malware domain names that are working together.
P2 does not make decisions about the maliciousness of each
domain name and each domain group, but it separates
domainnamesthatareusedby differentprocessesandservices.
According to a clustering feature, client sharing, P2 clusters the
domain names queried by the same process or service.

� P3 – malware activity detection. This process detects mal-
ware domain names based on a domain black list. As men-
tioned above, domain names on a blacklist are usually C&C
domain names or the infection domain names of a Trojan;
however, the detection covers the domain names for many
other malicious purposes, as well as C&C domain names.

4.2. Process 1: graph construction

Algorithm 1. P1: Graph construction

Input: Query set Q ¼ fqg
Output: Domain name travel graph G ¼ ðV ; EÞ
1: V  /;
2: E /;
3: qc  GetFirstQueryðQÞ;
4: while qc is not the end of Q do
5: c  GetClientIPðqcÞ;
6: v i  GetLastDomainðcÞ;
7: v j  GetDomainðqtÞ;
8: V  V [ v j;
9: if v i is exist then
10: E E [ Edgeðv i;v jÞ;
11: e GetEdgeIndexðEdgeðv i;v jÞÞ;
12: // Weight of the edge e
13: W½e�  W½e� þ 1;
14: // Set of IP addresses contribute to the edge e
15: Ce  Ce [ c;
16: else
17: SetLastDomainðc;v jÞ;
18: end if
19: // Set of IP addresses which queried domain v j

20: Cv j  Cv j [ c;
21: qc  GetNextQueryðQÞ;
22: end while

The construction of the domain name travel graph is the first
step in constructing a graph from given DNS traffic. Converting
network traffic or logs to the graph allows sequence of queries

from the DNS traffic to be traced. In the DNTG structure, each
domain name is assigned to a node on a graph with a label, an
ordered query from an identical client to two domain names is
expressed as an edge. In the Google example mentioned at the
start of the section on sequential correlation 3.1, domain
www.google.com and www.google.co.kr are connected by an edge
from www.google.com to www.google.co.kr, and www.google.co.kr
and www.gstatic.com are connected in the same manner. This
graph construction is performed on GMAD using Algorithm 1.

One of the key features of DNTG is that the DNS query activities
from the DNS clients are accumulated on a graph. Graph operations
on a single graph make the mechanism scalable in temporally and
spatially. As a construction example, in Fig. 5, DNS queries of two
DNS clients are recorded on a graph. The order and timing of the
DNS queries of each client do not affect those of the other clients.
In the example case, a DNS query for a.com from Client 2 is not con-
nected with c.name queried by Client 1.

4.3. Process 2: graph clustering

Algorithm 2. P2: Graph clustering

Input: Initial domain name travel graph Gi ¼ ðVi; EiÞ
Output: Clustered domain name travel graph Gc ¼ ðVc; EcÞ
1: Vc  Vi;
2: Ec  Ei;
3: tw  GetEdgeWeightThresholdðÞ;
4: tcss  GetClientSetSizeThresholdðÞ;
5: tcsr  GetClientSharingThresholdðÞ;
6: e GetFirstEdgeIndexðViÞ;
7: while e is not the end of Ei do
8: vsrc  GetSrcNodeðeÞ;
9: vdst  GetDstNodeðeÞ;
10: // Weight of the edge e
11: w W½e�;
12: // The number of distinct clients of the edge e
13: c  GetSetSizeðCeÞ;
14: s ClientSharingRatioðCvsrc ;Cvdst Þ;
15: if w < tw or c < tcss or s < tcsr then
16: // Edge cut
17: Ec  Ec � e;
18: Ce  /;
19: W½e�  0;
20: end if
21: endwhile

