Flooding DDoS Mitigation and Traffic Management
with Software Defined Networking

Aapo Kalliola*, Kiryong Leef, Heejo Leef, Tuomas Aura*
* Aalto University, Espoo, Finland
aapo.kalliola@aalto.fi, tuomas.aura@aalto.fi
TKorea University, Seoul, Republic of Korea
krlee @korea.ac.kr, heejo@korea.ac.kr

Abstract—Mitigating distributed denial-of-service attacks can
be a complex task due to the wide range of attack types,
attacker adaptation, and defender constraints. We propose a
defense mechanism which is largely automated and can be imple-
mented on current software defined networking (SDN) -enabled
networks. Our mechanism combines normal traffic learning,
external blacklist information, and elastic capacity invocation
in order to provide effective load control, filtering and service
elasticity during an attack. We implement the mechanism and
analyze its performance on a physical SDN testbed using a
comprehensive set of real-life normal traffic traces and synthetic
attack traces. The results indicate that the mechanism is effective
in maintaining roughly 50% to 80% service levels even when hit
by an overwhelming attack.

I. INTRODUCTION

Distributed denial-of-service (DDoS) attacks are a difficult
ongoing problem in the internet. Services ranging from banks
to online entertainment to private blogs are frequently affected
by attacks that degrade their availability to the point where
they become inaccessible to normal users.

Various mechanisms for protecting against DDoS attacks
have been proposed, and there are companies which provide
network, hardware and software solutions for mitigating DDoS
attacks. Unfortunately, the theoretical proposals often rely on
network functionality which is not present in current network
hardware, while the commercial solutions are expensive and
may require the service to route traffic through the third
party mitigation provider. If the targeted service operator is
unable to use the commercial services due to financial or
traffic sensitivity reasons, he may need to resort to manual
attack mitigation, which is heavily dependent on the skills and
persistence of the service administrators.

In the scope of this paper we propose a DDoS mitigation
and traffic management system which is largely automated and
can be deployed on current software defined networking (SDN)
technology. Our mechanism combines automated hierarchical-
clustering-based normal traffic learning, fixed or dynamic
blacklist integration, and service distribution or additional
server capacity invocation within the network. The mechanism
is designed to be effective against packet and bandwidth
flooding attacks, and can be used to defend both end hosts
and network links.

In the following sections, we explain our proposed mech-
anism in detail and evaluate the mechanism on a physical
SDN testbed using real web server usage history and synthetic

attack traffic traces. We find the defense mechanism is effective
against various flooding DDoS attacks, maintaining ~80%
service quality in a typical scenario and ~=50% in an extremely
challenging scenario.

II. BACKGROUND AND RELATED WORK

The general topic of filtering distributed denial-of-service
traffic has been examined by Collins et al. [5]. The concept
of using software defined networking (SDN) capabilities for
DDoS mitigation has been explored most recently by Sahay
et al. [13]. A focused approach into clustering-based traffic
prioritization on end hosts was published by Kalliola et al.

[7].

The hierarchical heavy hitter algorithm, which is essential
to the machine learning phase of our mechanism, has been
presented in detail by Cormode et al. [6]. Blacklist aggregation
algorithms for network devices have also been analyzed by
Soldo et al. [14]. Invocation of additional server capacity in
cloud environment based on server load has been proposed
by Aliyev et al. [3] and extended by Mubarok et al. [9] with
more details about the virtual server invocation and stopping
process.

In contrast to previous work our main contribution is the
implementation and evaluation of the automated learning and
DDoS mitigation mechanism [7] in an SDN network. Addition-
ally, in this work the mechanism is extended to accomodate
optional input from external signature-based blacklist sources,
and traffic management for elastic server capacity has been
incorporated into the core mechanism.

III. TRAFFIC MANAGEMENT

The core idea of our mechanism is to use automatic traffic
learning and blacklists to assign probable quality values to
packets arriving to a network. Based on the quality values
and available server resources and traffic service goals, we are
then able to smartly allocate traffic and server resources within
the network when hit by a DDoS attack or a flash crowd.
Our mechanism minimizes traffic hotspots inside a network,
and it provides load control and distribution for the normal
server and dynamically invocable replica server instances. In
this section we describe the network environment in which
the DDoS mitigation and traffic management mechanism can
be deployed. We also explain the traffic handling and service
distribution algorithms.

