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Voice over IP (VoIP) services have become prevalent lately because of their potential advantages such as
economic efficiency and useful features. Meanwhile, Session Initiation Protocol (SIP) is being widely used
as a session protocol for the VoIP services. Many mobile VoIP applications have recently been launched,
and they are becoming attractive targets for attackers to steal private information. In particular, mal-
formed SIP messages and SIP flooding attacks are the most significant attacks as they cause service dis-
ruption by targeting call procedures and system resources. Although much research has been conducted
in an effort to address the problems, they remain unresolved challenges due to the ease of launching vari-
ants of attacks. In this paper, we propose a stateful SIP inspection mechanism, called SIP–VoIP Anomaly
Detection (SIPAD), that leverages a SIP-optimized data structure to detect malformed SIP messages and
SIP flooding attacks. SIPAD precomputes the SIP-optimized data structure (termed a stateful rule tree)
that reorganizes the SIP rule set by hierarchical correlation. Depending on the current state and the mes-
sage type, SIPAD determines the corresponding branches from the stateful rule tree, and inspects a SIP
message’s structure by comparing it to the branches. The SIP-optimized rule tree provides higher detec-
tion accuracy, wider detection coverage and faster detection than existing approaches. Conventional SIP
inspection schemes tend to have high overhead costs due to the complexity of their rule matching
schemes. Experimental results of our SIP-optimized approach, by contrast, indicate that it dramatically
reduces overhead and can even be deployed in resource-constrained environments such as smartphones.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

As the Internet is becoming more popular, Voice over IP (VoIP),
also called Internet telephony, has become a promising communi-
cation medium owing to its economical rates and additional fea-
tures such as video conversation, SMS, and messenger services.
At the same time, VoIP services are facing both known and un-
known security threats, as indicated by several studies on VoIP
security [1–3].

Two main VoIP session protocols, SIP and H.323, are typically
used to establish and terminate a call. SIP is mostly chosen due
to its simpler connection process and easier implementation for
the Internet [4]. Because of its ease of implementation, the number
of SIP–VoIP applications available for mobile phones (e.g., Android
and iPhone applications) is rapidly increasing, so that Juniper Re-
search [5] forecasts that the number of mobile VoIP users will
reach 640 million by 2016. While SIP–VoIP services are getting
popular, they are also becoming attractive targets for attackers
who aim to steal private information such as personal contacts
and text messages, and to commit fraud by disguising caller
information. Recent researches has looked at SIP–VoIP vulnerabil-
ities that can lead to such threats on VoIP services [6,7]. Accord-
ingly, SIP security is an essential part of reliable services
provision due to the fact that SIP is in charge of session initiation,
connection, and termination.

SIP is particularly susceptible to two types of attacks, mal-
formed SIP message attacks and SIP flooding attacks. Attackers
can easily forge the header fields of SIP messages as the messages
consists of plain text. Indeed, in the Common Vulnerabilities and
Exposures (CVE) [8], 24 malformed SIP vulnerabilities have been
publicized between 2010 and the first quarter of 2012. Schanes
et al. [9] used a SIP fuzzing framework to find the vulnerabilities
in SIP softphones. They found that malformed messages can cause
unexpected failures such as program crashes, memory consump-
tion, and process hangs. Consuming resources in a SIP flooding at-
tack is one of the easiest way to crash target servers. In addition,
many free downloadable tools can be used to generate SIP mes-
sages. These tools not only launch SIP flooding attacks, but also
manipulate SIP packets for malformed message attacks [10–12].

Many researchers have previously proposed approaches that
detect either malformed message attacks [13,7] or flooding attacks
[14–16]. Recently, to cover both types of attacks, Ehlert et al. [17]
proposed a two layer SIP prevention mechanism using RFC 3261
[18] rules and a pre-defined threshold. Another approach, Lahmadi
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et al. [19], provides a stateful SIP firewall by generating SIP parsing
trees. It checks SIP fields and packet counts using its own pre-de-
fined language. However, all of the approaches have the following
drawbacks in terms of detection accuracy and system overhead.

� Low accuracy: Existing approaches are based on SIP stan-
dard rules, so-called RFC 3261 rules. However, the stan-
dard rules only provide rough boundaries so there is the
possibility of being attacked by elaborative malformed
messages that meet SIP standard rules but cause unex-
pected failures by exploiting, for example, string overflow
or special character vulnerability. Thus, well-defined SIP
rules are necessary to achieve higher detection accuracy.

� High overhead: A SIP message consists of several lines of
plain text. Existing approaches to detect malformed mes-
sages inspect each line of a SIP header by matching it to
pre-defined rules. Matching the header to the rules takes
the largest portion of system overhead. Recently, VoIP
providers have begun to define their own headers to
obtain network or user information; and thus, the number
of SIP headers and the inspection overhead increase as the
service provides more features. Furthermore, as mobile
VoIP services are getting popular, reducing system over-
head becomes a critical issue to be feasible in resource-
constrained environments such as smartphones.

To detect the two significant attacks with higher accuracy and low-
er overhead, we propose a novel mechanism, called SIP–VoIP Anom-
aly Detection (SIPAD), which leverages a stateful rule tree

based on well-defined SIP rules. From the RFC 3261 SIP standard,
we found that there are hierarchical correlations between SIP states
and SIP message rules. We used these correlations to design a SIP-
optimized data structure, termed the stateful rule tree, to detect
the two types of attacks. SIPAD builds tree branches according to
the hierarchical correlations between states and rules. For example,
the ‘‘Confirmed’’ state allows ACK messages only after receiving an
INVITE message. The ACK message should contain mandatory head-
er fields such as Call-ID. By this hierarchical correlation, we can cre-
ate a stateful tree branch, Confirmed (state)! ACK (message)! Call-
ID (header). In addition, we define secure rules that modify RFC
3261 rules to detect elaborative malformed messages. These secure
rules refine legitimate cases by concretizing exceptional conditions
such as the length of a string and the range of integer values. The
stateful rule tree structuralizes correlation branches based on the
secure rules so that SIPAD accurately detects anomalies and
remarkably reduces rule search complexity. Accordingly, SIPAD
can be deployable in resource-constrained environments that have
low computational power.

The main contributions of this study are threefold.

1. High detection accuracy: SIPAD refines the original RFC
3261 rules so as to detect elaborate malformed messages.
As a result, SIPAD has a 26% higher detection accuracy
than that of techniques that use the original RFC 3261
rules.

2. Low system overhead: The stateful rule tree enables fast
rule search by constraining the search space. SIPAD’s rule
search is between 7 and 43 times faster than existing
approaches.

3. Wide detection coverage: Because the stateful rule tree
defines normal structures for SIP messages, SIPAD detects
not only malformed SIP messages and SIP flooding attacks
but also three additional anomalies of SIP attacks.

The rest of this paper is organized as follows. In Section 2, we briefly
describe the background of SIP communication. Section 3 discusses
SIP threat models, and Section 4 defines the problems that we need
to solve. In Section 5, we propose a novel mechanism, called SIPAD,
that detects SIP attacks, and then, Section 6 analyzes the effective-
ness of SIPAD. Section 7 gives an experimental results, and Section 8
introduces related work. Finally, we summarize our results and con-
clude this paper in Section 9.
2. Background

SIP is in charge of session establishment through the exchange
of requests and responses. In order to provide reliable services, it is
essential that legitimate messages be transmitted and call proce-
dures upheld. In this section, we briefly give a basic overview of
the constitution of SIP messages and its call-setup and tear-down
processes.
2.1. SIP messages

A SIP message consists of two parts, a message header and a
body. The message header contains essential user information such
as Uniform Resource Identifiers (URI), method, and Call-ID. The
message body is described as Session Description Protocol (SDP),
which is informed for media encoding scheme [20]. Because the
message header and body are written in plain text, malformed
SIP messages can be easily and diversely generated.