In the graph clustering step, domain groups are extracted
from the entire set of domain names. The process makes an
initial DNTG for the numbers of components by cutting edges.
A component represents a domain group. The clustering process
removes the edges whose CSR, number of clients, or number of
queries are less than each threshold. If an edge connecting two
domain names has a lower CSR than the other edges, GMAD
considers that the domain name connected with the edge is
not utilized by the same client set. The number of clients and
queries represent the degree of regular and intended behaviors.
As a result of edge removal, the nodes connected by the edges
lose their connection. The nodes that lose their connection form
a connected-component. The edges that separate a connected-
component from the initial graph are called the cut-edges in
graph theory fields. According to the definition of the DNTG
structure, a component that is an isolated set of nodes repre-
sents an isolated domain group.
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GMAD adopts increasing thresholds and iterated cutting in the
clustering process. Because every potential component has a
different cut-edge value, the clustering needs to be performed with
various tcsr which is an upper bound threshold for edge cut. For
instance, a malware whose query domain list and member clients
are static produces edges that have a CSR that is close to 100%. On

the other hand, a malware that queries a sub-set of the entire
query domain list at a monitoring time and is not time synchro-
nized shows a relatively low level of client sharing. If a clustering
uses a tcsr of 90% as an edge-cut threshold, it acquires the former
component connected with the edges whose CSR values are over
90%, but it loses the edges and nodes of the latter case. To obtain
the maximized member domains of each component, the cluster-
ing process needs to adopt a minimized clustering threshold for
a graph. To adopt the minimized threshold for the components,
GMAD performs a clustering process on the initial graph iteratively
with a threshold that increases from a low starting value. We set
the starting threshold value as 0.2 in our experiments. The
definition of the clustering process is described as Algorithm 2.

4.4. Process 3: malware activity detection

The malware activity detection process determines the mali-
cious domain names that are used for malware activities. The
domain names that belong to a clustered graph are evaluated
according to whether the domain name set of the graph includes
any known malicious domain names. Fig. 6 shows an example of
the overall detection process using the graph. The graph clustering
process classifies the domain names on a graph into malicious and
legitimate. A clustered graph includes the domain names and their
sequential correlation information, and a clustered graph classified
as a malicious graph provides a list of malicious domain names
working together. As in the example, one clustered graph repre-
sents one malware activity. Yet, if more than two malwares share
their clients, a graph represents all these malwares on a single
graph. This exceptional case can be observed when the malwares
download another malware on infected machines, which are
installed by a same dropper or from a same infection route.

Even though the detection is performed on a graph structure, no
graph traversal or comparison operation is required. Because a
clustered graph is a closed graph, the detection process only reads

Fig. 4. Process flow diagram of the malware activity detection mechanism using
DNTG.

Fig. 5. Example for DNTG construction from DNS traffic. Fig. 6. A real-case example of detection using GMAD process.
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a list of node labels and finds each label on a black list using a hash-
map based search algorithm that takes constant time. We will dis-
cuss the time complexity of each process in the analysis section.

5. Experiments

In this section, we show the results of experiments on the DNS
traffic of real networks, including the tracking ability of our mech-
anism. We implemented DNTG constructor and clustering pro-
cesses using C++ for experiments. A graph tool, Pajek [27], was
used for visualization. The Kamada–Kawai Algorithm [28], included
in Pajek was used as a graph layout algorithm. The experiments
were performed on a desktop PC with a 3.30 GHz Intel quad core
CPU, 8 GB main memory and Microsoft Windows 7 64 Bit. The
mechanism is not yet fully automated and does not necessarily
work in real time, but the automated parts take only a few minutes
to process two hours of ISP level DNS traffic.

5.1. Data sets

We performed an experiment with DNS traffic captured on real
networks to show the effectiveness of GMAD. We captured DNS
query traffic in front of DNS servers in large ISP networks. We used
four trace sets extracted from the traffic for our experiments and
detailed analysis. These were captured around midnight and in
the afternoon in the U.S. and South Korea. In this part, we call
the data sets US1; US2; KR1 and KR2. Each data set has two hours
of DNS traces. US1 and KR1 are afternoon traces, and US2 and KR2
are middle of the night traces.

As shown in Table 2, US1, and US2 have a similar traffic volume,
but KR1 has twice as many query and domain numbers and three
times as many clients as KR2. In terms of malicious activity, KR2
shows 80% of blacklist domain names as compared with KR1, even
though it has only half of the query volume of KR1. It can be rea-
soned that several malwares in KR2 are active at night time.