A. Architecture

Our defense mechanism can be implemented on a network
that supports software defined networking (SDN). A typical
case is an autonomous system (AS) such as an internet service
provider or a large company that completely controls its own
network. Such a network commonly has at least two edge con-
nection points to the wider internet and some degree of internal
redundancy. In addition to the traditional network elements, an
SDN-enabled network needs a centralized element with a view
of the network traffic and control over the network switches.
This centralized element is typically an SDN controller, or
alternatively a sampling-based traffic viewer with separately
implemented control of the switch forwarding tables.

Optionally, our mechanism also supports a view into the
load status of the servers. Analysing the actual load on the
server may in some cases result in different load control cases
than the network traffic volume view. However, in the scope of
this paper we focus on the load information from the network
perspective. A minimal example network of this type is shown
in Fig. 1.

Replica / ||~ . ' .- Replica /
sinkhole SR @ sinkhole

Replica invocation Replica invocation

|

Traffic view [~
and control

Fig. 1: Network architecture

The SDN switches provide a set of standard capabilities
typically defined in the different OpenFlow protocol versions.
We require the bare minimum of capabilities: source-IP-
address based forwarding.

Replica servers are placed in cloud locations near the
network edge. These servers model the capability to flexibly
invoke additional server capacity up to some limit in order
to serve more incoming traffic than would be possible with
only the normal server while also avoiding internal network
link congestion. In addition to providing similar service as the
normal server, the traffic can be also directed to the replicas
for other purposes such as attack-time traffic analysis.

B. Implementation elements

In order for the DDoS mitigation and traffic management
to work efficiently, we identify certain key implementation
elements. These are detailed in this section.

1) Traffic clustering: At the heart of the traffic management
mechanism lies the clustering system that produces network
prefixes for traffic forwarding in the SDN switches. When the
protected servers are receiving normal amounts of traffic, we
build a learning set of the normal traffic features over a time
window. Since we want to do prefix-based filtering and routing,

it is natural to select the traffic source IP address as the base
for building the normal traffic model. While the source IP
address can be spoofed, it is the most difficult traffic feature for
the attacker to convincingly modify, because the attacker does
not have detailed information about the normal users of the
service. This leads to there being only partial overlap between
the normal user clusters and the attacker clusters.

The algorithm we use for clustering the normal traffic is the
hierarchical heavy hitter (HHH) algorithm [6]. This algorithm
operates on the prefix tree formed by a set of IP addresses.
Using the HHH algorithm and a defined percentage threshold
(TH) of the total traffic (TOT'), we divide the normal traffic
into non-overlapping clusters. A cluster contains a number
of IP addresses, depending on the prefix length and possible
excluded child clusters, and a hit count of TOT x* TH <
HITS < 2% TOT x TH. In the case of leaf nodes, the hit
count can be arbitrarily large. Thus, while the number of IP
addresses within a cluster can vary significantly, the normal
traffic volumes of most of the clusters are roughly similar.

Fig. 2 shows an example of the clustering results for a
3-bit prefix tree with a total of 100 units of normal traffic
(sum of normal hits in leaf nodes). In real life, the algorithm
operates on the 32-bit IPv4 address prefix tree, but the principle
is identical. In the figure, traffic has been clustered with a
10% threshold, resulting in clusters that contain >10 units of
traffic. These clusters are highlighted with thick solid or dashed
lines. In real life, the threshold would be 1%...0.01%, resulting
in <100...10000 clusters. The clusters are non-overlapping,
i.e. the traffic values of a cluster are not counted in the
traffic values of the parent node. As a modification to the
HHH algorithm, we also include the root node so that all
traffic sources in the address space match one cluster. For
further details of the learning algorithm we refer to a previous
publication [7].