SIP consists of six general requests: INVITE, ACK, BYE, OPTIONS,
REGISTER, and CANCEL. INVITE is used to initiate a call to the other
party, ACK is a corresponding response to a request, BYE is used to
terminate a call, OPTIONS is used to obtain information such as
user capability, REGISTER is used to sign in or out from a VoIP pro-
vider, and CANCEL is used to abort the latest request. Fig. 1 (left) is
an example of a normal INVITE request. Responses (in the form of
three digit numbers) are classified into six groups: Provisional
(1xx), Success (2xx), Redirection (3xx), Client Error (4xx), Server
Error (5xx) and Global Failure (6xx).

The SIP message is processed by a state transition model. In the
SIP standard, there are four types of state transition models: INVITE
server transition, INVITE client transition, Non-INVITE server tran-
sition, and Non-INVITE client transition. When a client receives the
INIVTE message, the INVITE server model is activated. On the con-
trary, when a client sends the INVITE message, the INVITE client
model is activated. Similarly, the Non-INVITE server model is acti-
vated when a client receives the requests except INVITE, such as
ACK, BYE, OPTIONS, etc. Each state transition model includes sev-
eral states that define the behavior of the SIP procedure. For exam-
ple, Fig. 2 indicates the INVITE server model with a Abnormal

state. In Section 5, we describe how the model works in detail.
2.2. The call-setup and tear-down procedure

In order to set up a call, the User Agent Client (UAC) or caller
sends an INVITE request to User Agent Server (UAS) or callee as
shown in Fig. 1 (right). A proxy server forwards it to the UAS and
sends a ‘‘100 Trying’’ response to the UAC. After the UAS receives
the INVITE request, it subsequently transfers a ‘‘180 Ringing’’ and
a ‘‘200 OK’’ in response. Finally, the UAC receives the ‘‘200 OK’’ re-
sponse, sends an ACK request and then the connection is estab-
lished. The UAC and/or the UAS can be malfunctioned if
unexpected messages are received during the procedure.

Therefore, malformed and/or unexpected messages are signifi-
cant threats to SIP systems, and detecting these types of attacks be-
comes important challenges to provide reliable VoIP services. In
Section 3, we introduce SIP threats including the malformed mes-
sage attacks.



Fig. 1. Normal INVITE request (left) and SIP call-setup and tear-down process (right).
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3. SIP threat models

VoIP attacks can be classified into two categories [1,14]: SIP at-
tacks and RTP attacks. SIP attacks exploit session signals (SIP mes-
sages) to cause unexpected failures of SIP systems, such as the
Denial-of-Service (DoS) and stealing private information, while
RTP attacks exploit media packets such as RTP flooding and media
spamming attacks [21]. Especially, Keromytis [22] classified the
spamming attack, called SPam over Internet Telephony (SPIT), as
social threats because it directly targets humans.

Although both SIP and RTP security provisions are significant to
provide reliable VoIP services, SIP protection is a preliminary con-
sideration in the sense that SIP is in charge of connection establish-
ment such as session initiation and termination. In this paper,
therefore, we focus on the SIP threats, and the followings are SIP
related attacks according to Vuong et al. [23] and Ehlert et al. [24].

Malformed message attack. This is one of the most representa-
tive cases in which the vulnerabilities of the text-based protocol
are exploited. The attack causes proxy servers or User Agents
(UAs) to malfunction by manipulating SIP headers. Geneiatakis
et al. [6] and Ehlert et al. [24] defined this attack as a SIP parser at-
tack and SIP message payload tampering, respectively, because the
attacker intentionally injects forged contents (payload) in the SIP
message to cause parsing overhead or even system crash. For in-
stance, SQL code injection can be launched by exploiting the
Authorization header field [6]. Also, overflow-space, overflow-
null, specific header deletion, and the use of non-ASCII code are
methods used to carry out in malformed message attacks.

SIP flooding attack. In this type of attack, the attacking tools
generate numerous requests or responses to send to specific serv-
ers or UAs, so-called victims. As a result, the victim is overwhelmed
by excessive SIP messages within a short period of time. Eventu-
ally, the victim fails to provide normal services. The SIP flooding at-
tack can be categorized into two types: message flooding and
session flooding.

� Message flooding: The attacker sends tremendous SIP
messages to specific targets in order for overwhelming
their network resources. Ehlert et al. [24] defined this
attack as a bandwidth targeting attack. INVITE flooding
is one of the most typical flooding attacks. Attackers keep
sending INVITE messages to a victim to cause. Further-
more, they modify caller information in order to insert
advertisements, and then flood the INVITE messages to
random users [21].

� Session flooding: Ehlert et al. [24] also introduced system
resource consuming attacks. The victim consumes one’s
CPU and memory to process many messages. More
seriously, the attacker can combine these flooding attacks
with the malformed messages to effectively degrade the
processing performance.

Spoofing attack. In SIP–VoIP services, two types of spoofing at-
tacks are possible: IP spoofing and URI spoofing attacks. In IP
spoofing attacks, the attacker forges IP source addresses and pre-
tends to be a trusted user. While IP spoofing is an attack that is
intrinsic to the TCP/IP protocol, URI spoofing is a SIP-based attack
caused by malformed SIP messages. An attacker who hijacks SIP
messages between two UAs forges their URI field, resulting in the
attacker being hidden from tracebacks. Geneiatakis et al. [6] intro-
duced SIP signaling attacks that utilize spoofed signals such as BYE
requests. If spoofed BYE requests (BYE signal attack) are sent to a
victim, the call will be terminated by the attacker. These vulnera-
bilities result from lack of authentication. Therefore, SIP over TLS
is recently being used to guarantee that authentication takes place.

Snooping attack. This is a passive attack, also called eavesdrop-
ping. Attackers only listen, collect, and analyze the passing SIP
packets in order to figure out the users’ identifiers, media types,
network topology, etc. The snooping attack is a fundamental tech-
nique used to launch sophisticated attacks such as message inter-
ception and modification [22], then the attacker can launch the
Man-in-the-middle (MITM) attack on VoIP [25]. As a practical
exploitation of the MITM attack, moreover, Zhang et al. [26]
showed billing attacks by call session hijacking. Encrypted SIP
communication such as SIP over TLS can prevent snooping attacks
from succeeding.

Among those threats, malformed messages and SIP flooding at-
tacks take place due to the distinct characteristics of SIP, while
spoofing and snooping attacks are derived from IP vulnerabilities.
Moreover, these two types of attacks are the major threats in SIP
due to the following reasons:

1. Attack target: These two types of attacks do not target
specific servers, clients, or software, but protocol vulnera-
bilities that can affect entire SIP–VoIP systems regardless
of service providers. Without addressing these two types
of attacks, SIP–VoIP services cannot be reliable.

2. Attack simplicity: While other types of attacks, such as
spoofing and snooping attacks need domain knowledge
(e.g., protocol stack), these two types of attacks do not
require in-depth knowledge. Attacks are just launched
by sending many packets and inserting abnormal texts
into the SIP fields. Moreover, many tools provide graphic
user interfaces (GUI) and allow various input parameters
from users; therefore, even ‘‘script kids’’ can easily control
the tools and launch variants of an attack.
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3. Attack camouflage: Although secure protocols such as
SSL/TLS can help to prevent spoofing and snooping
attacks, they cannot prevent malformed and flooding
attacks, given that the attack messages can be sent
through legitimate UAs and treated as normal messages.
For example, consider spam e-mails. Regardless of secu-
rity protocols, spammers can send numerous spam emails
because they utilize their one-off user accounts. Similarly,
attackers do not have to be concerned about whether or
not a VoIP service uses security protocols. They just sign
into the VoIP services like legitimate users, manipulate
SIP messages, and inject the malformed messages. The
VoIP services then treat the malformed messages the
same as it does the legitimate ones.