5.2. Detection result and clustered graphs

The malicious domain names detected by GMAD are structured
as domain name clusters, and a cluster is represented as a graph.
The clustered graphs in Fig. 7 are the graphs of domain name clus-
ters detected from KR1. In order to show graph topologies, we hid
the domain names on the nodes. The brightness of the edges rep-
resents the CSR value of the edges: the darker edge represents a
higher CSR, and the brighter edge represents a lower CSR. The clus-
tered graphs that have more than two malware labels are graphs
that contain the malicious domain names of plural malwares.
These cases are observed when some clients are infected by plural
malwares, or when the malwares share a domain name.

The number of detected domain names is affected mainly by the
malwares using DGA. The multi-domain malwares using DGA gen-
erate thousands of domain names per hour. In our experiments, the
malicious domain names generated by DGA had various patterns,
including fully randomized domain names. Several malwares make
hundreds of domain names for querying their C&C domain names
at the public DNS blacklist services to check whether their C&C

domain names are listed. Another malware activity that uses the
numbers of domain names is attack target scanning for finding
mail servers and vulnerable web and database servers. The scan-
ning activity queries hundreds of domain names in the dictionary
order. In this special case, although the scanning activities were
detected by GMAD, we excluded the detected domain names from
the statistics because the target domain names of the DNS activi-
ties were legitimate.

Another important contributions of our work to detect multi-
domain malware activity is detecting domain name groups which
are not share lexical similarity as well as obviously randomly gen-
erated domain names. In several previous approaches combatting
the multi-domain malwares such as Yadav’s work [12], their target
was detecting randomly generated domain names by DGA. But,
according to the reports analyzing recent malwares, many top
ranked large scale malwares have the domain names which are
not randomly generated. In practice, tens of malicious domain
name groups which are detected by GMAD such as the malicious
domain names on Table 3, have little lexical similarity among their
member domain names. These types of malwares are hard to
detect through their repeated patterns or probabilistic distribution
of letters.

5.3. Detection accuracy

We gathered 13,392 distinct malicious domain names for per-
formance evaluation from public black list: DNS-BH [29], Malwa-
reDomainList.com [30] and malc0de.com [31]. Because GMAD
detects malicious domain names which are not in the black list,
we manually investigated non-listed domain names to determine
their maliciousness. For the manual investigation, we used DNS
activity analysis reports posted on public malware and malicious
domain name information sites, Threat Expert [32], Microsoft
Malware Protection Center [33], Symantec Threat Explorer [34], Site
Advisor [35], MalwareURL.com [36] and SURBL [37]. Some of the
information sites used for manual investigations provide their
own black lists, but they are not fully public.

Table 4 shows the evaluation results using accuracy metrics.
GMAD shows over 80% precision and a false positive rate lower
than 0.5% for the four data sets. The precision is rate of correctly
detected domain names among all detected domain names. The
false positive rate (FPR) is rate of incorrectly detected legitimate
domain names among all legitimate domain names. The definitions
of the precision and false positive rate are in Eqs. (2) and (3),
respectively. In the equations and tables in the experiments and
analysis section, we abbreviate the true positive, true negative,
and false positive as TP, TN and FP, respectively.

Precision ¼ TP
TP þ FP

ð2Þ

FPR ¼ FP
TN þ FP

ð3Þ

According to Table 4, GMAD showed up to seven hundreds of
false positive cases in two hour data sets. False positive of GMAD
is mainly caused by clustering failure. In several cases, sequential
correlations which are yielded by a too few clients are hard to

Table 2
DNS trace sets for analysis and evaluation.

Data set Date Time Query Domains Clients Blacklisted

US1 June 22, 2010 13:00–15:00 1713 K 228 K 16 K 0.2 K (0.09%)
US2 June 22, 2010 22:00–24:00 1737 K 221 K 15 K 0.2 K (0.10%)
KR1 January 22, 2010 13:00–15:00 8661 K 1,151 K 183 K 1.0 K (0.09%)
KR2 January 22, 2010 22:00–24:00 4210 K 614 K 52 K 0.8 K (0.17%)
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distinguish from incident correlations. In our experiments, when a
legitimate domain name that was only queried by one or two cli-
ents had sequential correlation with a known malicious domain
name, the legitimate domain name was false detected. This type
of false detection cases can be reduced by setting a higher tcss for
considering the behaviors that are caused by sufficiently many cli-
ents only. According to our analysis about the effect of tcss, in clus-
tering the higher tcss were used, the higher detection precision was.