Stored normal hits—» +~ 1 ' .
: Prefix: /O

Attack-time hits — . 201, .
\' ,1 6\ \
6 I

1
()
15\
OIOIABIEX:

Fig. 2: Traffic clustering and allocation

We periodically run an accurate version of the algorithm
on the learning data and store the resulting clusters. In effect
the mechanism is incrementally learning about the normal
traffic within the learning time window. When the service
is attacked, i.e. the defined capacity limit is exceeded, we
stop the clustering and thus also the learning. The final set of
stored clusters is then used as a model of the normal traffic.
The quality of our clustering result cannot be evaluated in a
vacuum: in addition to the normal traffic it also depends on
the attack traffic. Analysing the results of this interaction is a
key goal in section IV-D.

The speed of the clustering algorithm is not performance-
critical: the clustering is only ran during normal operation

and thus it is not necessary for reacting to the attack traffic.
In our test cases running the clustering algorithm took some
seconds with a full learning window, but existing research into
HHH algorithms indicates that line-rate clustering would also
be possible with limited loss in accuracy [8].

2) Blacklist integration: In addition to the automatic clus-
tering, our mechanism supports the integration of fixed or
dynamic blacklists consisting of individual IP addresses. This
blacklist can, for instance, be provided by a third party or it
can be produced inside the network by an intrusion detection
system (IDS). The blacklist integration enables support for
traditional signature-based traffic filtering, which complements
the information provided by the machine learning algorithm.
Signature-based detection allows us to filter traffic that is
obviously malicious, such as ping flooding attacks, while the
clustering system provides better results with attack traffic that
mimics the normal traffic types.

Our approach to blacklist integration begins with the
aggregation of blacklist entries in similar to what has been
outlined by Soldo et al. [14]. This aggregate set of filter
rules is prepared but not deployed to switches during normal
operation. The reason for not deploying the blacklist filtering
to switches in normal operation is to avoid the aggregation-
inflicted collateral damage to normal traffic when there is
no overload necessitating packet drops. Individual blacklist
entry filtering is placed into the processing pipeline before
the clustering mechanism, i.e. blacklisted sources are never
included in the learning dataset. Since all possible source
entries for the whole IPv4 address space can be mapped to
a 23%bit data structure for extremely fast lookup, we do not
need to use aggregate blacklist entries where not constrained
by the limited flow entry budget of switch hardware.

Using this approach, the traffic that is known to be from
malicious sources is removed from the learning dataset before
the more complex learning mechanism deals with the traffic
in which attack packets cannot be easily distinguished. On
an overload event caused by an attack the aggregate blacklist
entries are deployed to switches, and the corresponding aggre-
gate discard rules are used in discarding features before they
are processed by the traffic allocation and control phase.

3) Traffic allocation and control: When an attack starts, we
have the clusters from the learning period, their corresponding
average normal traffic volumes, and the current attack-time
traffic volumes. While we cannot separate the normal traffic
from attack traffic, given that they are potentially mixed inside
the clusters, we can calculate the ratio between the stored
normal traffic average and the attack-time traffic inside each
cluster. In Fig. 2 the stored normal traffic averages are shown
as the top number inside a node, while the attack-time traffic
is the bottom number. We observe that out of the six clusters
three have ratios at or close to 1:1 (solid thick line), two have
ratios around 1:4-1:5 (dashed line) and one has a ratio of 1:201
(dotted line).

The clusters with the best normal-to-attack-time ratios are
the ones most likely to contain normal traffic during an attack,
so we allocate the available server capacity with a greedy
algorithm starting from the cluster with the best ratio until all
server capacity is used. While the greedy algorithm may not
be exactly optimal, it is fast, and the high number of clusters

in real life limits the impact of possible nonoptimality to well
below the random effects caused by traffic volume fluctuations.

In the Fig. 2, assuming we have a normal server of capacity
100 and two replica servers with capacity 80 each, we would
allocate the best three clusters to the normal server, the two
medium-quality clusters to the replicas, and the worst cluster
would be dropped outright. In real implementations, the serve
or do not serve quality threshold related to additional capacity
invocation is service-dependent. In some cases, providing the
service may be critical even if it means serving increasingly
poor-quality traffic, while in other cases, the service might
not be valuable enough to warrant the costs of providing any
additional capacity.

4) Server consistency: Since the traffic allocation mech-
anism is dependent on the ratio of normal traffic to attack-
time traffic within a cluster, we must define how we want the
algorithm to behave in the case when the service location of a
cluster would change due to attack-time traffic rate fluctuation.