4. Problem definition

This section consists of two parts: problems and goals. We first
introduce the problems to be solved in terms of detection difficulty
and inefficiency, and then explain the goal of our work.
4.1. Problems

Many approaches have been proposed to defeat the two types
of attacks: the malformed message attack and the SIP flooding at-
tack. Most of these approaches address only one of the attacks
[13,7,14–16]; although, recently several solutions have been pro-
posed that simultaneously cover both types of attacks [17,19].
However, SIP attack detection needs to address the following chal-
lenges in order to be a viable solution:

Difficulty of detecting attack variants. The commonality be-
tween malformed messages and SIP flooding attacks is to easily
create variants of an attack. Attackers attempt to insert random
texts in various fields of a SIP header, and flood with all types of
SIP messages. Existing approaches adopt misuse detection based
on signatures that cannot cover the numerous variants [19], or
consider only the counting of SIP messages to trigger an alert of
possible flooding, regardless of the current state of a SIP session
[17]. Moreover, existing approaches to detect malformed SIP mes-
sages use RFC 3261 rules that provide the basic definition of SIP
messages. The approaches merely examine individual lines of a
SIP message and so cannot detect structural anomalies. Thus,
attackers have sufficient opportunities to create workable variants.
A viable solution should propose well-defined SIP rules to detect
elaborate malformed messages.

Inefficiency of rule search. Existing malformed message detec-
tion schemes find rules from a rule set, and they provide frame-
works operating as IDS/IPS and firewall. Therefore, they are
suitable for applying to conventional SIP proxy and server sides.
These days, however, mobile VoIP applications are dramatically
spreading via smartphones, and none of the mobile VoIP applica-
tions and devices consider SIP protection. To be deployable to such
a resource-constrained environment, a solution should adopt an
efficient algorithm.
4.2. Goals

A viable SIP–VoIP detection scheme should address the afore-
mentioned problems, given the increase in threats to SIP and the
changes in the user environment, such as mobile VoIP. Therefore,
our goal in this work is to design a secure and efficient SIP attack
detection scheme based on Anomaly Detection that detects not
only the two major types of attacks, but also variant types of at-
tacks with high detection accuracy and low system overhead.
5. SIP–VoIP Anomaly Detection (SIPAD)

In this section, we describe the SIP–VoIP Anomaly Detection (SI-
PAD) scheme that efficiently detects SIP attacks, including the two
most significant types of SIP attacks: malformed SIP messages and
SIP flooding attacks.
5.1. SIPAD principle

As mentioned in Section 4.2, we will address the problems,
detection difficulty and inefficiency of rule search, and our design
principle to address them is as follows.

First, we utilize an anomaly-based detection approach by defin-
ing legitimate cases since attackers can easily create numerous
variants. Anomaly-based detection has the merit of identifying un-
known variant types of attacks. Moreover, it does not need to
maintain large amount of attack signatures so that it is suitable
for resource-constrained environments. Second, we define a SIP-
optimized data structure that can detect SIP anomalies. The opti-
mized structure includes the information to identify whether or
not SIP messages accord with the current situation (UA’s state) be-
cause existing approaches that do not contain the stateful informa-
tion, such as message exchange procedures, cannot detect
elaborate malformed messages or slow rate flooding attacks. Last,
we design a low system overhead approach so that it should not
disturb the VoIP service. The low system overhead is especially sig-
nificant for VoIP because it is required to support a real time
service.

In this paper, we propose a SIP–VoIP Anomaly Detection (SI-
PAD) scheme leveraging a SIP-optimized data structure, called a
stateful rule tree, that applies hierarchical correlations be-
tween states and messages from the RFC 3261 standard. The hier-
archical correlations allow to construct a tree structure (stateful
rule tree) for each state transition model that specifies SIP rule vio-
lations. The stateful rule tree inspects the SIP message structure
depending on a UA’s current state, and provides the optimized rule
search path by constraining the search space. Furthermore, SIPAD
utilizes well-defined SIP rules and state transition models that pre-
cisely define legitimate cases. Therefore, SIPAD can quickly detect
variants of an attack in which individual headers meet the RFC
3261 standard but contain structural anomalies.

The most significant issue in achieving these goals is the build-
ing of the SIP-optimized structure that detects not only the two
major types of attacks, but also variant attacks with high detection
accuracy and low system overhead. By analyzing of the RFC 3261
standard, we found the relationship between SIP header fields
and states that are linked to specific SIP messages. From the con-
nections between messages, header fields, and current states, we
constructed a stateful rule tree that addresses the two issues:
detection difficulty and inefficiency of rule search.

In Section 5.2, we describe how SIPAD builds the stateful rule
tree. We then explain how SIPAD detects malformed SIP messages
and SIP flooding in Sections 5.3 and 5.4, respectively. Finally, in
Section 6 we demonstrate the effectiveness of SIPAD.
5.2. Building the stateful rule tree

In the RFC 3261 standard, SIP rules and state transition models
are already defined, and existing SIP attack detection approaches
utilize this standard description. We also utilize two different
detection mechanisms to detect malformed SIP and SIP flooding at-
tacks as follows:

Malformed SIP attack detection. Malformed SIP detection ver-
ifies whether or not a SIP message follows pre-defined formats
(rules). To apply RFC 3261 rule sets for real VoIP services, we con-



Fig. 2. INVITE server transition model: Abnormal state handles flooding condition
and improper message transmission.
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vert RFC 3261 Augmented BackusNaur Form (ABNF) rules into reg-
ular expressions. A rule matching algorithm then decides whether
the header of a packet follows its regular expression, and any SIP
message that has unmatched or undefined headers is considered
a malformed message.

SIP flooding attack detection. We adopted four modified state
transition models from RFC 3261,1 and focused on INVITE server

transition model to describe how the state transition model
works. Fig. 2 illustrates INVITE server transition model that
is selected when a UA receives an INVITE message. Each state com-
pares the number of received messages with a pre-defined threshold
in order to check the flooding condition.

The combination of the two detection algorithms can detect
malformed SIP and flooding attacks. However, we found that hier-
archical correlations exist between SIP messages, headers, and
states as follows:

� A state only links to specific SIP messages.
� A SIP message only links to specific headers.
� A header only links to specific rules.

In Fig. 2, for example, the Confirmed state allows ACK messages
only. The ACK message only accepts mandatory and optional head-
ers such as ‘‘Call-ID’’ and ‘‘From’’, as shown in Table 1. Then, the
headers in the ACK message only accept specific sub-rules such as
‘‘callid’’, ‘‘HCOLON’’, and ‘‘from-spec’’. On the contrary, in the Con-

firmed state, the ACK message that contains the ‘‘Accept’’ header
field will be detected as a malformed message. By leveraging the
correlations, we specify the rule search path that each state, mes-
sage and header should follow. That is, we can cut out irrelevant
rules while inspecting the message. It allows to detect elaborative
malformed messages that follow the irrelevant path, and reduces
rule search overhead by narrowing the search space. Therefore,
our SIP-optimized structure, called the stateful rule tree, can detect
the two types of attacks with high detection accuracy and low
overhead.

