IEEE CNS 2014 Poster Session

DroidGraph: Discovering Android Malware
by Analyzing Semantic Behavior

Jonghoon Kwon, Jihwan Jeong, Jehyun Lee, Heejo Lee!

Dept. of Computer Science and Engineering, Korea University
Seoul, Republic of Korea
{signalnine, askjjh, arondit, heejo} @korea.ac kr

Abstract—Mobile malware has been recently recognized as a
significant problem in accordance with the rapid growth of the
market share for smartphones. Despite of the numerous efforts
to thwart the growth of mobile malware, the number of mobile
malware is getting increased by evolving themselves. By applying,
for example, code obfuscation or junk code insertion, mobile
malware is able to manipulate its appearance while maintains
the same functionality, thus mobile malware can easily evade the
existing anti-mobile-malware solutions. In this paper, we focus on
Android malware and propose a new method called DroidGraph
to discover the evolved Android malware. DroidGraph leverages
the semantics of Android malware. More precisely, we transform
an APK file for Android malware to hierarchical behavior graphs
that represent with 136 identical nodes based on the semantics
of Android API calls. Then, we select unique behavior graphs
as semantic signatures describing common behaviors for Android
malware. In evaluation, DroidGraph shows approximately 87 %
of detection accuracy with only 40 semantic signatures against
260 real-world Android malware, and no false positives for 3,623
benign applications.

Index Terms—Android Malware, Semantic Analysis

I. INTRODUCTION

The population of mobile malware has been dramatically
increased nowadays due to the growth of adoption of smart-
phones. Since the smartphone is recognized as a private prop-
erty, people used to store the sensitive information without
awareness of the threat of mobile malware. The fact gives a
great motivation to attackers to target the smartphone, and in the
fact that mobile malware is rampant now, especially on the most
popular mobile platform Android. To respond to the growing
threats of Android malware, numerous countermeasures have
been suggested, but none of them is able to be a fundamental
solution.

The major difficulty of the response is the rapid increase
of Android malware variants. According to the Symantec
report [5], the average number of variants per family is getting
increased more than 50% between 2012 and 2013, while the
number of families records 45% of decrease in same period.
The main reason for the trend is that Android malware is
continuously evolving with evasion techniques such as the
code obfuscation, or the junk code insertion. The techniques
authorize the attackers to easily build new malware variants,
thus the existing anti-mobile-malware solutions which rely
on the binary signature [1][2] or appeared characteristic like
granted permissions [4], class names, or package names [3][6]
are not available to detect current Android malware.

!This research was supported by the Public Welfare & Safety Research
Program through the National Research Foundation of Korea(NRF) funded by
the Ministry of Science, ICT & Future Planning (NRF-2012M3A2A1051118).

978-1-4799-5890-0/14/$31.00 ©2014 |[EEE

Motivated by this, we propose DroidGraph, a new detec-
tion mechanism based on the semantic behavior analysis for
Android malware. DroidGraph deals with API calls, since
in Android platform, the API calls stand on a significant
position for Android operation, and each API call has a distinct
semantic meaning. Therefore, analyzing Android API calls
leads us to easily understand the attempt of Android malware.
We transform the API calls extracted from an APK file to
hierarchical behavior graphs. The graphs represent semantic
meaning in point of view of every methods, classes, packages
and an application level respectively, by decomposing into the
APK hierarchy. This hierarchical approach allows us to avoid
false alarm against repackaged malware. After extracting the
behavior graphs, we select graphs as semantic signatures to
detect unknown malware variants, which represent common
behaviors of malware families.

To evaluate DroidGraph, we used the real-world data in-
cluding a total of 260 Android malware which collected from
the Contagio mobile Web site, and a total of 3,623 benign
applications gathered from Google play store and alternative
Android Markets. In an experiment, DroidGraph shows 87% of
detection accuracy by the use of only 40 semantic signatures.

II. ANDROID MALWARE

To design an effective mitigation solution, firstly we need
an insightful understanding of Android malware and its phe-
nomenon. In this section, we describe two main phenomenons
of recent Android malware to be considered, which are repack-
aging and metamorphism. Android malware used to apply
the repackaging in purposes of easy creation and distribution.
Attackers build decoy applications by simply adding attack
modules into a well known application, and upload to public
Android Markets to lure people to install their legacy. It means
that, when we analyze such a repackaged malware, we should
be able to recognize which part is an attacker’s property.

Another phenomenon to be considered is metamorphism.
Current Android malware is known to utilize metamorphism
to avoid existing anti-mobile-malware solutions [7]. To accom-
plish the metamorphism, attackers used to adopt several tech-
niques such as the code obfuscation, junk code insertion, and
API substitution. Therefore, considering only the appearance
of Android malware may cause serious false detection. To this
end, we need to analyze the semantics of Android malware
rather than its appearance.

III. DROIDGRAPH

DroidGraph is a system to detect Android malware using se-
mantic signatures. Fig. 1 (top) depicts how DroidGraph extracts

345

IEEE CNS 2014 Poster Session

Package

Class

=

Method

API

APK File Smali Codes Hierarchical Structure Behavior Graph
‘ Intent. getFxtras ‘ ‘ Stn;\s‘fﬁ;lder ‘ ‘ Intent-read ‘ ‘ Mcmory write ‘
1
‘ Bulldlt. get ‘ ‘ Smll“B\Hldu init ‘ Bundle&Pacel-read ‘ Memnry open ‘
1 !
‘ SmsMessage ‘ ‘ SmsMessaf,e ‘

.createFromPdu SMS-read

M
etOn inatingAddress|

Fig. 1: An overview of DroidGraph (top) and an example of
semantic abstraction with a real malicious method (bottom).