Another false detection case is caused by flawed knowledge-
base. A legitimate domain name which was temporarily exploited
for malicious activities, such as redirection host and DNS for C&C, is
possibly black-listed, and it leads all the other domain names in a

legitimate cluster to false detection. However, using these tempo-
rary black domain names to track the other malicious domain
names and infected clients is useful and superior detection ability
in compared with the previous methods. Detecting malicious
activities using temporary black domain names without manual
analysis and extracting only malicious activities from a long-term
activities with lower false detection are our open problem.

5.4. Detection sensitivity

One of the most significant challenges in responding to mal-
ware is to detect the entirety of malicious domain names. The

Fig. 7. Samples of malicious domain name clusters detected from KR1.
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redundancy provided by multiple domain names gives more resil-
iency and functionality to the malwares. It is difficult to predict the
domain names that have not yet been used, but a detection method
should detect at least newly generated and rarely used malicious
domain names sensitively. Detection sensitivity is how many mali-
cious domain names are detected in the sparser DNS query density
and the less active machines. In our experiment, we compared the
degree of the detection sensitivity using the number of detected
malicious domain names over the same data set.

In this section, we describe our experimental comparison of the
detection sensitivity of GMAD with one of the most evolved mal-
ware activity detection method, BotGAD [8]. BotGAD uses temporal
group activity in malware DNS queries, i.e., time-synchronized
DNS queries on a domain name, and similarity among querying cli-
ent sets, along with time slots. BotGAD is an advanced method as
compared with the other previous methods in that it detects
malware domain names without any knowledge-base and consid-
ers several evasion techniques, such as hibernation and random
interval activity. In addition, in the most recent study of BotGAD
[9], the related malicious domain names are detected as a domain
group using lexical similarity and network features, such as
corresponding IP addresses among the domain names. However,

its effectiveness is limited in the case of multi-domain malwares
which have little lexical and networking similarity in their domain
names.

In terms of detection sensitivity, GMAD shows about a 28-fold
improvement over BotGAD on average over the four data sets.
Detailed performance comparisons according to the detected mali-
cious domain names along with the number of query clients for
each domain name are illustrated in Fig. 8. Detecting the more
number of malicious domain names that are queried by a few cli-
ents represents the more sensitive detection. Fig. 8 represents the
number of domain names detected by GMAD and BotGAD in the
data sets US1 (upper-left), US2 (upper-right), KR1 (lower-left) and
KR2 (lower-right). BotGAD responds to the multi-domain malwares
partly by grouping related domain names. However, it does not
show a sufficient performance as compared with GMAD, even
though the detection coverage of GMAD is dependent on a blacklist.

The better domain clustering ability of GMAD gives advantage to
the detection sensitivity too. If a detection method cannot group the
related domain names, this means that the density of the malicious
activities is too sparse to allow their maliciousness to be determined
using that method. The source of the major quantitative difference
between GMAD and BotGAD is the detection of malicious domain
names that are queried by fewer than two infected hosts. This result
shows the importance of detection sensitivity and the number of
malicious domain names that are undetectable by previous
detection methods because of the density and size of the activity.

According to our analysis of the detection results, another rea-
son for GMAD’s superiority is that BotGAD detects only C&C domain
names that are regularly accessed. In contrast, the domain names
detected by GMAD include the domain names which are used for
malicious DNS activities in a wider sense, such as blacklist
checking, spamming, domain scanning, fake C&C, as well as C&C
domain names in sparse communication density. The fact that
domain names are not detected by BotGAD as shown in Fig. 8,
even though queried by more than three infected machines, means
that the malwares evaded BotGAD using evasion techniques to
combat detection methods using temporal property and lexical
similarity.

On the other hand, compared with the Jiang et al.’s work [22]
which has the most similar target to our work and also takes
graph-based clustering, GMAD shows better detection sensitivity.
In the data sets US1 and US2 which are smaller but have similar
query-per-client rate to the data set that are used in [22], GMAD
shows 60% and 20% more domain detection than all of the suspi-
cious domain names of their work. An obvious difference in detec-
tion ability is the detection of valid domain names which was not
considered at the Jiang et al’.s proposal. In their work, only invalid
domain names are considered, which have no corresponding
resource records. It means their method does not cover the mali-
cious domain names that are working actively, as well as active C&C.