Fig. 3 illustrates the rule tree for the INVITE server transition
model. States, messages and headers are linked depending on the
connections. The solid line in Fig. 3 signifies that the Confirmed
1 INVITE server transition, INVITE client transition, Non-INVITE server transition,
and Non-INVITE client transition
state allows ACK, then ACK allows corresponding headers such as
Call-ID and From, and finally, the headers allow corresponding
sub-rules such as from-spec, HCOLON, and callid. Thus, the stateful
rule tree becomes a hierarchical tree so that a rule can be easily
found by retrieving corresponding sub-rules.

The rule tree in SIPAD provides wider detection coverage than
existing malformed detecting approaches. For example, Geneiata-
kis et al. [13] designed a framework based on the RFC 3261 to iden-
tify the malformed messages by checking the mandatory fields and
the byte size of SIP header and body. However, a malformed mes-
sage that satisfies mandatory fields but includes non-allowed fields
(viz., Table 1) is not detected by the framework since it only checks
the syntax of mandatory fields. As a result, SIP proxies and clients
can take much more time to process the malformed message and
even be crashed while processing the non-allowed fields. More-
over, the framework accepts non-allowed messages regardless of
the current state, and this increases the overhead of the SIP system
by processing unnecessary messages. For example, in the INVITE
server transition model (viz., Fig. 2), although the ACK message is
the only one that can be accepted, the framework accepts and pro-
cesses all types of SIP messages. On the contrary, SIPAD identifies
the anomalies of SIP messages using the correlations of header
fields and states.

Section 6 analyzes the effectiveness of SIPAD in terms of attack
variant detection and rule searching efficiency.

5.3. Detecting malformed SIP message attacks by developing secure SIP
rules

We defined the relationship between SIP messages, headers,
and states, and constructed a stateful rule tree. Now, defining SIP
rules are required to identify that sent/received SIP messages meet
to the SIP standard. To achieve the purpose, we adopted RFC 3261
rules. While converting the RFC 3261 rules to regular expressions,
we found that the original RFC 3261 rules cannot completely de-
tect malformed SIP messages. For instance, the userinfo rule in
RFC 3261 that is, userinfo:((#user#)(:#password#)?) causes
unexpected results such as an overflow exception because it does
not check the length of the password. Another example is the port
rule. Its ABNF is as follows:

port ¼ 1 � DIGIT;

where DIGIT denotes a natural number. The corresponding regular
expression for the ABNF rule is

port ¼ ndþ;

which means that a port should be a number that consists of more
than one digit. Nonetheless, the rule does not check the range of the
port number causing overflow-integer. Therefore, we changed the
original rule to the more secure one that follows:

port ¼ ðndf0;4gj½1� 5� n df4gj6½0� 4� n df3gj65½0� 4�
n df2gj655½0� 2� n dj6553½0� 5�Þ; ð1Þ

which restricts the port range between 0 and 65535. Thus, if a port
number is 65540, it will conflict with the part of rule (1), in which
655[0–2]nd. Similar to the example, attackers can make numerous
exceptional cases, and lead the malfunction of SIP–VoIP services.
For this reason, we design secure SIP rules that constrains the size
and format of a string or number. Table 2 shows that several com-
parisons between regular expressions based on the original RFC
3261 rules and our secure rules. For instance, user field allows only
alphabet, number, underscore (_), and dash (-). In addition, it must
not be more than twelve characters long. Formalizing the SIP stan-
dard in this way facilitates the recognition of known and unknown



Table 1
A SIP message has three types of header fields: mandatory, optional and non-allowed. SIPAD categorizes the headers of an ACK message according to the three types.

Types Header fields

Mandatory (6) Call-ID, CSeq, From, Max-Forwards, To, via
Optional (13) Authorization, Contact, Content-Disposition, Content-Encoding, Content-Language, Content-Length, Content-Type, Date, MIME-Version, Record-

Route, Route, Timestamp, User-Agent
Non-allowed

(25)
Accept, Accept-Encoding, Accept-Language, Alert-Info, Allow, Authentication-Info, Call-Info, Error-Info, Expires, In-Reply-To, Min-Expires,
Organization, Priority, Proxy-Authenticate, Proxy-Authorization, Proxy-Require, Reply-To, Require, Retry-After, Server, Subject, Supported,
Unsupported, Warning, WWW-Authenticate

Fig. 3. An example of the stateful rule tree using hierarchical correlations between
states and rules: in the Confirmed state, the callee only receives the request, which
is ACK that consists of the rules for Call-ID, From, callid, HCOLON, from-spec, etc.
(the solid line).
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malformed messages. These rules are very flexible and can adopt to
a new standard by adding or editing existing rules.
2 Note that SIP–VoIP uses the User Datagram Protocol (UDP), and the caller and
callee may transmit multiple identical SIP messages to cope with packet loss. From
the callee’s perspective, as a result, S becomes normally higher than 1.
5.4. Detecting SIP flooding attacks by state transition models

As we mentioned in Section 3, SIP flooding attacks can be cate-
gorized into two types: message flooding and session flooding.
While message flooding targets several specific victims and con-
sume network resources with high rate message generation, ses-
sion flooding targets numerous session opening and consume
system resources (e.g., CPU and memory). Moreover, session flood-
ing can be effective with slow rate message generation.

SIPAD utilizes threshold-base detection to identify the afore-
mentioned flooding attacks. Even though the threshold-based ap-
proach is widely used due to its simplicity and it is very suitable
for resource-constrained environments, it is required that the
threshold should be carefully decided to reduce false positives/
negatives. In SIPAD, we adopt two types of thresholds: a state-
based threshold and a symmetry threshold. The state-based
threshold is to detect the message flooding attack, and the symme-
try threshold is to detect the session flooding attack.

State-based threshold. We adopt state transition models to de-
fine flooding conditions and improper message transmission. Chen
[14] also used the state transition model that defines a threshold
for the flooding condition; however, SIPAD enhances the thresh-
old-based detection using the feature of each state. While the
existing flooding approach uses a single threshold, SIPAD separates
thresholds depending on states. For example, in Fig. 2, the dashed
lines signify abnormal conditions for each state. We can separate
thresholds depending on states. The INVITE threshold of the Pro-

ceeding state can be higher than the one of Complete state as the
caller UA that receives the 300–699 responses does not need to
retransmit INVITE messages. Similarly, the INVITE threshold for
the Confirmed state has to be very low because the caller UA that
sends the ACK request should not retransmit INVITE messages.

Symmetry threshold. The existing state-based flooding ap-
proaches [14,16] cannot detect the session flooding attack because
they only monitor the message generation rate based on the ses-
sion and do not consider slow rate flooding. If the attacker
launches slow rate flooding to avoid the excess of threshold with
different session information (e.g., forged call-ID and From header
fields), a SIP proxy creates numerous half-open sessions and rap-
idly consumes its resources. Geneiatakis et al. [27] proposed SIP
flooding detection using session distance. They calculated the ses-
sion distance based on the proportion between the number of IN-
VITEs, ACKs and OK responses. However, the ACK is automatically
sent following the OK response, and moreover, it is generated by
both a caller and a callee. Thus, the number of ACKs does not affect
to the session distance. In SIPAD, we do not count the SIP message
that is automatically generated, such as ACK, Trying and Ringing.
As a result, in order to detect the session flooding attack, we mod-
ify the session distance and define a simpler metric, called SIP sym-
metry (S). The SIP symmetry is calculated as follows:

S ¼ The number of received SIP requests
The number of sent SIP responses:

SIPAD counts the number of sent and received SIP messages regard-
less of sessions. Note that we should count the SIP requests and re-
sponses that are related to confirming session initiation and
establishment and exclude the automatically generated messages.
For example, in the Fig. 1 (right), the INVITE message is a request
to initiate a session, and the OK message is a response to establish
the session. The responses such as Trying and Ringing are automat-
ically sent to the caller, and they are not related to confirming ses-
sion establishment. In this case, SIPAD divides the number of
received INVITE requests by the number of received OK responses.
If there is no session flooding attack so that the calling procedure
is normally processed, S is close to 1 since the SIP symmetry be-
comes balanced2.