The simplest solution would be to redirect the traffic to
original server or replica server according to the clustering
result regardless of the previous allocation state. In many cases
this would, however, have undesirable side effects. A large
part of internet services maintain state between the client and
server, at the very least in the form of TCP connections, and
therefore changing the server may cause extra overhead in
connection reestablishment and it may also cause problems
on the application layer.

In order to maintain a good level of server consistency
we maintain the original server allocation of a cluster unless
the cluster quality decreases to the point where it is dropped
altogether. In a sense, this means that beyond the point of initial
service allocation we treat the normal and replica servers as
one mass of server capacity. While perfect server consistency
cannot be guaranteed due to the fundamental nature of elastic
server capacity, this appoach minimizes the server re-allocation
overhead.

5) Replica server invocation and stopping: The essence of
replica invocation is that we have the capability to increase the
overall server resources in the network up to the point where
we deem that serving the increasingly worse traffic clusters is
no longer worth it. In practice, server instances are started as
needed based on current incoming traffic volumes and stopped
as the attack traffic diminishes or changes in such a way that
less capacity is needed to serve the clusters meeting the value
criteria.

The details of replica server invocation and stopping are
not within the scope of this paper, and we refer to previous
publications [3], [9] for more information.

IV. PROTOTYPE EVALUATION
A. Testbed

The networking core of our testbed consists of three Pica8
1Gbps/10Gbps switches in the Open vSwitch operation mode.
Two of the switches are connected to the traffic generator and
replica servers while one is connected to the normal server. All
the switches are connected to each other and to the sampling
traffic and test orchestration network. The traffic network and

the sampling and management network are kept completely
separate.

The testbed setup is shown in Fig. 3. The traffic-path
switches are interconnected as shown in the network ar-
chitecture Fig. 1. The out-of-band traffic analysis and filter
generation elements are shown separately in this figure for
purposes of clarity; in the testbed they reside on the same
physical device as the testbed command and control functions.

F————— #» Traffic generator
|
|
|

v 1

1

* Traffic/load analysis,
clustering,

flow rule generator

\ 4

Testbed
command g
& control

1Gbps 10Gbps SDN switch with
switch sampling support

JSON filter format

Filter applicator
| A
| |
| Traffic logger Traffic logger |
| (replica server) | | (normal server) :
|

I X { !

Fig. 3: Testbed setup

_>
A
\

Traffic generation is done by using pre-recorded and pre-
created network traffic traces and sending them to the switches
using fcpreplay running on a modern quad-core Linux com-
puter. The traffic generator can saturate the 10Gbps links when
using large package sizes, though in practice the tested traffic
rates remain below the maximum link capacity.

The server functionality is modeled by logging the incom-
ing traffic on the target server and on the replica servers. Server
capacity, and thus also the attack detection threshold, is defined
as a packets per second (PPS) capacity limit.

B. Software implementation

As indicated by the central algorithms, the novel software
implementation components are located mainly in the traffic
view and control network element. In the testbed this element
contains the sampled traffic handling and clustering, blacklist
integration, and flow rule generation for traffic control on the
switches.

Traffic sample input into the system is handled by a
minimal sFlow [11] collector implementation. Each traffic
sample is timestamped on reception. These samples are accu-
mulated into one-second time slice counters. These counters
are managed in two sliding windows: the short-term window
and the long-term learning window. The short-term window is
used for the dynamic traffic control adjustments, and therefore
its length should be in the range of a few seconds or tens of
seconds. The learning window duration should be much longer,
preferably at least as long as the expected attack duration.
Typically this means that the learning window length should
be at least 24 hours.

The clustering module implements the modified accurate
HHH algorithm for the traffic features in the learning window
and produces a set of address prefix clusters based on the
threshold value. When under an attack, the traffic features in
the short-term window are placed into the clusters and the
normal-to-attack-time traffic ratios are calculated.

Based on the ratios and current traffic values, the clusters
are allocated to the servers, and an intermediate JSON format
filter file is created. This file is read by the filter deployment
module, which pushes the filtering rules to the switches on the
network. In the blacklist pipeline case, the blacklisted sources
are not included in the traffic windows, and the blacklist entries
are applied to the network traffic before the cluster allocation.