.getMessageBody

‘ SMS-open H

semantics of Android malware. At the first step, we extract
smali codes from an APK file using well known repackaging
tool APKtool. Note that the smali code forms an interpreted
language that syntactically closes to pure source codes, thus
it is useful to construct the control flow of the original codes.
In second step, we build API call graphs following the control
flow for each smali codes in accordance with APK hierarchy.
The API call graph can be represented as a directed graph
G = (V,E), where V is a set of API calls, and F is a set of
calling relationship of the API calls, E = {(v;,v;)|v;,v; € V'},
where v; denotes the caller and v; denotes the callee. The API
call graphs representing the behavior of each method, class,
and package as well.

The main novelty of DroidGraph is that how we represent the
semantics of Android malware using API calls. Since thousands
of API calls are defined for Android developers, it brings
huge graphs. Analyzing the naive API call graph that contains
thousands of API nodes is not an effective way, and it may
not allow us to clearly understand the semantic of the graph.
Furthermore, considering the situation in which we need to
compare the graphs to figure out Android malware, the graph
isomorphism is commonly known as a NP-complete problem.
Driven by this, we finally transform the API call graph to a
semantic graph that each API call is substitute into semantic
nodes according to their semantics. Each API call is classified
into 34 objects, where the objects are process, network, account,
and so on. The objects are classified again into 4 behaviors such
as open, read, write, and close. Consequently, the thousands of
API calls are transformed to a total of 136 identical semantic
nodes. We call this transformation as the semantic abstraction.
Fig. 1 (bottom) exhibits a simple example of the abstraction
with a real malicious activity which attempts SMS message
theft. Through the semantic abstraction step, finally we obtain
the semantic graphs for each APK.

The semantic graph gives us next three benefits. First, the
semantic graph is represented in every hierarchical levels, thus
even if the attackers use repackaging, DroidGraph determines
that which modules, or classes have the malicious codes.
Second, the semantic graph considers the semantics of API
calls, therefore if the attacker attempts to substitute API calls, or
put some junk codes, or even obfuscate code itself, DroidGraph
extracts same semantic graphs. At last, DroidGraph reduces the
graph comparison overhead to a constant time. This is a great
advantage in terms of practicality, compared to the naive call-
graphs which have polynomial time overhead.

100
80
60

40

Detection rate

H
H
H
30 |
o
200
oll

{Coverage of pattern}
{Deltecti(m rate})

20

Coverage of pattern
Y
(=

0 50 100 150 200 250 300

Fig. 2: The coverage of each semantic graph and the accumu-
lative detection rate.

For the detection of Android malware, DroidGraph needs the
semantic signatures which are extracted from existing known
Android malware. To this end, the graph mining approach in
which the signature graphs are selected from a graph pool
that only contains malicious semantic graphs which commonly
occurred in Android malware families but normal apps, is
performed. Using the signature graphs, DroidGraph determines
whether a test application contains malicious semantic behavior
or not.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of DroidGraph, we have an
experiment with real-world Android applications including 260
Android malware which collected from the Contagio mobile
Web site, and 3,623 benign apps which collected from third
party Android Markets and Google play store.

In experiments, we obtained 16,080 graphs from the benign
applications and 1,863 graphs from the Android malware sam-
ples. By applying the graph mining, finally we obtained 335
unique graphs which only appear in Android malware samples.
Fig. 2 shows the coverage of graphs and accumulated detection
rate for Android malware. Maximum coverage of single graph
is 85, which means the single graph can be used to detect 1/3
of the malware samples. Detection accuracy with 335 semantic
behavior graphs is 87%, but in the fact, we could get a same
detection results with only 40 graphs. And there was no false
positive for the benign applications.

V. CONCLUSION

DroidGraph is an effective countermeature for the sophisti-
cated Android malware. For further research, we plan to im-
prove the detection accuracy with graph matchings in different
level of the hierarchy, and analysis to find the most efficient
semantic signatures and strategies as well.

REFERENCES

[1] L. Deshotels, V. Notani, and A. Lakhotia, “Droidlegacy: Automated
familial classification of android malware,” in ACM SIGPLAN on Program
Protection and Reverse Engineering Workshop, 2014, p. 3.

[2] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck, “Structural detection
of android malware using embedded call graphs,” in ACM Workshop on
Artificial Intelligence and Security, 2013, pp. 45-54.

[3] S. Lee, J. Lee, and H. Lee, “Screening smartphone applications using
behavioral signatures,” in 28th IFIP Int’l Conf. on Computer Security,
IFIP/SEC, 2013, pp. 14-27.

[4] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru,
and 1. Molloy, “Using probabilistic generative models for ranking risks of
android apps,” in ACM Conf. on Computer and Communications Security,
2012, pp. 241-252.

[5S] P. Wood, B. Nahorney, K. Chandrasekar, S. Wallace, and K. Haley,
“Symantec internet security threat report,” Trends for 2013, vol. 1, 2014.

[6] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smart-
phone applications in third-party android marketplaces,” in ACM Conf. on
Data and Application Security and Privacy, 2012, pp. 317-326.

[7]1 Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and
evolution,” in /IEEE Symp. on Security and Privacy, 2012, pp. 95-109.

346