Another benefit by using state transition models is to define
abnormal conditions according to the states. In the Confirmed

state, for example, all types of responses and the receipt of INVITE
messages are identified as an abnormal condition. In Fig. 4, an
example is given of an improper message transmission. When
Bob is in the Confirmed state, which allows ACK messages only,
if Trudy sends INVITE messages, SIPAD detects it as shown. Simi-
larly, we can design the other three state transition models so that
it is possible to detect SIP flooding attacks and improper message
transmission.

6. Analysis on the effectiveness of SIPAD

In this section, we discuss the types of additional SIP anomalies
that can be detected by SIPAD, and then look at how fast SIPAD re-



Table 2
Secure RFC 3261 rules restrain the formats and sizes of strings or numbers (bold fonts) to detect variants of malformed messages.

Original RFC 3261 rules Secure RFC 3261 rules

user: ((#unreserved#j#escaped#j#user_unreserved#)+) user: ((#alphanum#j\_j\-){1,12})
password: ((#unreserved#j#escaped#j\&j\=j\+j\$ j\,)⁄) password: (((#unreserved#j#escaped#j\&j\=j\+j\$ j\,)⁄){0,12})
SIP_Version: (SIP\/\d\.\d) SIP_Version: ((SIP \/\d\.\d){7,9})
extension_method: (#token#) extension_method: (#ASCII_NAME#{1,20})
protocol_version: (#token#) protocol_version: (\d{1,2}\.\d{1,2})
display_name: ((#token##LWS#)⁄j#quoted_string#) display_name: ((\w){1,32}j#quoted_string#)
callid: (#word#(\@#word#)?) callid: (#ASCII#{1,50}(\@(\w\.⁄){1,32})?)
Max-Forwards: (Max-Forwards#HCOLON#\d+#CRLF#) Max-Forwards: (Max-Forwards#HCOLON#\d{1,4}#CRLF#)

Fig. 4. Improper message transmission: Trudy floods INVITE messages to Bob. Once
the Bob’s state becomes Confirmed, he can detect improper INVITE messages even
if Trudy attacks with slow-rate flooding. It is because the Confirmed state does not
allow all requests except ACK (viz., Fig. 2).
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trieves the rules compared to conventional search methods
(sequential search and binary search).
Fig. 5. The sequential search uses a rule list. To find a rule, every time it retrieves
the list from the begging to the end.

Fig. 6. The binary search uses a alphabetical ordered tree structure. To find a rule,
every time it retrieves the tree from the top to the leaf.
6.1. Detecting additional SIP anomalies

An additional benefit of SIPAD is its ability to detect additional
SIP anomalies (wider detection coverage). The levels in Fig. 3 indi-
cate the three additional anomalies as follows.

Level 1 Improper message transmission: A message is sent/
received that is invalid in the current state, as mentioned
in Section 5.4.

Level 2 Invalid header field: A message includes a non-allowed
header field or misses a mandatory header field, as
shown Fig. 1.

Level 3 Invalid sub-rule: A header filed includes a non-allowed
rule based on the RFC 3261 standard.

Because the stateful rule tree in SIPAD is a hierarchical tree so that
sent/received messages automatically constrains the paths in the
tree, SIPAD makes it possible to detect the additional attacks.

That is, while existing approaches only check whether each part
of a message conforms to a corresponding rule, SIPAD additionally
checks whether each part of a message conforms to the message
structure using the state-based multi-parent rule tree. For in-
stance, assume that a message A should consist of B, C and D, ex-
pressed as (A: B C D), and a user receives a message A consisting
of B, C and E, (A: B C E). Because existing approaches look up only
the B, C and E rules regardless of the message structure, they can-
not identify that A is a malformed message. However, SIPAD checks
the message structure using the connections between states, mes-
sages, and rules and so, as a result, SIPAD can identify that A is a
malformed message.
6.2. Analysis of rule search efficiency in SIPAD

As shown in Fig. 3, once a SIP message is sent or received, SIPAD
limits the state and traversal path, leading to fast rule search. To
the best of our knowledge, no study has suggested a SIP rule search
algorithm that improves search speed and/or reduces overhead.
Therefore, we employ two popular search algorithms, sequential
search and binary search, as conventional methods and the stateful
rule tree as an improved method. Then, to compare the time com-
plexity, we analyze rule search efficiency using three different ver-
sions of SIPAD: SIPAD-Sequential, SIPAD-Binary and SIPAD-SRT
(Statreful Rule Tree). The SIPAD-Sequential uses a non-ordered list
structure and searches using brute force. On the other hand, the SI-
PAD-Binary uses a binary search that is sorted in alphabetical order
based on the rule’s name. the SIPAD-SRT applies the stateful rule
tree leveraging the hierarchical correlations between states and
rules.

Figs. 5–7 illustrate the major difference among the search meth-
ods. For instance, the Call-ID rule consists of as follows:
Call� ID : ðCall� ID=IÞHCOLONcallid:
The rule matching engine first finds the Call-ID rule, and recognizes
that the header consists of the string ‘‘Call-ID’’ or ‘‘I’’ and two sub-
rules, HCOLON and callid. Then, the engine tries to find the two
sub-rules, HCOLON and callid, respectively. Here, each method
searches in a different way.

SIPAD-Sequential. This method simply search the list from the
beginning until finding the HCOLON rule. If found, it searches the
list again to find the callid rule. Fig. 5 shows an example of the
sequential search. It is the simplest to implement, but the highest
time complexity. Furthermore, it does not provide any advantage
in terms of SIP attack detection.



Fig. 7. The stateful rule tree uses a hierarchical tree structure. To find a rule, it
retrieves the tree from the top to the leaf once, and then retrieves only the
corresponding sub-rule tree.

Table 3
The comparison of the time complexity among the sequential, binary and stateful rule
tree searches.

Search methods Time complexity

SIPAD-Sequential Oðm � nÞ
SIPAD-Binary Oðm � log2nÞ
SIPAD-SRT (stateful rule tree) Oðm � logxnÞ

Fig. 8. Given the rules in the RFC 3261 standard, the stateful rule tree shows 62.2
and 1.5 times faster than the sequential and the binary searches, respectively.
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SIPAD-Binary. This method uses the binary search to the HCOL-
ON rule. Since the binary tree is constructed by alphabetical order
of the rule’s name, it can reduce the search space. For example, as
shown in Fig. 6, it selects a root rule that places in the middle of the
rule database, and checks if the selected one is the desired rule
(e.g., HCOLON). If not, it determines which rule’s name comes ear-
lier in alphabetical order. If the desired one comes earlier than the
selected one, the rules located behind the selected one are ex-
cluded from further searches. This procedure is repeated until
either finding a desired rule or remaining no rule to be selected.
However, to find next rule (e.g., callid), the engine should begin
searching from the root. In addition, this binary search is not effec-
tive for SIP anomaly detection since the rule’s name is irrelevant to
identifying SIP anomalies.