It is important to note that while the packet sampling ratio
must be decreased during a heavy flooding attack, the resulting
accuracy does not suffer as long as the number of samples per
second remains the same [12]. Thus, if the attack traffic greatly
exceeds the normal traffic we may see relatively few normal
traffic samples, but the traffic limiting and priorization system
is not adversely affected.

C. Traffic traces

We evaluate our mechanism using three different normal
traffic sources: traces from medium-traffic university and small
business web servers, and a non-governmental organization
(NGO) campaign web server. These datasets are selected based
on their different normal traffic clustering and traffic level
stability features:

Source Clustering level Normal traffic profile
University Good Stable

Business Poor Stable

NGO Variable Flash crowd

The clustering level indicates how well the normal traffic
clusters using the HHH algorithm. In a well-clustering set
of data, a large portion of the clusters are at the /25 prefix
level, which has been observed to be a boundary of con-
sistent address block usage in the internet [4]. In a poorly
clustering dataset, the clusters are predominantly either single
IP addresses or relatively large clusters (/16.../6). The traffic
source stability is also an interesting dataset feature: while the
mechanism is expected to work well with a relatively stable
user base, it should ideally also work when a suddenly popular
website is also subjected to a DDoS attack.

Our attack traces are generated synthetically based on
real-life attack cases. In order to thoroughly evaluate the
performance of the system we created a comprehensive set
of attack packet traces:

Attack type Unique attack source IPs
Naive flood 1

DNS reflection 1000
Botnet, valid requests ~114,000
Randomly spoofed >4,000,000,000

In the DNS reflection dataset, the attack source IP ad-
dresses are randomly selected from a public open resolver
address database [1], and the botnet addresses are attack source
addresses collected by a honeypot. Naive flood and random
spoofed source addresses are completely random. With the
possible exception of the naive attacker, all of these cases are

relevant to real-life attack strategies. As detailed in Akamai’s
State of the Internet report [2], the consistently popular DDoS
attacks include potentially spoofed address flooding by UDP
and TCP as well as DNS reflection attacks and HTTP GET
floods from real source addresses.

From the point of view of our mechanism it is essential
to evaluate the performance with a highly varying number of
attack source addresses. This must be done in order to establish
the service quality provided by the defense when the number
of normal traffic clusters tainted by attack traffic ranges from
very few to almost all. While evaluating all possible real-life
attacks is impossible within the scope of any paper, these attack
cases cover the performance implications of a very broad range
of possible flooding attacks.

D. Results

Our implementation of the mitigation mechanism uses
traffic sampling, which introduces a random element in the
clustering and traffic-ratio calculations. In order to ensure
result reliability, we have done multiple iterations of each
presented test case, and selected median cases for presentation.
The maximum variation in results between test runs is in the
order of 5%. Blacklist integration is used only in the test shown
in section IV-D3 and replica servers only in section IV-DS5.
Unless otherwise mentioned, the results are shown for the
following scenario: university normal traffic dataset, one day
learning period, one day attack period, <100 clusters, normal
server load 50%, attack volume ~700% server capacity, no
replica servers. The number of clusters is lower than what
would be supported by our test hardware. With the low cluster
count we demonstrate the applicability of the mechanism also
for environments where the forwarding rule budget on network
devices is limited.

Normal and attack traffic traces are played into the test
network at a stable rate in order to maintain an unambiguous
concept of normal server load. This does not affect the results,
since the important factor for traffic variability is the change of
traffic volume inside individual clusters, and this varies heavily
even when the overall traffic rate is constant. The NGO dataset
evaluation is an exception: the normal traffic during the flash
crowd event was played at twice the usual rate. The university
normal traffic dataset is selected as the baseline for graphical
presentation since its good degree of traffic clustering results
in graphs that are visually simple to analyze, while the other
datasets had more service quality variance during a test run.