In detail, the data set used in Jiang et al.’s experiments has 20%
more queries and clients than our data set, i.e., US1 and US2. In the
Jiang et al.’s experiment, near 3000 invalid domain names were
considered as a suspicious domain. The actual number of domain
names which were verified as the malicious were not concretely
disclosed. However, in our result, GMAD detected 4917 and 3650
domain names as the verified malicious domain names, i.e., TP on
Table 4, from US1 and US2, respectively. Although this comparison
is not based on equivalent data set, the result obviously shows the
difference on detection performance caused by the detection abil-
ity for the valid domain names and coverage.

6. Analysis

In this section, we analyze the effect of the metrics that repre-
sent the degree of sequential correlation on detection performance.

Table 3
Examples of detected malware domain names on KR1.

Idx Domain names Group
size

Redirection URLs and various
malwares

megaparty.ws 27

playnewforex.info
fotovideo2009.biz
totalinfluence.biz
ixxlkg.cn
totalinfluence.info
8ciehnvy.com
playnewforex.ru
djsu.info
. . .

DelfInject.gen and Hamweq.CW thunder.ircdevils.net 51
4949.zerx-virus.biz
thunder.helldark.biz
yhtjanj.com
yhtjanj.biz
udptanj.com
udptanj.net
. . .

Tikayb.A. gotoplaywithme.name 101
ac.ultima2009.info
ae.ultima2009.info
ec.gotoplaywithme.name
hh.gotoplaywithme.name
fk.gotoplaywithme.name
. . .

IRCBot, Kolab.fhi and Palevo mails.pes2009.biz 10
serv1.alwaysproxy8.info
tes.enterhere2.biz
tes.stuckin.org
tes.memehehz.info
ninja.ibedyou2.com
idfc2.info
host.idfc2.info
. . .

Table 4
Detection performance for real-world DNS data sets.

Data set TP TN FP Precision (%) FPR (%)

US1 4917 223,175 588 89.31 0.26
US2 3650 217,211 185 95.17 0.08
KR1 5932 1,144,832 626 90.45 0.05
KR2 3705 517,891 687 84.36 0.13
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Through the analysis, we attempt to find the trade-off between, as
well as the most beneficial configuration of, detection coverage and
accuracy to detect real world malwares. The analysis showed that
the different configurations make it possible to detect different
malware activities which cannot be detected by the other configu-
rations. This result indicates that we should adopt an optimized
detection strategy along with the operation purpose and policy.
Finally, we performed a scalability analysis in terms of time
complexity to show the practicality and efficiency of GMAD.

6.1. Clustering accuracy as minimum valid DNS clients

GMAD effectively detects malicious domain names that are used
by only a few on-line infected hosts. However, most of the proper-
ties estimated from DNS behavior, including that used in our pro-
posed method, sequential correlation, are more reliable when there
are more behavior subjects, i.e., DNS clients. This means that there
can be a trade-off between the minimum number of infected cli-
ents for estimating the maliciousness of a domain name and false
detection. In other words, including DNS queries to a domain name
queried by fewer DNS clients for estimating a property render a
detection mechanism more sensitive but less accurate. To maxi-
mize the effectiveness of our mechanism, we analyzed the effect
on the detection accuracy of GMAD when the minimum number
of valid DNS clients, denoted by tcss representing an edge-
cut threshold for client set size (CSS), is applied in the clustering
algorithm in Section 4.3. tcss causes GMAD to ignore sequential
correlation generated from clients whose number is less than tcss.

According to the results of experiments to analyze the effect of
sensitive detection, shown in Table 5, a higher tcss yields fewer
detected domain names but a higher accuracy level. A higher tcss

yields more true positive malicious domain names, quantitatively,
but it does not include the result of the lower tcss cases. Where the
set of true positive malicious domain names that are detected
when tcss is k is expressed as TPtcss¼k. We compared the results while
increasing tcss from one to five. In the comparison between
TPtcss¼1 and TPtcss¼5, the number of domain names detected only in

tcss ¼ 1 is represented as jðTPtcss¼1 � TPtcss¼5Þj. In the data set
KR1; jðTPtcss¼1 � TPtcss¼5Þj was 2120 domain names and the opposite
case, jðTPtcss¼5 � TPtcss¼1Þj, was 2134. The commonly detected
domain names in both TPtcss¼1 and TPtcss¼5 are 3812 domains. This
means that a different tcss leads to the detection of different types
of malicious activities.