SIPAD-SRT. This method retrieves the sub-rules from the Call-
ID sub-tree, as shown in Fig. 7. Since all the sub-rules related to
the Call-ID places in the sub-tree, the engine can greatly reduce
the search space to find the HCOLON rule. Moreover, we can iden-
tify SIP anomalies in case that a rule does not belong to a proper
sub-tree.

To formularize the time complexity of the stateful rule tree, we
suppose that,

� n: the number of SIP rules;
� m: the number of sub-rules of a header;
� x: the average number of child nodes of the stateful rule tree;
� kt: the depth from the root when a sub-rule, t, is found

(1 6 jtj 6 m).

First, SIPAD parses the SIP message, extracts the header field, and
searches the header in the stateful rule tree. It takes OðlogxnÞ.
Next, SIPAD finds the sub-rules (m) from the sub-tree of the
header. If a sub-rule, t, is found in the kth depth of the tree
(kt), then the stateful rule tree’s complexity becomes

Oðlogxnþ logxðn�
Pkt

i¼1xiÞÞ. Because there are m sub-rules to be
found, the complexity of the stateful rule tree can be formularized
as the following equation:

O logxnþ
Xm�1

t¼1

logx n�
Xkt

i¼1

xi

 ! !
: ð2Þ

Now, we can compare the stateful rule tree’s complexity with that
of the binary search. If x > 2, then log10x > log102 because logarithm
is an increasing function. Therefore, the following equation is
trivial:

log2n� logxn ¼ log10n
log102

� log10n
log10x

¼ logn
1

log102
� 1

log10x

� �
> 0:

Finally, we claim that for x > 2,
logxnþ
Xm�1

t¼1

logx n�
Xkt

i¼1

xi

 !
< logxnþ ðm� 1Þ � logxn

¼ m � logxn < m � log2n: ð3Þ

Eq. (3) indicates that the time complexity of the stateful rule tree is
lower than that of binary search. Without loss of generality, we con-
clude that Eq. (3) does not change if we use Oðm � logxnÞ instead of
the complex Eq. (2). Table 3 summarizes the time complexity be-
tween the sequential, binary, and stateful rule tree searches, when
there are m sub-rules in a header.

Furthermore, from analysis of the rules in the RFC 3261 stan-
dard, we obtain n ¼ 341 and x ¼ 2:9 to examine the time complex-
ity depending on the number of sub-rules to find. The result is
graphically illustrated in Fig. 8. The binary search is 40 times faster
than the sequential search, and the stateful rule tree is 1.5 times
faster than the binary search. Considering that the number of rules
increases due to implementing various features (e.g., account syn-
chronization) for VoIP services, we expect the performance gap
will increase. For example, assuming that x is the same and
n ¼ 1000, the stateful rule tree is 154 times faster than the sequen-
tial search. While this result shows approximate time complexity
based on the average number of rules, in Section 7.3, we will
implement the three different search methods using 341 SIP rules,
and compare the effectiveness of the stateful rule tree in terms of
rule search count and time.

In summary, we have shown that SIPAD detects not only two
significant types of SIP attacks but also three additional types of
SIP attacks. In addition, SIPAD significantly reduces rule search
overhead so that it is possible to utilize it in resource-constrained
environments such as mobile VoIP services.
7. Experimental results

This section gives experimental results to show the extent to
which SIPAD increases detection accuracy and efficiency. First,



Table 4
SIP exceptional cases in PROTOS test suite.

#Case Exceptional
elements

Descriptions

1 Overflow-general,
space and null

Repetition of general character, space or null

Format string Using format string. Ex) %s%d%f
UTF-8 UTF-8 code. Ex) Chinese characters
ANSI-escape Start with characters ESC (ASCII 27d/ 1Bh/

033o) and [(left bracket)
2 SIP-URI Invalid SIP-URI form. Ex) sip:

aaa:bbb@ccc.ddd, port number should be
a number not character like ‘‘bbb’’

3 SIP-version ‘‘SIP’’ must have existed. Ex) SIP:2.0
4 IPv4-ASCII The number range should be from 0 to 255
5 Integer-ASCII The number ranges are needed. Ex) port

number
6 Overflow-colon Only one colon is allowed. Ex)

sip:::::invalid.com
7 SIP-tag Only one semi-colon is allowed for any

option tag
Ex) hsip:hFromii;;;;=token

8 Overflow-bracket Only one bracket (hori) is allowed
9 Overflow-at Only one at (@) is allowed

10 CRLF (Carriage
Return/Line Feed)

Every single line should have only one CRLF
at the end

Fig. 9. Secure rules detect 25% more PROTOS exceptional cases than original rules.
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we evaluate detection accuracy for two major types of attacks:
malformed SIP messages and SIP flooding attacks. We then exam-
ine the system overhead for different rule search methods in terms
of search count and time. Finally, we summarize the advantages of
SIPAD compared to existing approaches.

We have implemented two versions of SIPAD: one for Windows
and the other for Android, which are the most popular operating
systems for PCs and smartphones. The smartphone environment,
in particular, provides the best environment to evaluate SIP secu-
rity mechanisms as it has restricted resources (e.g., low computa-
tional power and memory) and provides many mobile VoIP
applications.

Our experimental environment was as follows:

� PC: Intel Core2duo 2.13 GHz, 3 GB RAM, Windows 7, Visual stu-
dio 2008.
� Smartphone: Google developer phone (Nexus one), Qualcomm

Snapdragon 1 GHz, 512 MB RAM, Android 2.3, Android SDK.

7.1. Malformed SIP message detection results

In the malformed SIP message detection experiment, we used
publicly available attacking tools such as PROTOS [28] and SiVuS
[10]. PROTOS is a popular VoIP vulnerability assessment tool and
PROTOS Test-suite:c07-sip provides 4527 malformed SIP mes-
sages. The PROTOS suite has been widely used and is publicly avail-
able for use in the evaluation of the implementation level security
and robustness of SIP implementations. SiVuS is also a free VoIP
vulnerability scanner that has the ability to generate forged pack-
ets by editing SIP header fields.

A subset of SIP from the PROTOS suite, namely INVITE messages,
was chosen as the subject protocol for vulnerability assessment
through syntax testing and test-suite creation. An exceptional ele-
ment is a piece of data designed to provoke undesired behavior of
the test subject.

Among the 4527 test cases of malformed SIP messages, 2426 are
associated with malformed SIP message header, and the PROTOS
suite provides command-line interfaces to transmit specific mal-
formed cases. SIP exceptional cases are categorized in Table 4.
While inspecting the PROTOS exceptional cases, we found that
there are a number of ambiguous cases in the middle of valid forms
and invalid forms. For example, aaaaa@sip.invalid.com can be
a valid URI form, but it is identified as an exceptional case in the
PROTOS suite. Thus, we redefined such 217 cases as legitimate
ones, bringing the total exceptional cases to 2209. When the origi-
nal RFC 3261 rules were applied, 1837 of 2209 (74%) exceptional
cases were detected as malformed messages, while our secure
SIP rules detected 100% of them. Fig. 9 depicts the number of
exceptional cases detected versus the total number of exceptional
cases. The x-axis in Fig. 9 is the same as the case number in Table 4.

Furthermore, to verify whether existing VoIP services follow SIP
specification, five SIP softphones were chosen from ‘‘myvoippro-
vider.com’’ web site [29], which offers the top 100 ranking of 155
international VoIP providers. We selected five softphones provid-
ing free PC to PC VoIP services based on SIP: Globe7, Vbuzzer, VoI-
PGo, Gizmo Project and SJPhone.