1) Attack scenarios: Figures 4(a-d) present the service
quality measurements for the different attacks. The traffic
measurements are shown as points in the scatter plot. The
calculation for random packet drops, which would be the case
without our defense mechanism, is shown as a graph line. It
is important to note that our defense mechanism allocates the
available capacity to certain clusters of clients. The benign
clients in these clusters get perfectly normal service while
others are not serviced. The average normal traffic served
values during the attack are as follows:

DNS
74.1%

Botnet
80.5%

Random
81.4%

Naive
98.7%

Attack type:

Service quality:

The naive flood case is very well defended against, which
is to be expected as all the attack traffic is coming from one
source address and thus can only affect a single cluster. The
results for botnet and random spoof cases are quite similar
because, in both cases, the attack traffic is very widely and
relatively thinly spread in the address space, and the traffic
volume overlapping with normal user clusters is quite small.
DNS reflection attack is the most effective of the attack cases,
since the traffic volume per attacker address is heavier but the
addresses are still spread wide enough that the attack impact
cannot be limited by dropping a very small number of clusters
like in the naive flood case. Overall, in all of the realistic
attack cases the percentage of normal traffic served remains in
the range of 74%...81%.

2) Traffic management on switch: Fig. 5 shows the aggre-
gate traffic management on the edge switches in the case of a
random spoof attack. Ideally the clustering adjustment should
keep the normal plus attack traffic forwarding level as close
to 100% of the server capacity as possible: any less and some
normal traffic mixed with attack traffic is being unnecessarily
dropped, any more and excessive traffic is being allowed to
the server resulting in random packet dropping.

800
700 Attack traffic dropped
600 s Normal traffic dropped
500\ Attack traffic forwarded

400Hmma Normal traffic forwarded [
300 '

Server capacity %

Fig. 5: Traffic management on edge switches

We can see that the mechanism effectively limits the traffic
to roughly 100%. At the beginning of the attack all of the
attack traffic is forwarded for a period of some seconds before
the defense reacts and updates the flow entries on the switches.

3) Blacklist integration: Results derived from blacklist
and attack scenarios are heavily dependent on the specified
scenario. Thus, an exhaustive analysis of this topic is not
within the scope of this paper. However, we do perform a
test comparing the performance of blacklist plus clustering
mechanism to using only the clustering mechanism.

The attack is a simultaneous DNS plus botnet attack, where
the DNS source addresses are blacklisted but botnet source
addresses are not. This reflects the incompleteness of real-life
blacklists. The service quality with only the clustering defense
is 74.8%, which, as expected, falls between the DNS and
botnet attack results of section IV-D1. With both blacklist inte-
gration and the clustering defense the service quality improves
to 82.6%. This result indicates that blacklist information, when
available and accurate in relation to the attack traffic, improves
the overall performance of the defense mechanism.

K5 3
g 100 o g 100
5 gok - B I TS i SRR e S
£ i ‘ £ ‘><><>< SHOK ¢ X K W%X&g&)«% %
£ e60f - : e 8 60f- : X2 g X
T T
E 40 - 4 E 40
8 o
S 20f - 4y & 20
o o
2 ‘ ‘ 2 ‘ ‘

0 1 2 0 1 2

days days
(a) Naive flood (b) DNS reflection

o el
g 100 g 100
4 »2(%»(% X XK %XXX X R b XXX WX&X X B *2; x
M 80k S X>§<;s<><x>gz< XK xmxx&y%&x« o 80 X%«%xxx% %%%}% s
b= X X% b= X
S 60} » S 60} X .
T T
E 40f E 40f]
2 2
£ 20} < 20}]
o o
X 0 | I X 0 I I

0 1 2 0 1 2

days days
(c) Botnet (d) Random spoof

Fig. 4: Measurements of normal traffic served with different attacks. One-day learning period and one-day attack.

4) Replica invocation: The effect of replica invocation
on service quality can be seen by comparing the cases in
Figures 4(a-d) to the university dataset results of Table I. In the
graphed cases there is no replica server involved, whereas the
general evaluation case contains one replica server. The replica
server effectively doubles the server capacity in the latter test
scenario.

As an example, in the initial university normal traffic case
the average service quality under botnet attack is 80.5%, which
increases to 93.4% with the replica server. This indicates that
the mechanism is able to benefit significantly from elastic
server capacity, although increasing the capacity yields dimin-
ishing returns as the clusters allocated to additional capacity
contain an increasing portion of attack traffic.