In terms of detection sensitivity, the number of detected
domain names decreased with a higher tcss as there was more loss
of connectivity by the edge-cut using tcss. However, the number of
true positive cases was increased. This means that the malicious
domain names that were not detectable using a clustering based
on CSR value can be detected a clustering using CSS. According to
our empirical analysis, a group of domain names which has a larger
CSS possibly has low CSR and vice versa. A malicious activity whose
clients share a similar querying domain name set has high CSR
among the domain names, and it should be dealt with clustering
using CSR. On the other hand, a malicious activity performed by
numbers of clients shows spatially scattered behavior unless the
numbers of clients are finely synchronized. A clustering using CSS
is proper to this type of activity.

6.2. Client sharing ratio of malicious domain clusters

The CSR of each malicious domain name cluster represents the
malwares’ client–server structure and C&C strategy. As discussed
in the explanation of the graph clustering process, the CSR among
malicious domain names is dependent on the communication

Fig. 8. Malware domain detection result comparing with BotGAD.

Table 5
Detection performance as filtering threshold tcss on KR1.

tcss TP TN FP Precision (%) FPR (%)

1 5932 1,144,832 626 90,45 0.05
2 3946 1,147,066 378 91.26 0.03
3 3248 1,148,049 63 98.10 0.01
4 4901 1,146,445 44 99.11 0.00
5 5946 1,145,426 18 99.70 0.00
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strategy between malwares and malicious domain names. A finely
synchronized group of machines infected by a malware that has a
static domain names list shows a high CSR in its DNS activities. In
contrast, the malwares operated in sub-grouping or sparse com-
munication generate DNS queries only for a part of their domain
names at one time.

Within the malicious domain name clusters detected from KR1,
the domain names in more than one third of the clusters were con-
nected with edges that had an average CSR from 30% to 50%. Fig. 9
shows the distribution of the average CSR values of the malicious
clusters. Most clusters had an average CSR of 30–40% and less than
10% of the clusters were connected with fully shared clients. In
terms of the number of infected clients, the malicious domain
names that had more clients showed a lower CSR. This can be inter-
preted in two ways. The first possibility is that it is relatively hard
to synchronize the larger malwares, which have more infected cli-
ents, and the clients of each malicious domain name also may not
be synchronized. The second possibility is that the malwares are
using evasion techniques to hide their group activities, intention-
ally. In conclusion, if we consider that the malwares that have
more on-line clients are more critical, even if their DNS activities
are sparse and scattered, we should focus on detecting domain
names that have large client sets and a low CSR. A low CSR means
that the entire number of infected clients is much greater than that
observed. On the other hand, the largest portion of detected mal-
wares consists of the small scale malwares which have only one
to three malicious domain names and clients within our monitor-
ing time slot. Estimating the optimal time and resource consump-
tion for revealing all the infected clients of a malware can be
another research topic.

6.3. Scalability analysis

GMAD has a practical performance that is robust against the
huge volume of input data, i.e., the DNS query traces. According
to time complexity analysis, where n is the number of the input
DNS queries, GMAD has OðnÞ time complexity through the entire
detection process. In the worst cases, the time complexity of each
step is OðnÞ, and the reasoning is as follows.

� Graph Construction: twice of map searches which takes a
constant time [38] for n DNS queries.

� Graph Clustering: n� 1 times of comparison operation for
n� 1 arcs.

� Weak-connected component separation: finding weak-
connected component [39] from n and n� 1 nodes and
edges respectively.

� Blacklist matching: n times hash-map search, which takes a
constant time.

In the worst case, the number of nodes and edges in the DNTG is
as many as the number of DNS queries, however, in fact, they do
not linearly increase with the size of the DNS queries. The time
and space complexity are dependent on the number of unique
domain names, and the growth of unique domain names slows
down as illustrated in Fig. 10 following Heaps’ law [40]. In our
empirical analysis, the Heaps’ law formula for the number of
unique domain names is DðnÞ ¼ 0:28 � n0:6. As an illustration, the
size of DNTG constructed from eight million DNS queries for two
hours is only 21 MB. Computation overhead per each arc is also
slight. Three processes except the graph clustering within the four
processes only need a couple of integer comparison and hashing
per each arc. The graph clustering has the heaviest computation
overhead because it compares sets of IP address. However, the
computation time and space consumption is minimized by hashing
to the IP addresses of the clients which are the input data of esti-
mating the CSR. The hash matching is much faster than original
32 bit IP address matching.