While testing the existing VoIP services, SIPAD detected several
SIP headers that can cause VoIP security vulnerabilities. Each VoIP
service had additional specific header fields such as PortaBill-
ing for billing information in Globe7. Vbuzzer was also using
Warning header fields to transmit noisy feedback. Gizmo Project
defined extra header fields, such as JabberID, CQBM and Remote-

IP. VoIPGo used a format string when there is a space in a user-
name. For example, if a username is voip go, it is going to
change to voip%20go because 0 � 20 is the ASCII code for the
space character. Format string is also included PROTOS exceptional
cases, so that it causes erroneous operation. Therefore, VoIP service
administrators are required to define secure rules for their own SIP
headers; otherwise, the headers can be security holes.

7.2. SIP flooding attack detection results

The most significant consideration in SIP flooding detection is
how to decide on a threshold that does not disturb VoIP services.
To obtain the proper threshold, we monitored SIP messages be-
tween a UAC of a SIP network during the call-setup process and dif-
ferentiated the messages according to state. Fig. 10 illustrates the
number of transmitted SIP messages for each VoIP service. It shows
that all five VoIP services transmitted SIP messages under 6 pps
(packets per second) and 4 pps for the proceeding and completed
states, respectively.

Based on the number of transmitted SIP messages under the
normal VoIP service condition, we could now determine the
state-based threshold for the message flooding attack. Assuming
that there is no packet loss or retransmissions, we set the threshold
for each state 2 pps higher than the highest pps for each state to



Fig. 10. The number of SIP messages for each state does not exceed 6 pps, and thus,
we can differentiate the thresholds for each state.

Fig. 11. To detect SIP message flooding, SIPAD uses adaptive thresholds (step-like
solid line) as changing the current state while existing approaches uses a fixed
threshold (horizontal dotted line). As the result, SIPAD is capable of detecting slow
rate flooding such as 3 pps flooding.

Fig. 12. To detect session flooding, SIPAD adtops the SIP message symmetry. In the
experiment, SIP symmetry (S) is decreased under the symmetry threshold (0.7) as
the session flooding attack is launched. After stopping the attack, S is eventually
recovered.

3 Note that the S was calculated on the callee’s system so that the number o
received messages are greater than the number of sent messages.
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reduce false alarms. In our experimental environment, a small VoIP
network between a UAC and a UAS, the proper thresholds for the
proceeding and completed states were 8 pps and 6 pps, respec-
tively. For the confirmed state, 1 pps was set because the con-
firmed state only receives retransmitted ACKs and shortly
transits to the terminated state.

To simulate the message flooding attack, we adjusted the SIP
message generation rate from 1 pps to 35 pps. In fact, over
50 pps for VoIP services is easily suspected by simple packet mon-
itoring, and 1 pps often occurs under normal conditions. Moreover,
1 pps is not a great burden for current computer systems, but any-
thing greater than 3 pps starts consuming computer resources.
Therefore, we applied four different generation rates using SiVuS:
3 pps, 5 pps, 10 pps and 35 pps.

Fig. 11 shows the message flooding simulation and the state-
based threshold for each state. Existing flooding detection schemes
employ a single fixed threshold (which is 8 pps in our experiment)
and detect 35 pps and 10 pps flooding attacks at 0.12 s and 0.7 s,
respectively. The fixed threshold cannot even detect 5 pps and
3 pps attacks since they never get to the 8 pps threshold. However,
SIPAD varied its threshold from 8 pps to 1 pps as the state changed
from the proceeding state to the confirmed state. As a result, SIPAD
detected all the 30 pps, 10 pps, 5 pps, and 3 pps flooding attacks at
0.12 s, 0.5 s, 0.5 s, and 0.5 s, respectively. By differentiating the
threshold according to the state, SIPAD shows faster detection
and higher detection accuracy by catching slow rate flooding
attacks.

For session flooding detection, we monitored S based on the
normal SIP–VoIP services that we aforementioned and found that
S maintains higher than 0.8, and we set 0.7 as the symmetry
threshold. Fig. 12 shows the result for the session flooding attack.
Before the session flooding attack is launched, the caller and callee
normally establishes and disconnects sessions, and S maintains
higher value than the threshold3. During the slow rate session
flooding attack with 1 pps from 25 s to 35 s, the callee receives rela-
tively greater number of INVITE messages than the number of re-
sponses that he should send. In addition, the number of sessions is
remarkably increasing because many different attackers flood IN-
VITE messages. Therefore, S is rapidly decreased due to the unbal-
ance between requests and responses, and then SIPAD can detect
the session flooding attack. After finishing the attack, S eventually in-
creases and will recover the normal value.

Of course, there is a possibility for larger VoIP networks to
transmit normal SIP messages that are above the threshold. To
adopt to different environments, a threshold based on machine
learning is necessary but the principle used by SIPAD is still useful.

7.3. SIPAD overhead estimation

The major benefit of the stateful rule tree in SIPAD is to detect
more SIP anomalies by rule hierarchy, as shown in Section 6.1. An-
other benefit is low overhead in terms of memory consumption
and rule search efficiency. Here, we estimate the overhead under
two different environments: the PC environment and the smart-
phone environment.

7.3.1. Memory consumption

� SIPAD in the PC: The memory requirement is approximately
11 MB, and most of which is used for Graphic User Interface
(GUI) such as dialog and window controls. The SIPAD core algo-
rithm only requires 2–3 MB. Moreover, it takes only 15 ms and
352 KB to load the rules. It is lightweight enough to be utilized
in modern PCs.
f



Table 5
SIPAD-SRT searches the rules 7–43 times faster than the other rule search methods,
depending on platform environments.

Search methods Search count Search time

PC (ms) Smartphone (ms)

SIPAD-Sequential 1,008,302 108.78 192.04
SIPAD-Binary 210,661 45.91 114.41
SIPAD-SRT 27,426 2.49 15.85

Table 6
SIPAD detects more SIP attacks with higher accuracy than existing approaches. 1
denotes non-detectable cases that cannot be detected within measurable time.

Approaches Ehlert et al.
[17]

Lahmadi
et al. [19]

Seo et al.
[31]

SIPAD

Malformed message
detection (%)

74 74 100 100

Flooding detection (s) 0.7–1 0.7–1 0.7–1 0.5–
0.12

Slow rate flooding
detection

N/A N/A N/A O

Improper message
transmission

O O O O

Invalid header field N/A N/A O O
Invalid sub-rule N/A N/A O O
Search count 210–1008 k 27 k
Search time (ms) 45.91–192.04 2.49–

15.85
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�S-
IPAD in the smartphone: We implemented the SIPAD core algo-
rithm in an existing open source Android VoIP application, called
Sipdroid [30]. The size of Sipdroid increases by 20 KB (from
1.31 MB to 1.33 MB) after SIPAD was embedded in it, and the rules
took 268 ms to load. Thus, SIPAD does not degrade Sipdroid perfor-
mance in terms of call quality and application response time.

7.3.2. Rule search time
In Section 6.2, we insisted that SIPAD-SRT shows remarkably

faster rule search time than sequential and binary searches. To ver-
ify the analysis, we implemented three different versions of SIPAD:
SIPAD-Sequential, SIPAD-Binary, SIPAD-SRT (stateful rule tree). To
see the processing time to find a rule depending on environments,
each version was also implemented based on two environments:
the PC environment and the smartphone environment. We then
measured the rule search count and time taken for session estab-
lishment in the exchange of five SIP messages: INVITE, 100 Trying,
180 Ringing, 200 OK, and ACK. Table 5 depicts the comparison re-
sult. Note that the search time is based on our experimental envi-
ronments, and the result can vary depending on processing power.