5) General evaluation: In addition to the previous exam-
ples that illustrate the behavior of the mechanism in different
circumstances, we have performed average service quality
calculations using all the normal-traffic to attack-traffic com-
binations. As previously stated, one replica server of 100%
normal server capacity is included in these tests. The results
are presented in Table 1.

The learning period durations are different between the
normal traffic datasets: the university dataset uses a one-
day learning period, the business dataset two days and the
NGO dataset five days. These learning periods have been
selected based on the normal traffic characteristics: the worse
the normal traffic clustering level and the larger the expected
attack-time normal traffic in relation to the learning-period
normal traffic, the longer the learning period needs to be.

In the NGO scenario, we define the normal plus replica
servers to be at 100% capacity at the peak of the flash crowd
event with the attack starting at the same moment of peak load.
The NGO scenario is challenging for the defense mechanism
because the flash crowd includes a very large number of users
who are not present during the learning period.

Attack traffic

Naive DNS Botnet Random
= University | 98.9% | 85.0% | 93.4% 92.4%
g Business | 98.2% | 94.4% | 88.4% 84.6%
z NGO | 98.6% | 61.7% | 61.2% 53.7%

TABLE I: Normal traffic served averages with one
replica server

It is apparent that the impact of a given attack type differs
depending on the service. It is also not possible to easily
identify the most effective attack. The fundamental reason for
these obervations is that the effectiveness of the mechanism
depends on the amount of address space overlap between the
normal user and attacker addresses, and on the per-address
traffic volumes. Nonetheless, our defense mechanism mitigates
the attacks effectively even in the difficult NGO flash crowd
with DDoS attack scenario.

6) Effects of attack volume: The attack volume in relation
to server capacity has an effect on the resulting service quality.
In the following we explore the effect of different attack traffic
server overload factors on service quality with the university
dataset normal traffic and botnet attack traffic:

x10
76.1%

x20
69.5%

Attack factor: x1 x5
95.8% 83.9%

Service quality:

While the attack volume does affect the performance of
our defense mechanism, the effect is relatively small compared
to the increase in attack volume. Thus, we can state that the
performance of our mechanism is relatively insensitive to the
volume of the attack traffic.

V. DISCUSSION

Two existing techniques for traffic filtering in network
devices are source blacklisting and large-flow detection. Solely
using blacklists only works against attacks that are coming
from the blacklisted addresses: spoofed attacks, previously
undetected attack sources and flash crowds are not prevented
from damaging the service availability. In large-flow detection,
the network traffic is actively monitored and abnormally large
traffic flows are blocked. This works well against attacks com-
ing from relatively few sources, e.g. a DNS reflection attack
using only tens or hundreds of DNS servers. Unfortunately
large-flow detection does not offer protection against attacks
coming from a large group of attack sources, i.e. a botnet,
since the attacker is able to maintain reasonably normal data
rates per attack source. Random source address spoofing also
avoids this defense.

Like any learning-based defense mechanism, our mecha-
nism is potentially susceptible to poisoning of the learning data
by the attacker prior to the main attack. As separately discussed
[7] this is not a critical problem in our mechanism, since it
is extremely difficult for the attacker to gain a domineering
effect on the learning data clusters without revealing the
attack prematurely. Extremely volume- and source-variable
attacks could potentially cause problems to the mechanism by
overwhelming a cluster and roving to another cluster before the
defense can react by blocking the overwhelmed cluster. This
threat can be effectively controlled by limiting the maximum
traffic rate of a cluster on the switch by using the meter
functionality defined in the OpenFlow specification [10].

In terms of applicability we have evaluated the system
against packet flooding attacks with a packets per second ca-
pacity limit. The mechanism is equally capable of bandwidth-
based attack mitigation: the exact same principles and algo-
rithms apply with the modification that in addition to packet
count we also factor in the length of the packet. The defense
mechanism operates on the IP layer, so attacks targeting higher
layers are not within the scope of this defense. However, as
observed in section IV-C, the majority of real-life DDoS at-
tacks are based on flooding and are thus likely to be effectively
mitigated by our defense.