On the other hand, GMAD is practically scalable to large scale
data, as compared with other previous studies [8,9,19,20,22] which
compute information of the clients and domains at once. Con-
cretely, GMAD minimized the data which must be analyzed simul-
taneously. The topology of a graph only includes the connectivity
information and their arc weight. In the same DNS query data size,
the size of the topology information is much smaller than the tim-
ing data of the previous temporal approaches must process simul-
taneously. The spatial approaches based on the similarity of plural
DNS clients at once, not one by one, also have same memory over-
head problem to the temporal approaches. In contract, the estima-
tion of arc weight in GMAD can be processed independently.
It means that the estimation procedure only needs to load the
information of two nodes on the memory at once, and it can be
processed in parallel.

7. Discussion

In this section, we discuss about considerable drawbacks and
questions, i.e., the limitation of sequential correlation against the
traditional single domain malware, and the universality of GMAD.

7.1. Drawback of sequential correlation approach

Though GMAD mainly focuses on the multi-domain malicious
activities and evasion technique problems, GMAD covers a part of
single domain names which show the sequential correlation to
themselves. But the coverage is relatively limited. The sequential
correlation has a limitation on to detect malicious single domain

Fig. 9. The distribution of average CSR on the detected domain clusters as tcss .

Fig. 10. The number of unique domain names as the increase of input DNS queries.
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activities which are different to the normal single domain activities
only on their temporal patterns. As a sequential correlation, those
two activities are considered as the same patterns. In contrast to
the multiple domain activities, the single domain activities have
to investigated by their strict regularity if they have, because tem-
porally irregular queries to single domain name have little differ-
ence to the normal activities. However, the lack of robustness
caused by the strictness is a well-known limitation of previous
temporal approaches. To overcome this trade-off may need to
use another property and data sources in addition to the DNS query
pattern. It can be a topic for our future work.

7.2. Locality of experimental data sets and universality

A malicious activity detection method may show different per-
formance to the different data sets which have their characteristic
locality. In many cases, domain black lists have been managed suit-
able to each ISP. We observed that the kind of malwares were
slightly different between data sets gathered from U.S and South
Korea. But GMAD has enough universality to this difference. As
shown on Table 5, it does not affect the detection performance.
GMAD does not shows significant difference on accuracy for the
four different data sets. The number of detected domain names
can be different due to the number of domain flux malwares with
the DGA. In another point of view, even though KR1 has three times
of queries and twice of domain names compared with KR2, it does
not affect to the accuracy.

8. Conclusion

Malwares on the Internet are becoming intelligent and com-
plex, and therefore they can evade the legacy detection methods.
DNS activity analysis, which has been one of the most effective
response methods, also faces the evasion problems incurred by
the malware’s use of multiple domain names. In this paper, we
proposed a malware activity detection mechanism named GMAD
that uses graph expression and a robust DNS behavior property,
sequential correlation. GMAD finds malicious domain names in
DNS traffic, which are utilized by the malwares as C&C servers,
DNSs, update servers, etc. Through the graph representing the
sequential correlation and graph clustering, GMAD reveals the
malicious domain names, even though the DNS activities for
the domain names are being adopted temporal or spatial evasion
techniques. In our experimental evaluation using DNS traffic data
gathered from two ISP DNSs in the U.S. and South Korea, GMAD
showed superior detection accuracy and sensitivity as compared
with the previous DNS analysis approaches. The major contribu-
tion of this study is to reveal the malicious domain names that
have not been detected by the legacy DNS analysis methods using
temporal and spatial behavior properties. We extend the detection
coverage to all the sequentially correlated domain names utilized
for malware activities, even though the domain names are not
regularly and periodically queried as are the legacy C&C domain
names. We believe that the contributions of our work will facilitate
the prevention of damage from malware infection and malicious
activities on the Internet more effectively.
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