� Search count: SIPAD-SRT traversed the node 36.7 and 7.6 times
less than SIPAD-Sequential and SIPAD-Binary, respectively.
� Search time in the PC: SIPAD-SRT found a rule 43.6 and 18.4

times faster than SIPAD-Sequential and SIPAD-Binary,
respectively.
� Search time in the smartphone: SIPAD-SRT found a rule 12.1

and 7.2 times faster than SIPAD-Sequential and SIPAD-Binary,
respectively.

These results are different from the analysis given in Section 6.2,
which was that the binary search is 40 times faster than the sequen-
tial search. According to our experiments, however, the binary
search is only 2 times faster than the sequential search. The reason
is that the binary tree (alphabetically sorted by the rule’s name)
does not form a well-balanced binary tree; therefore, it cannot show
ideal performance.

Since embedded devices such as smartphones or SIP hard-
phones have limited resources (low processing power4 and limited
battery capacity), processing overhead (e.g., finding a rule from data-
base) is a critical issue. Especially, the rule search count means the
amount of operations performed and directly affects to the search
time. That is, these two factors influences to power consumption
for mobile devices. As SIPAD-SRT greatly reduces processing over-
head with regard to the rule search count and time. As shown in Ta-
ble 5, SIPAD-SRT only takes 15.85 ms to inspect SIP messages during
session establishment, and it is negligible in the modern
smartphone.

Moreover, VoIP network devices such as registrars and proxy
servers need to process many SIP messages for call-setup and
tear-down procedures. Assume that a registrar simultaneously
handles 100 users who attempt to establish call sessions. Inspect-
ing SIP messages from 100 sessions takes about 100 s (viz., Table 5)
when using existing rule matching schemes. On the other hand, SI-
PAD-SRT takes only 2 s. SIP flooding attacks can amplify the effec-
tiveness of the stateful rule tree, because the network devices
receive numerous SIP messages that need to be inspected.

Based on the memory consumption and rule search time, SIPAD-
SRT consumes reasonable amount of resources and is thus well
suited for implementation in PCs and smartphones. In addition, it
has a faster rule search efficiency than the other search methods.
4 A VoIP hard-phone equips a VoIP processor that core is around 150–400 MHz
[32,33].
7.4. Comparison with existing approaches

We compared SIPAD with three different SIP detection ap-
proaches. First, Ehlert et al. [17] pursued the similar goal that is
to simultaneously detect malformed messages and flooding at-
tacks. Second, Lahmadi et al. [19] developed a SIP-specified fire-
wall, and it also utilizes state information. Last, Seo et al. [31]
presented another approach to detect the two SIP attacks based
on a rule matching algorithm.

Table 6 summarizes the experimental results comparison of SI-
PAD with existing approaches. Ehlert et al., Lahmadi et al. and Seo
et al. can detect both malformed message and SIP flooding attacks,
but they cannot detect slow rate flooding and message structural
anomalies such as invalid header fields. Conversely, SIPAD builds
a SIP-optimized structure and detects more SIP attacks with higher
accuracy and lower system overhead. Thus, the existing ap-
proaches show partial detection for SIP attacks, while SIPAD
achieves complete detection and fastest search time.
8. Related work

State machines have been utilized in intrusion detection by
defining legitimate or abnormal cases. One such case is the State
Transition Analysis Technique (STAT) [34], which is a rule-based
intrusion detection approach. STAT is a general method that recog-
nizes computer penetrations easily using a rule-based state dia-
gram. There are different versions of STAT. NetSTAT [35] is used
to determine which network event should be monitored, and Web-
STAT [36] is to detect malicious behaviors targeted at web servers
by analyzing web requests.

Snort [37] is the most widely deployed IDS around the world
and has many attack patterns, over 6000. To protect VoIP systems,
it may be possible to utilize an existing IDS. However, several chal-
lenges exist in the direct utilization of current IDSs to protect VoIP
systems [38]. Firstly, VoIP service is based on session while IDS de-
tects attacks based on packets. This means that an IDS monitors
every single packet and compares it with pre-defined rules, but it
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is necessary for a VoIP service to distinguish which session the
packet belongs to. Secondly, although Snort provides stateful
detection for TCP-based protocols such as HTTP and FTP, it does
not help in processing stateful VoIP sessions. Lastly, a VoIP service
utilizes a combination of protocols, such as the signaling protocol
SIP and the media protocol RTP. If an attack is performed across
protocols, conventional IDSs will fail to detect it. Therefore, it is
necessary to develop intrusion detection technologies that are ded-
icated to VoIP services. A recent study [16] proposed VoIP IDS using
statistical differences between VoIP Denial-of-Service (DoS) and
flash crowds. It monitors state transitions and categorizes mali-
cious behaviors according to three levels (transaction, sender,
and global).

Several studies have been done regarding the protection of VoIP
services. SCIDIVE [38] is an architecture that provides stateful and
cross protocol detection. It is able to detect attacks in both the SIP
and RTP protocols. To examine the SIP format, SCIDIVE uses rule
sets including standard SIP rules. However, there are many mal-
formed SIP messages that are formed as standard but are still dan-
gerous. For example, %s%d%caaa.com follows a standard form,
even though it may be dangerous because of the format string
%s%d.

Sengar et al. [39] also proposed a VoIP defense mechanism
using state machines. The mechanism uses cross protocol state
machines that define attack detection patterns. The mechanism
also has an advantage in that it detects across two protocols. How-
ever, it is not a flexible mechanism because it needs many state
machines for protection against various attacks.

Geneiatakis et al. [13] proposed a framework to detect mal-
formed SIP messages. Their proposal includes a framework based
on the rules for valid SIP messages. The key idea is that normal
SIP messages should have mandatory fields and conform to a
pre-defined byte size. This mechanism, however, cannot detect
elaborative malformed messages including mandatory and non-al-
lowed fields. The non-allowed fields can cause unexpected results
such as system crash. Considering the vulnerability, SIPAD inspects
SIP messages using stateful information; therefore, we can detect
not only malformed messages but also flooding attacks by the
stateful inspection.

Chen [14] proposed a DoS detection method on SIP systems. It
also utilizes RFC 3261 state transition models, and defines addi-
tional state and upper bounds for error conditions. One drawback
of this approach is that it does not apply different thresholds
depending on states, and thus it is vulnerable to slow rate flooding
attacks. Another drawback is that malformed SIP messages are not
considered properly. Although this mechanism can detect message
flooding attacks, malformed SIP messages are definitely hazardous
because they cause the malfunction of a VoIP service. In contrast to
this approach, SIPAD is able to detect both malformed SIP mes-
sages and slow rate flooding attacks at the same time.
9. Conclusion

In this paper, we proposed a novel SIP–VoIP Anomaly Detection
(SIPAD) scheme that detects both malformed SIP messages and SIP
flooding attacks using a stateful rule tree. Instead of simply com-
bining rule comparison and pre-defined thresholds, SIPAD builds
a SIP-optimized rule tree based on secure SIP rules. Since SIPAD
automatically constrains the search space, it can quickly detect
not only two most significant types of attacks (malformed SIP mes-
sages and SIP flooding) but also three additional SIP anomalies: im-
proper message transmission, invalid header field, and invalid sub-
rules. Furthermore, SIPAD shows a 26% higher detection accuracy
for malformed SIP attacks and a rule search time that is between
7 and 43 times faster than existing approaches.
Although we experimented using SIPAD on the PC and smart-
phone, it is possible to utilize an IDS/IPS module to protect VoIP
networks, given that the core engine (stateful rule tree) has shown
high accuracy and low overheads.
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