The scalability of the mechanism is defined mainly by
two factors: the feature processing capacity of the centralized
traffic view element and the flow entry budget of the network
switches. In feature processing the clustering, which is only
done during normal operation, is not performance-critical.
During a DDoS attack the full impact on feature processing
can be effectively avoided by the fact that we can sample only
a small part of the attack-time traffic without a significant loss
in accuracy, as previously noted in section IV-B. The flow
entry budget on the switches can also be effectively optimized
by inserting only the pertinent flow entries, i.e. only inserting
entries for traffic that actually flows through a given switch. As
we have already demonstrated the effectiveness of our defense
mechanism using a relatively low maximum number of flow
rules it is unlikely that the flow entry budget would be a
problem.

There are multiple options for gaining a sufficiently accu-
rate view of the traffic flowing inside the network and con-
trolling the switches accordingly. Our current implementation

uses sFlow sampling for the view and direct switch manipu-
lation for control. This could alternatively be done by using
pure OpenFlow for both view and control, or hybridized by
using sampling for network view, in order to avoid controller
overload during an attack, and OpenFlow for switch control.
Exploring the effectiveness of different network view and
control schemes during a DDoS attack is a topic for future
research.

VI. CONCLUSION

We have presented and comprehensively evaluated a ma-
chine-learning-based DDoS defense mechanism which is de-
signed for deployment on SDN-enabled networks. Our mech-
anism is capable of maintaining service quality for approxi-
mately 75% to 80% of normal clients when a service with a
stable userbase is subjected to various flooding attacks. For a
service subjected to simultaneous flash crowd and DDoS attack
the mechanism maintains service for roughly 50% to 60% of
benign users.

In addition the mechanism supports external blacklist inte-
gration and on-demand replica server invocation in a cloud
environment. These features further improve the scenario-
dependent service level for normal clients when the attack
comes at least partially from blacklisted addresses or the
network provides capabilities for server capacity elasticity.

REFERENCES

[1] Public DNS Server List, http://public-dns.tk, Feb. 2015.
[2] Akamai. Q4 2014 State of the Internet - Security, 2014.

[3] R. Aliyev, D. Seo, and H. Lee. DROP-FAST: Defending against
DDoS Attacks using Cloud Technology. In Int. Conf. on Security and
Management, 2013.

[4] X. Cai and J. Heidemann. Understanding block-level address usage
in the visible internet. ACM SIGCOMM Computer Communication
Review, 40(4):99-110, 2010.

[S] M. Collins and M. Reiter. An empirical analysis of target-resident DoS
filters. In Security and Privacy, Proceedings. IEEE Symp. on, pages
103 — 114, 2004.

[6] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Finding
hierarchical heavy hitters in streaming data. ACM Trans. Knowl. Discov.
Data, 1(4):2:1-2:48, Feb. 2008.

[7]1 A. Kalliola, T. Aura, and S. §éepanovic’. Denial-of-Service Mitigation
for Internet Services. In Secure IT Systems, Lecture Notes in Computer
Science, pages 213-228. Springer International Publishing, 2014.

[8] M. Mitzenmacher, T. Steinke, and J. Thaler. Hierarchical heavy hitters
with the space saving algorithm. In Proceedings of the Meeting on
Algorithm Engineering and Experiments, ALENEX 12, 2012.

[9] 1. Mubarok, K. Lee, S. Lee, and H. Lee. Lightweight Resource
Management for DDoS Traffic Isolation in a Cloud Environment. In
IFIP SEC, 2014.

[10] Open Networking Foundation. OpenFlow Switch Specification 1.3.0,
June 2012.

[11] P. Phaal and M. Lavine. sFlow Version 5,
http://www.sflow.org/sflow_version_5.txt, 2004.
[12] P. Phaal and S. Panchen. Packet Sampling Basics,

http://www.sflow.org/packetSamplingBasics/index.htm, 2006.

[13] R. Sahay, G. Blanc, Z. Zhang, and H. Debar. Towards Autonomic DDoS
Mitigation using Software Defined Networking. In NDSS Workshop on
Security of Emerging Network Technologies, 2015.

[14] F Soldo, K. Argyraki, and A. Markopoulou. Optimal source-based
filtering of malicious traffic. ~ Networking, IEEE/ACM Trans. on,
20(2):381-395, April 2012.

